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Almt rac t~ In  this paper, we study the transient behavior of Markovian queues such as M/M/a 
queues and bulk-arrlval M/M/1 queues. It will be shown that  the transit ion probabi l i t ies  of  a 

O 0  birth-death process on the non-negative integers, governed by parameters {~n,/~n}n=0 such that 
,~n-1 = ~ and  #n  = # for all n ~> N and for some N > 1 wi th  #0 = O, can  be represented in terms 
of the busy period density of an M/M/1 queue having the arrival rate ,~ and the service rate/~ and 
some exponential functions. The transition probabilities of a bulk-arrival M/M/1 queue can also be 
expressed in terms of its busy period density. 

1. I N T R O D U C T I O N  

In this paper,  we s tudy the transient behavior of Markovian queues such as M / M / s  queues and 
bulk-arrival M / M / 1  queues. 

Let {X(t),  t >_ 0} be an ergodic bir th-death process on the non-negative integers {0, 1, 2 , . . .  } 
governed by parameters  {)tn,Pn}~=0 such that  P0 - 0. I t  is well known (see e.g., [1,2]) that ,  for 
such bir th-death  processes, the transition probabilities Pij( t)  - Pr [X( t )  - j I X ( 0 )  = 1] can be 
expressed as 

P,j(t) = ~ e-~'Q,(~) Q~(~) d¢(~), (1) 

where r ,  - ~r,_l ~ , - 1 / p , ,  n :> 1, with ~0 - 1, a set of polynomials {Qi(x)}~0 is defined through 
the recursion relations 

-:~Q,(x) = ~,,Q,_l(:c) - (,~, + ~,) Q,(x) + ,~,Q,+I(*), i >_ o, (2) 

with Q-I(z )  = 0 and Qo(x) -- 1, and ¢ (z )  is a positive spectral measure with respect to which 
{Qi(x)}i~ o consti tutes an orthogonal system. Karlin and McGregor [3] showed tha t  if there 
exists some N such that  An-1 = A and P ,  - P for all n > N then the measure ¢(x)  is obtain- 
able so tha t  its transit ion behavior is, in principle, completely determined through (1) and (2) 
(see also [2]). In particular,  for the case N = 1 with p = A/p < 1, i.e., an ergodic M / M / 1  queue, 
¢ ( z )  has the continuous density 

¢,(~) = J 4 ~  - (~ + ~ - ~)2 I~ + ~ - xf < 2 v ~ ,  (3) 
27r~x 

and has, in addition, a mass of amount  (1 - p) at x - 0. Also, for a bulk-arrival M / M / 1  queue, 
some exact but  complicated expressions for Pij (t) have been obtained in [4]. 

In the ergodic M / M / 1  queue, on the other hand, Abate and Whirr [5] pointed out an interesting 
relation between P~0(t) and the busy period density b(t) of the M / M / 1  queue tha t  

I' I' Pio(t) - b(i)(u) du - p b(i+l)(u) du (4) 
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and, due to the time reversibility piPio(t) = Poi(t),  

Poi(t)- pi fotb(O(u) du_ p,+l fotb<,+1)(u)du, 
where b(i+l)(t) = b(t) • b(0(t), i > 0, with b(°)(t) = 6(t), the delta function, and • denotes the 
convolution operator. Moreover, Abate, Kijima and Whitt [6] obtained further relations such as 

P/o(t) - Pi+l,O(t) - b(i+l)(t), i >_ O, (5) 
P 

and useful inequalities between Pq (t). Evidently, such relations as (4) and (5) are very useful 
since they provide an insight for the better understanding of the transient behavior of the M/M/1 
queue (for numerical purposes, see [7]). Note that these relations can not be derived from (1) 
through (3) by the first glance. Also, when N is large, it will be extremely difficult to determine 
the spectral measure ¢(x) (see [8] for M/M/s  queues). Hence, it is of practical interest to 
relate the transition probabilities Pij (t) to known functions such as the busy period density by a 
different means. In this paper, we give a representation of Pij(t) for a birth-death process with 
the parameters as given above in terms of the busy period density of an M/M/1 queue having the 
arrival rate A and the service rate p and some other exponential functions. Some representations 
of Pi0(t) for a bulk-arrival M/M/1 queue are also derived. 

This paper is organized as follows. In the next section, we show that the results in (4) and (5) 
can be in fact derived directly by the spectral representation (1) for the M/M/1 case. For 
general N, however, this method seems not so useful and the development of such relations 
requires another means. The general case is treated in Section 3. The basic idea here is the 
decomposition of the sample path at the changing state N. Finally, in Section 4, we consider 
a bulk-arrival M/M/1 queue and show that the representations (4) for i = 0 and (5) hold true 
even for the bulk-arrival case. 

