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Undecidability of various properties of first-order term rewriting systems is well-known.

An undecidable property can be classified by the complexity of the formula defining it. This

classification gives rise to a hierarchy of distinct levels of undecidability, starting from the

arithmetical hierarchy classifying properties using first order arithmetical formulas, and

continuing into the analytic hierarchy, where quantification over function variables is al-

lowed.

In this paperwegive an overviewof how themain properties of first order term rewriting

systems are classified in these hierarchies. We consider properties related to normalization

(strong normalization, weak normalization and dependency problems) and properties re-

lated to confluence (confluence, local confluence and the unique normal form property). For

all of these we distinguish between the single term version and the uniform version. Where

appropriate, we also distinguish between ground and open terms.

Most uniform properties are �0
2-complete. The particular problem of local confluence

turns out to be �0
2-complete for ground terms, but only �0

1-complete (and thereby recur-

sively enumerable) for open terms. The most surprising result concerns dependency pair

problems without minimality flag: we prove this problem to be�1
1-complete, hence not in

the arithmetical hierarchy, but properly in the analytic hierarchy.

Someof our results areneworhave appeared inour earlier publications.Others are based

on folklore constructions, and are included for completeness as their precise classifications

have hardly been noticed previously.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In classical computability theory properties on countable objects are investigated by explicitly enumerating the elements

of the object. Thus, a property can be identified with a set P ⊆ N representing the set of elements for which the property

holds. Such a set P is called decidable if there exists a Turing machine which for every input x ∈ N outputs 1 if x ∈ P and 0

if x /∈ P.

Investigating the complexity of decidable properties is well-known, defined in terms of the time (or space) consumption

of a Turing machine that decides the property. Likewise, but less well-known, the undecidable properties can be classified

into a hierarchy of growing complexity: one undecidable property can be harder than another. Aswehave infinite hierarchies

like linear-quadratic-cubic-· · · in the complexity of decidable properties, there are similar infinite hierarchies in the universe

of undecidable properties.
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The twin notions of the arithmetical hierarchy [20] and the analytical hierarchy [21,22] establish such a classification of

undecidable properties by the complexity of predicate logic formulas that define them—in turn defined as the number of

quantifier alternations of the prenex normal form of the formula.

The arithmetical hierarchy is based on first order formulas: quantifiers are restricted to range over integers The classes in

the arithmetical hierarchy are denoted�0
n and�

0
n for n ∈ N. The lowest level of the hierarchy consists of the classes�0

0 and

�0
0 , both consisting of the decidable properties. Then the classes�0

n and�0
n for n ≥ 1 are inductively defined: a property is

in�0
n if it can be written as ∀xP for P ∈ �0

n−1, and a property is in�0
n if it can be written as ∃xP for P ∈ �0

n−1. For example,

if P(x, y, z) is a decidable property, then ∃x P(x, y, z) is in�0
1 and ∀y ∃x P(x, y, z) is in�0

2.

Hence, a property belongs to the class�0
n forn ∈ N in the arithmetical hierarchy if it canbedefinedbyafirst order formula

(in prenex normal form), which has n quantifiers, with the outermost quantifier being universal. Likewise a property is in�0
n

if the outermost quantifier is existential. The class �0
1 is the class of recursively enumerable (or semi-decidable) properties.

The blank tape halting problem is in this class. The initialized uniform halting problem is in the class�0
2.

Let Y be a property (typically: Y represents a term rewriting system or Turing machine with a particular property) For

a class, X , of properties, Y is called X-hard if any property in X can be reduced to Y . It is called X-complete if it is both in X

and X-hard. Under suitable encodings, the blank tape halting problem for Turing machines is �0
1-complete; the initialized

uniform halting problem is �0
2-complete. For proving X-hardness of any new property it suffices to reduce the standard

instances such as the above to the new property.

The analytical hierarchy continues the classification of properties by second order formulas, allowing for quantifiers

ranging over functions. An important class is �1
1, consisting of the properties which can be defined by ∀α : N → N. ϕ

where ϕ is an arithmetical relation.

Extensive theory concerning these hierarchies has been developed; excellent textbooks summarizing the major results

are [14,31,32].

Up to renaming of function symbols, the set of all TRSs (term rewriting systems) is countable, and properties of TRSs

can be classified in the arithmetical and analytical hierarchies. The goal of this paper is to establish such a classification for

the most basic properties of first order TRSs. All of the properties we consider are already known to be undecidable. For

some of them, their level in the relevant hierarchy easily follows from the folklore proofs of undecidability. For others, the

investigation has appeared earlier in our papers [7,33]. For some others the results in this paper are new. For the sake of

completeness, all of these results are presented in this paper.

One may wonder why these results would be of interest. A tantalizing argument against an investigation such as the one

we perform is that, for undecidable problems, no algorithm exists solving them, so further investigation is useless from a

practical perspective. On the other hand, the arithmetical and analytical hierarchy provide a natural, general and objective

way to classify levels of undecidability, and state that someundecidableproblemsare essentially harder thanothers. Thismay

serve for a better understanding of the hardness of several problems. For instance, checking local confluence (on open terms)

can be done by critical pair analysis, while for checking local ground confluence (that is, on closed terms) this approach does

not apply. The critical pair analysis implies the problem to be in�0
1 , while we show�0

2-hardness of local ground confluence.

From this we can conclude that it is not due to lack of human effort that no technique is known for checking local ground

confluence in a way similar to critical pair analysis; on the contrary, such a technique is fundamentally impossible.

1.1. Results

We investigate the complexity of the following properties of first order TRSs.

• Basic properties. Each of the following problems is on the form: “Given terms t, u, decide whether the property holds”.

We prove that

– reduction (t→∗ u),
– joinability (t→∗ · ←∗ u), and
– conversion (t ↔∗ u)

are all�0
1-complete.

• Termination-related properties. We prove that

– termination or strong normalization (SN) of single terms is�0
1-complete; uniform termination is�0

2-complete;

– weak normalization (WN) of single terms is�0
1-complete; uniform weak normalization is�0

2-complete;

– finiteness of dependency pair problems (DP) is�1
1-complete, and

– finiteness of dependency pair problems with minimality flag (DPmin) is�0
2-complete.

The results hold both for general (open) terms and for ground terms.

• Confluence-related properties. We prove that

– confluence (CR) is�0
2-complete, nomatterwhether this is taken for single terms or uniform, or restricting to ground

terms or not;

– uniform local ground confluence (grWCR) is�0
2-complete;
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– the other three variants of local confluence (WCR): single term local ground confluence, single term local confluence

and uniform local confluence, are all�0
1-complete;

– the unique normal form property is�0
1-complete, both for the variantsUN andUN→, and both for single terms and

the uniform version.

These results are summarized in the following tables:

→∗ →∗ · ←∗ ↔∗ DP DPmin

�0
1 �0

1 �0
1 �1

1 �0
2

SN WN CR grCR WCR grWCR UN UN→

uniform �0
2 �0

2 �0
2 �0

2 �0
1 �0

2 �0
1 �0

1

single term �0
1 �0

1 �0
2 �0

2 �0
1 �0

1 �0
1 �0

1

While undecidability of many of these problems is folklore [10,11], their precise hardness has hardly been studied. An

exception is [15], the oldest reference to undecidability of properties of TRSs, which also includes an observation on the

Turing degree of termination, hence essentially proving termination�0
2-complete. As we use a slightly different translation

from Turing machines to TRSs, we do not use the results or proofs of [15].

We find that the standard TRS properties SN, WN, CR, WCR and UN for both the uniform and single term versions, all

reside within the classes�0
2,�

0
1 and�0

1 of the arithmetical hierarchy.

A somewhat unexpected result we already mentioned is that local ground confluence is a harder decision problem than

local confluence.While local confluence is�0
1-complete and therefore recursively enumerable, it turns out that local ground

confluence�0
2-complete.

Surprisingly, it turns out that dependency pair problems are of a much higher degree of undecidability: they properly

exceed the expressive power of first order predicate logic, hence are not in the arithmetical hierarchy. In particular we

show that dependency pair problems are�1
1-complete. So although dependency pair problems were invented for proving

termination, the complexity of general dependency pair problems is much higher than the complexity of termination itself.

As the basic technique to prove �1
1-hardness is by checking whether a given relation is well-founded, dependency pair

problems share a natural proof-theoretic level with one of the most basic approaches to proving termination: finding a

compatible well-founded order.