2. THE M/MI1 QUEUE 

Let Pij(s) = f o  e-stpij(t) dt denote the Laplace transform of Pij (t) (throughout the paper, 
we denote the Laplace transform of a function a(t) by ~t(s), i.e., using a hat, if it exists). Since 
¢(x) has a finite support [3], it follows from (1) that 

~j(s) - 7rj Qi(x)Qj(x) de(x) Re(s) > 0. (6) 
x + s '  

Denote the Stieltjes transform of the spectral measure by B(s), i.e., 

B(s) = fj0 ~° 
de(x) 
; -$3 = Poo(s), ReCs) > o. 

Due to the spatial homogeneity of M/M/1 queues, Karlin and McGregor [3] showed that 

(7) 

A - ~ + s - ~/(A + ~ + s)~ - 4A~ 
B(s) = - 2~s 

But, the Laplace transform of the busy period density is given by 

(8) 

A + ~ + s - ~/(A + ~ + s)~ - 4A~ 

~(s) = 2A 
(9) 

(see e.g., [9]). Hence, from (7) through (9), one has 

i ~,(~) 
~oo(~) = ; - P (10) 
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Since ]blo(S) -" hi(s)]b00(s), it follows that  

s~o(s) = g'(s) - pg'+*(s), (11) 

which, in the real domain, leads to (4). 
To prove (5), we note that  

1 $(s) 
]b0oCs) = - 

1 - ~(s)" 

This follows at once, since, from (9), 

(12) 

b(s) = P (13) 
s + ~ + u - ~b(s) 

so that  

s~(s) = (1 - ~(s)) (1 - p~(s)). (14/ 
P 

Since ]bio(s) = hi(s) ]b00(s), and then since ]b00(s) - ]bl0(s) - b(s) from (12), one has 
P 

]b,o(.) - ~+~,o(s) = ~,'+~(s), i _> o. (151 
P 

Hence, (5) holds in the real domain. 

3. R E P R E S E N T A T I O N  OF Po(t)  

Let N be a positive integer and let {X(t)}  be a birth-death process defined in Section 1 with 

parameters such that  A.-1 - A and Pn - P for all n > N with p - - < 1. Also, let A be the 

N x N tri-diagonal matrix defined by (2 ) 
A = ".. ".. ".. . (16) 

PN-2 --AN-2--/JN-2 AN-2 
p N - 1  --A --  P N - 1  

Note that  the last row-sum in A is strictly negative. Hence the generator A governs a lossy birth- 
death process restricted on {0 , . . . ,  N - 1 }  (see e.g., [10]). Let g~j(t) be the transition probabilities 
of X(I)  restricted on the states {0 , . . . ,  N - 1}, i.e., 

g l j ( t ) - - P r [ X ( t ) - j ,  O < X ( u ) < _ N - 1 ;  0 < u < t l X ( 0 ) - i ] .  

It is readily seen that  G(t) = (g# (t)) = exp {At}. 
Let (-Tn),  0 _< n < N - 1, be the eigenvalues of the lossy generator A. It is well known 

that  all the eigenvalues are distinct, real and strictly negative [11]. Let xn = (Xn0, • . . ,  X n , N _ I ) '  

and Yn -- (Yn0,...,Yn,N-1)' (' denotes the transpose) be the right and left eigenvectors of A 
associated with ( - 7 , ) ,  0 < n < N - 1, respectively. It is assumed that  they are normalized to 
be xnyn 1. The system {xn,yn} is biorthogonal, i.e., ~ • = x iy  j = 0 for i ¢ j .  Hence, the spectral 
decomposition of A yields 

N - 1  

gij(t) = ~ e -~"'z . iy .~ ,  
n---0 

o <_ i , j  < N -  1. (17) 

It should be noted that  limt..,oo glj(t) = 0, since 7n > 0, 0 < n < N - 1. Also, due to the time 
reversibility (see e.g., [10]), lqgij(t) = ~jgj~(t) for 0 _~ i , j  ~_ N - 1. 
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Let fi(t), 0 < i < N - i, be the first-paasage-time density of {X(t)} from state i to state N. 
It is easy to see that fi(t) = Ag~,N_1(t). In particular, 

N - I  
7- 

]0(s) = ~0,N-~(s) = Y I  s + ~ .  
n - - - - 0  

(see [12]). Let {T, } be a sequence of random variables distributed by the density function fN-1 (t) 
and let B,  denote the n th busy period of an M/M/1  queue having the arrival rate A and the 
service rate p. In the above birth-death setting, it is the first-passage-time density of {X(t)} from 
state n to state ( n -  1) for all n >_ N. Consider then an alternating renewal process {M(t) , t  >_ 0} 
having up-times T, and down-times B, ,  i.e., M(t) counts the number of transitions from up 
to down in {T1, B1, T2, B2,. . .  } until time t. Let re(t) = ~ E[M($)] be the renewal density of 
the alternating renewal process. The differentiability of ElM(t)] follows easily. The Laplace 
transform of re(t) is given by 

~(8) - "  /N- 1(8) (18) 
1 - ]N-I(S) b(s)" 

The following ]ennnas are of independent interest. 