A variant of dependency pair problems are dependency pair problemswithminimality flag.We show that for this variant

the complexity is back to that of termination: it is�0
2-complete.

It should be noted that while our results are proved only for (first-order) TRSs, the hardness results also hold for variants

of rewriting that faithfully simulate the reduction relation of TRSs; this is the case for each of the standard variants of higher-

order rewriting systems, see e.g. [37] for a survey. For such systems, our completeness results will also hold when the rewrite

relation is decidable and terms are finite: for instance, every reduction in the standard variants of higher-order rewriting can

be encoded as an integer and checked by suitable decidable predicates P; hence, both the single term and uniform versions

ofCR are�0
2-complete for combinatory reduction systems (CRS) and for pattern rewrite systems (PRS). We believe that our

results are best presented by using the standard, simple, and universally accepted notation for TRSs, whence we leave the

straightforward details of lifting our proofs to the various notations of higher-order systems to the reader.

1.2. Related work on decidability in rewriting

The first undecidability results in rewriting concerned untyped lambda calculus where normalization and termination

was shown to be undecidable in 1937 [36]. For first-order term rewriting, uniform terminationwas shown to be�0
2-complete

in 1978 by Huet and Lankford [15]. As their construction uses only unary symbols, the result even holds for string rewriting

systems. Since then for several properties in rewritingundecidabilitywasproved, but all typicallywithout exact classification

in the arithmetical hierarchy. Undecidability of (local and global) confluence on ground or non-ground terms is a folklore

result appearing in several textbooks, see for example [35]; one of the approaches is based on undecidability of the word

problem for groups [4,29] and semigroups [26]. Undecidability of termination of a single term rewrite rule was proved in

[5]. It is still an open problem whether termination of a single string rewrite rule is decidable. Undecidability of simple

termination was proved in [27]. There is a substantial literature on more undecidability results in rewriting, including [9–

11,17,19,40]. Conversely, intense research has been devoted to finding decidable special cases of termination, normalization

and confluence, see for example [6,16,28,38].

For somevariants of rewriting systems, certain properties decidable in ordinary TRSs becomeundecidable. As an example,

this holds for all three standard variants of conditional term rewriting systems (CTRSs), where it is undecidable whether

a term is in normal form, and indeed, the one-step rewrite relation is undecidable [3,18]; but as usual, imposing syntactic

restrictions garners decidable subcases [3]. The classification of undecidability results for CTRSs in the arithmetical hierarchy

has not yet been studied.



230 J. Endrullis et al. / Information and Computation 209 (2011) 227–245

There are some results in stream specifications. In [30] it was proved that equality of streams is a�0
2-complete problem.

In fact this work triggered the authors to start the investigations leading to the current paper. Also productivity of stream

specifications has been proved to be�0
2-complete. This has been observed independently by several people; one proof was

given in [33].

1.3. Structure of the paper

This paper is organized as follows.

• In Section 2 we give preliminaries on term rewriting, and define the basic properties to be classfied into the arithmetical

and analytical hierarchies.
• In Section 3 we present Turing machines.
• In Section 4 we introduce the arithmetic and analytic hierarchy, and outline the proof obligations for proving

X-completeness where X is one of�0
1,�

0
1 ,�

0
2 and�1

1.• In Section 5 we come to our first results: we give a basic transformation from Turing machines to TRSs such that (i)

the halting of the Turing machine on the blank tape coincides with termination on a particular starting term, and (ii)

uniform halting of the Turing machine coincides with uniform termination. The same construction serves for weak

normalization.
• In Section 6 we give a slight extension to this basic construction by which our results on the basic properties are ob-

tained.
• In Section 7 we give our results on some variants of the unique normal form property, again by a slight extension to the

basic construction.
• In Section 8 we present our results on confluence, both the general and ground variant. Again the key is an extension of

the basic construction by a few rewrite rules.
• In Section 9 we do the same for local confluence.
• In Section 10 we make the step to the analytic hierarchy: we prove our results on dependency pair problems.
• In Section 11 we are back in the arithmetic hierarchy: we show that dependency pair problems with minimality flag

behave as normal termination.
• Finally, in Section 12 we give conclusions and discuss future work.

2. Term rewriting

We briefly review the most basic concepts and notation for term rewriting systems; comprehensive accounts can be

found in, for example, [23,35].

A signature � is a finite set of symbols each having a fixed arity �(f ) ∈ N. Let � be a signature and X a set of variable

symbols such that� ∩ X = ∅. The set Ter(�,X) of terms over� and X is the smallest set satisfying:

• X ⊆ Ter(�,X), and
• f (t1, . . . , tn) ∈ Ter(�,X) if f ∈ � with arity n and ∀i : ti ∈ Ter(�,X).

We use x, y, z, . . . to range over variables. The set of positionsPos(t) ⊆ N∗ of a term t ∈ Ter(�,X) is inductively defined by:

Pos(f (t1, . . . , tn)) = {ε} ∪ {ip | 1 ≤ i ≤ �(f ), p ∈ Pos(ti)}, and Pos(x) = {ε} for variables x ∈ X. We use≡ for syntactical

equivalence of terms.

A substitution σ is a map σ : X→ Ter(�,X) from variables to terms. For terms t ∈ Ter(�,X) and substitutions σ we

define tσ as the result of replacing each x ∈ X in t by σ(x). That is, tσ is inductively defined by xσ := σ(x) for variables
x ∈ X and otherwise f (t1, . . . , tn)σ := f (t1σ, . . . , tnσ). Let � be a fresh symbol, � �∈ � ∪ X. A context C is a term from

Ter(�,X ∪ {�}) containing precisely one occurrence of �. Then C[s] denotes the term Cσ where σ(�) = s and σ(x) = x

for all x ∈ X.
A term rewriting system (TRS) over�, X is a set R of finitely many pairs 〈	, r〉 ∈ Ter(�,X), called rewrite rules and usually

written as 	→ r, for which the left-hand side 	 is not a variable (	 �∈ X) and all variables in the right-hand side r occur in 	
(Var(r) ⊆ Var(	)). Let R be a TRS. For terms s, t ∈ Ter(�,X)wewrite s→R t if there exists a rule 	→ r ∈ R, a substitution

σ and a context C ∈ Ter(�,X ∪ {�}) such that s ≡ C[	σ ] and t ≡ C[rσ ];→R is the rewrite relation induced by R. In case

R is fixed, we shortly write→ for→R.

A rewrite sequence with respect to R is a finite or infinite sequence u1, u2, . . . of terms such that ui →R ui+1 for all

appropriate i. If �u = u1, . . . , un is a finite rewrite sequence with t = u1 and s = un, we say that �u is a rewrite sequence from

t to s and we write t
�u→∗Rs, occasionally omitting �u and/or R. If �u is empty we just have s = t.

A normal form t with respect to R is a term t such that no term u exists for which t→R u. We write→∗ for the reflexive

transitive closure of→, and↔∗ for the reflexive symmetric transitive closure of→.
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Definition 2.1. Let R be a TRS and t ∈ Ter(�,X) a term. Then R

• is strongly normalizing (or terminating) on t, denoted SNR(t),
if every rewrite sequence starting from t is finite;
• is weakly normalizing on t, denoted WNR(t),

if t admits a rewrite sequence t→∗ s to a normal form s;
• is confluent (or Church–Rosser) on t, denoted CRR(t),

if every pair of finite coinitial reductions starting from t can be extended to a common reduct, that is, ∀t1, t2. t1 ←∗
t→∗ t2 ⇒ ∃d. t1→∗ d←∗ t2;• is locally confluent (or weakly Church–Rosser) on t, denoted WCRR(t),
if every pair of coinitial rewrite steps starting from t can be joined, that is, ∀t1, t2. t1← t→ t2 ⇒ ∃d. t1→∗ d←∗ t2;• has the unique normal form property on t, denoted UNR(t), if there is at most one normal form n satisfying t ↔∗ n,
• has the unique normal form property on t with respect to reduction, denoted UN→R (t), if there is at most one normal form

n satisfying t→∗ n.
The TRS R is strongly normalizing (SNR), weakly normalizing (WNR), confluent (CRR) or locally confluent (WCRR), or has

the unique normal form property (with respect to reduction) (UNR, respectively UN→R ) if the respective property holds on

all terms t ∈ Ter(�,X). For each property P, we say that R has the “ground P”-property if P holds for all ground terms

t ∈ Ter(�,∅).