LEMMA I. In the birth-death process under consideration, the transition probability PN-1,N-1 ( ~ ) 
is characterized by the renewal density of the alternating renewal process {M(t)} as 

i m(0. (19) PN-~,N-x(t) = 

PROOF. Because of the skip-free nature of the birth-death process, one has 

Pi t ( t )=Pr[X( t )= j ,  0 _ < X ( u ) < g - 1 ;  0 < u < t [ X ( 0 ) = i ]  (20) 
+ Pr[X(t) = j, X(u) = g for some u : 0  < u < t ] X(0) = i] 

for all 0 < i , j  _< N - 1. The first term in the right hand side of (20) is gij(t) by definition. The 
second term there is equal to f i( t)* PNj (t) due to the strong Markov property of the birth-death 
process. It follows that 

PN-1,N-I(t) -- gN-I,N-I(t) + fN- l ( t )  * b(t) * PN_Z,N_I(t). (21) 

Taking the Laplace transform in (21) and using (18) then yield the lemma, since fN- l ( t )  -- 
AgN-I,N-I(t). l 
REMARK 1. When N - 1, i.e., an ergodic M/M/1  queue, (19) becomes 

~oo(s)= 

since fo(t) = Ae -x ' .  This together with (13) and (14) leads to (10) and (12). 

LEMMA 2. In the birth-death process under consideration, one has 

i b(t) + pb(2)(0 • P#_1,#_1(t), j > #. Pj~(t) = ~ (22)  

In particular, 
1 pN~(t) = ~ [b(O + bC~)ct) * tact)]. 

PROOF. By the standard renewal argument, one easily sees that, for j _> N, 

(23) 

Pjj(t) - e -(A+")' % Ae -(A+")~ * b(t) * I~j(t) + pe -(A+~)t * f+_1(t) * Pjj(t), (24) 
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where fj+ l(t) denotes the first-passage-time density of {X(t)} from state (j - 1) to state j .  In 
the Laplace transform, (24) is written as 

# j j ( s )  = 1 
s + ~ + ~ - ~ ( s )  - M I d s ) "  (25) 

This together with (13) yields 

/,~j(s) = _.i ~,(s) (26) 
1 - b(s)]?_l(S )" 

On the other hand, the time reversibility implies ~riPo(t ) = r./P./i(t) for all i , j  >_ O, from which 
one has 

~/?_l(S)  4. / (6)  --" ~b(s) J~j- ld- l (S) .  (27) 

Using (26) and (27) appropriately, one arrives at (22). (23) is immediate from Lemma 1. | 

REMARK 2. When j - N, (26) can be written as 

f)NN(S)-- i b(s) (28) 
" 1 - g(S)/N-1(s)' 

since ]+_l(S) -- ]N-l(S) by definition. The difference between (19) and (28) should be made 
clear. Namely, the tasks of the busy period Bn and the first-passage-time T, in the alternating 
renewal process are interchanged. Also, note that a similar representation to (18) can be always 
derived based on the decomposition (20). For example, it is readily shown that 

i ]+(s) 
/~.,VN(S) "- ~ 1 - b(s) f~(m) 

which should be compared with (28). On the other hand, however, (26) holds true only for j _> N 
since (13) is the key relation to derive (26) from (25). 

REMAI~K 3. The limiting probability of PN-1,N-I(t) is obtained by the elementary renewal 
theorem applied to (19) as 

lim PN-1,N-I(t)= t---*co 
1 ~rN_l 

A(E[T1] + E[B1]) - ~"]~=0 ~rj' 

since 
N-1 

1 E[T1] -- 1 
E[B1]-  p ( 1 - p ) ;  A~rN_I ~ ~rj 

(see [10]) and ~N+n ---- ~rN-1 p,+l  for n >_ 0. The limiting probabilities of Pjj(t) for j ~_ N are 
obtained from (22) and (23), while for j < N, Theorem 1 below should be applied. 

We now state our main result. 

THEOREM 1. /n the birth-death process described above, every Po(t) can be represented as a 
combination of convolutions ofb(")(t), n > 1, re(t) and gq(t). 