A fruitful variant of König’s Lemma is the following.

Lemma 2.2. A finitely branching relation→ is terminating on t if and only if there exists n ∈ N such that every reduction of t

has length< n.

Proof. The ‘if’-part is trivial. For the ‘only if’-part assume t has reductions of unbounded length. As t has finitely many

successors, at least oneof these successorshas reductionsof unbounded length too. Repeating theargumenton this successor

yields an infinite reduction, contradicting the assumption of termination. �

3. Turing machines

Definition 3.1. Wenow recapitulate the notions for Turingmachineswe need in the remainder of the paper; comprehensive

accounts of Turing machines and computability can be found in [8,31,34].

A Turing machine M is a quadruple 〈Q , 
, q0, δ〉 consisting of:

• finite set of states Q ,
• an initial state q0 ∈ Q ,
• a finite alphabet 
 containing a designated symbol �, called blank, and
• a partial transition function δ : Q × 
→ Q × 
 × {L, R}.
A configuration of a Turing machine is a pair 〈q, tape〉 consisting of a state q ∈ Q and the tape content tape : Z→ 
 such

that the carrier {n ∈ Z | tape(n) �= �} is finite. The set of all configurations is denoted ConfM. We define the relation→M
on the set of configurations ConfM as follows: 〈q, tape〉 →M 〈q′, tape′〉whenever:

• δ(q, tape(0)) = 〈q′, f , L〉, tape′(1) = f and ∀n �= 0. tape′(n+ 1) = tape(n), or
• δ(q, tape(0)) = 〈q′, f , R〉, tape′(−1) = f and ∀n �= 0. tape′(n− 1) = tape(n).

Without loss of generality we assume that Q ∩ 
 = ∅. This enables us to denote configurations as 〈w1, q,w2〉, denoted
w
−1
1 qw2 for short, with w1,w2 ∈ 
∗ and q ∈ Q , which is shorthand for 〈q, tape〉 where tape(n) = w2(n + 1) for

0 ≤ n < |w2|, and tape(−n) = w1(n) for 1 ≤ n ≤ |w1| and tape(n) = � for all other positions n ∈ Z.

The Turing machines we consider are deterministic. As a consequence, final configurations are unique (if they exist),

which justifies the following definition.

Definition 3.2. Let M be a Turing machine and 〈q, tape〉 ∈ ConfM. We denote by finalM(〈q, tape〉) the→M-normal form of

〈q, tape〉 if it exists and undefined, otherwise. Whenever finalM(〈q, tape〉) exists then we say that M halts on 〈q, tape〉 with

final configuration finalM(〈q, tape〉). Furthermore we say M halts on tape as shorthand for M halts on 〈q0, tape〉.
Turing machines can compute n-ary functions f : Nn→ N or relations S ⊆ N∗. For our purposes, we require only unary

functions fM and binary relations>M ⊆ N× N.
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Definition 3.3. Let M = 〈Q , 
, q0, δ〉 be a Turing machine with S, 0 ∈ 
. We define a partial function fM : N ⇀ N for all

n ∈ N by:

fM(n) =
{
m if finalM(q0Sn0) = · · · qSm0 · · ·
undefined otherwise

and for M total (i.e. M halts on all tapes) we define the binary relation>M ⊆ N× N by:

n >M m ⇐⇒ finalM(0Snq0Sm0) = · · · q0 · · · .
Observe that the set {>M| M a Turing machine that halts on all tapes } is the set of recursive binary relations on N.

4. Levels of undecidability

In the introduction we have briefly mentioned the arithmetical and analytical hierarchy. We now summarize the main

notions and results relevant for this paper. For details we refer to standard texts on mathematical logic, e.g. [31,32]. that

contain further technical results regarding these hierarchies.

Definition 4.1. Let A ⊆ N. The set membership problem for A, or just the problem A, is the question of deciding for given

a ∈ N whether a ∈ A.