PROOF. From the time reversibility, it suffices to consider Po(t) for i >_ j. Hence, to prove the 
theorem, we need to consider the following three cases: 

Case 1. i > j > N ;  
Case 2. i > _ N > j ;  
Case 3. N > i > _ j .  
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For Case 1, it is easy to see that  

P~j (t) = b( ' -J)( t )  • P# (t), i > j > ~¢. (29) 

Since Pj#(t), j >_ N, are represented in terms of b(n)(t) and re(t) (see Lemmas I and 2), one has 
the desired conclusion. For Case 2, the skip-free property and the strong Markov property at the 
last exit from state N bear 

Pi,jCt) = bCi-N)(~) * PNj(~);  PNj(~) "- ] . IPNN(t) * N P N - I , j ( t ) ,  

where NPN-1j(t) are the taboo probabilities with taboo state N. But, NPN-Ij(t) is equal to 
gN-Ij (t) by definition. Hence, 

PNj(t) -" ~gN-l,j(t) * PNN(t), N > j. (30) 

It follows from (23) and (30) that 

Pq(t)=gN_lj(t)*{b(i-N+l)(t)+b(i-N+2)(t)*m(t)}, i>_ N > j, (31) 

arriving at the desired conclusion. Finally, to prove the assertion for Case 3, we recall the proof 
of Lemma 1. Combining (20) and (30), it is easy to see that  

Pij(~) = gij(t) + Agi,N_l(t) * gN-l , j ( t )  * {b(t) -t- b(2)(t) * re(t)}, N > i _> j .  (32) 

This completes the proof of the theorem. 

4. T H E  B U L K - A R R I V A L  M/M~1 Q U E U E  

In this section, we consider an M/M/1 queue with bulk arrivals of random size. The arrival 
and service rates are A and ~, respectively. Let C be the generic random variable of the bulk size 
and define the generating function as A(z) - ~=0 anz", where an - Pr[C - hi, n -- 0, I, .... 
Note that we allow the possibility of arriving empty bulks. The mean of the bulk size is given by 
a = E[C] = A'(1). It is assumed that p = aA/p < 1. 

Let b(t) be the busy period density of the bulk-arrival M/M/1 queue. It is well known (see, 
e.g., [4] and references therein) that 

~(~) = 

so that 

/z 

s + A + u - Aa(~(~)) 
(33) 

8b(s) = #~(I - b(s)) - Ab(s) (I - A(bCs))). (34) 

Now, consider the transition probabilities Pij (t) = Pr[X(t) = j IX(0) =/], where X(t) denotes 
in turn the queue length of the bulk-arrival queue at time t. By the standard renewal argument, 
it is readily seen that 

Hence, 

Poo(,,) = ,, + A ( i  - . o )  1 + :~ . , / , ' (~)  Poo( . )  • 
i=1 

It follows from (33) and (36) that 

(3s) 

Poo( . )  = z , + (36) 

P00(8)- I ~(~) (37) 
1 - ~(s)" 
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Here, again, we encounter the renewal structure as in (12). 

Since, from (37), Poo(') -- Plo(s) + ~_~.2, one has 

Pio(~) - Pi+~,o(~) = Y + l ( s )  
# 

Note that  Pi0(s) -" bi(s)P00(s). 

so that  (5) holds even for the bulk-arrival case. 
From (34), one can rewrite (37) as 

sPoo(S) - 1 - p b(s)  (1  - A ( b ( s ) ) )  
a ( 1  - $ ( ~ ) )  

(3s) 

Note that  the Markov chain {X(t), t >_ 0} is spatially homogeneous with retaining boundary 
at 0. Hence, its governing generator, after uniformization, is stochastically monotone (see [10]). 
It follows from [13, Theorem 1] that Poo(t) is non-increasing in t. Therefore, since lim sPoo(S) = 

$-=*0 
1 - p, there is a probability density function/3(t) whose Laplace transform is given by 

and 

B0o(C) = 1 - p ~ ( u )  d . .  

Note the resemblance between (4) with j = 0 ~.nd (39). 

EXAMPLV. 1. Suppose that all the bulk sizes are the same, say n. 
1 - A ( ~ ( s ) )  (1 - ~ ( s ) )  . - 1  = ~,k=o bk(s) • It follows from (38) that 

(39) 

Then, A(z) -- z" so that 

1 ~ b(k)(t). (40) # ( t )  = 
k=l 

When n = 1, (40) agrees with the M/M~1 case, as it should be. 

EXAMPLE 2. In this example, we consider the case that the bulk size is geometrically distributed. 
Suppose that  an = (1 - 7) 7". Then, as in Example 1, one has the expression 

sPoo(s) = t - p 
(1 - v) ~(s) 

I - v~Cs) 

Hence, fl(t) for this case is a compound geometric distribution associated with the busy period 
density having the mixing rate 7. 
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