In the following, we usually identify the membership problem for A with the set A itself, hence we shall refer to A as a

problem. There is an obvious relation between a problem defined as a predicate over the natural numbers and as a set: ϕ(n)
iff n ∈ {m ∈ N|ϕ(m)}, so we will interchange these notions freely.

Definition 4.2. Let A ⊆ N and B ⊆ N. Then A can be many-one reduced to B, notation A ≤m B if there exists a total

computable function f : N→ N such that ∀n ∈ N. n ∈ A⇔ f (n) ∈ B.

In the remainder of the text, we refer to many-one reductions simply as reductions.

Definition 4.3. Let B ⊆ N and P ⊆ 2N. Then B is called P-hard if every A ∈ P can be reduced to B, and B is P-complete

whenever additionally B ∈ P.

Thus, a problem B isP-hard if, for every problem A ∈ P, we can reduce a question about A to a question about B: To decide

“n ∈ A” we need only decide “f (n) ∈ B”, where f is the total computable function that reduces A to B.

The classification results in the following sections employ the following well-known lemma, which states that whenever

a problem A can be reduced via a computable function to a problem B, then B is at least as hard as A.

Lemma 4.4. If A can be reduced to B and A is P-hard, then B is P-hard.

4.1. Preliminaries on encoding

The decidability problems we deal with in this paper are concerned with term rewriting systems and Turing machines.

To phrase these problems in terms of natural numbers involves a coding step: one encodes a Turing machine M as a natural

number �M� and subsequently transforms the question ‘Does the TuringmachineM halt on the blank tape?’ to the problem

{n|n = �M� and M halts on the blank tape}, which is a subset of N.

The above procedure is standard and the actual encodings are therefore usually not spelled out. The crucial property is

that the encoding is computable; for historical reasons, such computable encodings are usually called ‘effective’:

Definition 4.5. We call an encoding �−� of Turing machines as elements of N effective in case

(i) one can decide if a number n is the encoding of some Turing machine M,

(ii) one can decide if the encoded Turing machine �M� can do a computation step 〈q, tape〉 →M 〈q′, tape′〉.
The second condition means that the set {(m, nq, nt, n′q, n′t)|m = �M�, nq = �q�, nt = �tape�, n′q = �q′�, n′t =

�tape′�, 〈q, tape〉 →M 〈q′, tape′〉} is decidable.
Henceforth wewill assume that we have an effective coding for Turingmachines. The existence of such an encoding rests

on the fact that we can effectively encode finite lists of natural numbers as natural numbers. This can, for example, be done

using the well-known Gödel encoding: 〈n1, . . . , nk〉 := p
n1+1
1 · . . . pnk+1k , where p1, . . . , pk are the first k prime numbers
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[31], or by using an encoding of Turing machines as lists of bits without leading zeroes and observing that each such list

corresponds to a unique natural number [25].

Definition 4.6. We call an encoding 〈−〉 of finite list of numbers as elements of N effective in case

(i) we have a computable length function lth〈n1, . . . , nk〉 = k,

(ii) we have a computable projection function (−)i such that (〈n1, . . . , nk〉)i = ni (if 1 ≤ i ≤ k),

(iii) it is decidable if a number is the encoding of a list: Seq(n)⇔ ∃n1, . . . , nk(n = 〈n1, . . . , nk〉) is decidable.
Using the encoding of finite lists of natural numbers, we can effectively encode Turing machines. If fix such an encoding,

the following, known as Kleene’s T-predicate, is a well-known decidable problem: T(m, x, u, y) := m encodes a Turing

Machine M, u encodes the computation of M on x whose end result is y. Using the Gödel encoding, we can rephrase this as

a predicate over N. In the present paper, we will – as usual – suppress these encodings and just say that

T(M, x, u, y) := u is a computation of M on input x with output y

is decidable. Similarly, we can effectively encode notions from term rewriting as natural numbers and thus we can cast

problems of TRSs as problems overN. The only requirement of this encoding is thatmatching (whether a given termmatches

a certain pattern) should be decidable.

Definition 4.7. We call an encoding �−� of TRSs as elements of N effective if for any TRS R, from an encoding of a term �s�,
we can compute all triples 〈�	�, �σ�, �C�〉 such that s ≡ C[	σ ].

An effective encoding can easily be constructed for the class of finite first-order TRSs due to the fact that it is decidable

whether a rewrite rule applies to a term in a (finite) TRS. Furthermore, we will always require that there are finitely many

rewrite rules, whence reduction is finitely branching.

We will leave the encoding implicit and draw a couple of basic consequences regarding decidability from the existence

of an effective encoding of TRSs as described in Definition 4.7. These will be the basics for all our decidability results in TRSs.

Lemma 4.8. The following TRS properties are decidable.

(i) Given a finite TRS R, it is decidable if a term s is in normal form.

(ii) Given a finite TRS R and two terms t and s in R, it is decidable whether s→R t.

(iii) Given a finite TRS R, two terms t, s and a finite list of terms �u in R, it is decidable whether s
�u→∗R t, that is, whether �u is a

reduction sequence from s to t.

Proof. The first is obvious. For the second,

s→R t ≡ ∃	→ r ∈ R ∃σ ∃C (s = C[	σ ] ∧ t = C[rσ ]).
Each of these existential quantifiers is bounded, so they amount to a finite search; hence, this is a decidable problem. The

fact that the TRS is finite is crucial here. For the third, s
�u→∗Rt just means

s = u1 ∧ u1→R u2 ∧ u2→R u3 ∧ · · · ∧ un−1→R un ∧ un = t,

so this follows from the second. �

4.2. The arithmetical and analytical hierarchies

Undecidable problems can be divided into hierarchies of increasing complexity, the most well-known of which is the

arithmetical hierarchy. An example of a problem in this hierarchy is the problemwhether t reduces in finitelymany steps to s:

t→∗R s, i.e. whether ∃�u(t �u→∗Rs). Observe that as terms, term rewriting systems and reduction sequences may be encoded

as natural numbers, we may regard the example as a “problem” in the sense of Definition 4.1.

The problem is undecidable in general and resides in the class �0
1 , which is the class of problems A ⊆ N such that

A = {n|∃x ∈ N P(x, n)} where P(x, n) is a decidable problem. Similar to �0
1 , there is the class �0

1, which is the class of

problems A such that A = {n|∀x ∈ N P(x, n)}with P(x, n) a decidable problem. If we continue this procedure in the obvious

manner, we obtain the classes �0
n and �0

n for every n ∈ N. Before we introduce the classes �0
n and �0

n, we recall and fix

some conventions.
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Fig. 1. Arithmetical hierarchy.

Remark 4.9

• Wewill suppress the domain of the existential quantifier: modulo an effective encoding as natural numbers, the domain

may be any countable (or finite) set.
• As there exists an effective bijective encoding of natural numbers as finite lists of natural numbers (Definition 4.6), we

may replace any quantification over Nk by a single quantification over N, and any problem over Nk can thus be seen as

a problem over N. Therefore we identify, for example, a problem over N2 with a problem over N.
• A finite sequence of existential quantifiers can always be replaced by a single existential quantifier, because

∃x, y(P(x, y))⇐⇒ ∃z ∈ N(P((z)1, (z)2)). Similarly for the universal quantifier.

Definition 4.10. Set�0
0 := �0

0 := REC, the class of decidable problems.

For n ≥ 1, we define:

The class of problems�0
n consists of the A such that A = {n|∃x ∈ N P(x, n)}where P is in�0

n−1.
The class of problems�0

n consists of the A such that A = {n|∀x ∈ N P(x, n)}where P is in�0
n−1.

Finally,0
n := �0

n ∩�0
n.

Thus, a problem A(x) in �0
n can be written as ∃y1∀y2 . . .Qyn(R(x, y1, . . . , yn)), where Q is ∃ or ∀, depending on the

parity of n, and R(x, y1, . . . , yn) is decidable. Similarly, A(x) in�0
n can be written as ∀y1∃y2 . . .Qyn(R(x, y1, . . . , yn)).

Recall (e.g. from[31]) that the set of formulas infirst-order arithmetic arebuilt frompropositional connectives, quantifiers,

equality, and a small set of constants for multiplication, addition and comparison of natural numbers. The usefulness of

Definition4.10 is illustrated in the following lemma; we refer to [14,31,32] for a proof and further details.

Lemma 4.11. Every formula in first order arithmetic is equivalent to a formula in prenex normal form, i.e. a formula with all

quantifiers on the outside of the formula.

Together with the fact that a sequence of quantifiers of the same type can be replaced by one, as pointed out in Remark

4.9, we may conclude that every problem that can be described by a formula in first order arithmetic is in one of the classes

�0
n or�0

n.

The reason for the superscript “0” in �0
n and �0

n is that all quantifiers in the formulae characterizing the classes range

over “the lowest possible type”: N; there are no quantifiers over elements of higher type, e.g. elements of N→ N.

A natural question is whether the classes defined in Definition 4.10 are distinct. The following fundamental result in logic

says that they are (see also [32], [31] or [14]).

Lemma 4.12. REC = 0
1 and for all n ∈ N, 0

n � �0
n � 0

n+1 and 0
n � �0

n � 0
n+1. For all n ∈ N and all A ⊂ N,

A ∈ �0
n ⇔ A ∈ �0

n.

Thearithmeticalhierarchy isusuallydepictedas inFig. 1,whereeveryarrowdenotesaproper inclusion. Schematically, one

oftenwrites∃REC for�0
1 ,∀∃REC for�0

2, etc.All classesareclosedunderboundedquantification: ifA(n)⇔ ∃y < f (n) P(n, y),
with f computable and P is decidable, then A is decidable (and similarly for other classes in the hierarchy). To put it more

succinctly: ∀ < P = P for all classes P in the arithmetical hierarchy.

Let P be some class in the arithmetical hierarchy. It is easy to see that if the set A is P-hard, and A is an element of

some other class C in the arithmetical hierarchy, then P ⊆ C. Consequently, if A is P-complete, Lemma 4.12 yields that A is

‘essentially’ in P, i.e. not lower in the hierarchy.

Hence, to determine if a problem A is essentially in a certain class P, we first show that A can be expressedwith a formula

of P (showing that A is in P or lower). To prove that A is not lower, we then prove that A is P-hard.
Above the arithmetical hierarchy, there is the analytical hierarchy, where we also allow quantification over infinite se-

quences of numbers—equivalently, quantification over higher types such as N → N. As variables ranging over infinite

sequences we use α, β , etc. An example of an analytical formula is ∀α(∀x(α(x)→∗R α(x+ 1))→ ∃x(α(x) = α(x+ 1))),
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stating that the rewrite system is SN. This is a�1
1-formula. In Section 5 we will see that we can express SN for finite TRSs

with a formula that is much lower in the hierarchy: it is in fact�0
2.

The class�1
1 is the class of problems A such that A = {k|∀α ∃x P(k, α, x)}, where P decidable. Similarly �1

1 is the class

of problems A such that A = {k|∃α ∀x P(k, α, x)}, where P is decidable. For analytical problems we have several kinds of

simplification procedures analogous to the ones of Remark 4.11.

Lemma 4.13. In the analytical hierarchy we have the following ways of simplifying a sequence of quantifiers (where quantifiers

without superscripts range over N):

∀1∀1 �→ ∀1 ∀ �→ ∀1 ∃∀1 �→ ∀1∃ ∀∃1 �→ ∃1∀
For the first two simplifications, we have analogous versions for ∃. For the proof we refer to the standard literature; here

we just give a rough idea. For example, themeaning of the first simplification is that a formula∀1α∀1β ϕ(α, β) is equivalent
to a formula of the form ∀1γψ(γ ), withψ in the same class as ϕ. This can be observed by takingψ(γ ) := ϕ((γ )1, (γ )2),
where γ is a variable ranging over N → N and (−)1 and (−)2 are the projection functions lifted to the function space,

i.e. (γ )1 := λn ∈ N.(γ (n))1 and (γ )2 := λn ∈ N.(γ (n))2. It is not difficult to show that ψ is in the same class as ϕ and

∀1α∀1β ϕ(α, β) is equivalent to ∀1γ ϕ((γ )1, (γ )2).
From these simplifications one derives that each analytic formula is equivalent to one of the form QnαnQn−1αn−1 . . .

Q0x P(α1, . . . , αn, x, k)where P is decidable and �Q is a sequence of alternating quantifiers.

Definition 4.14. The analytical problems are problems A such that A = {k|QnαnQn−1αn−1 . . .Q0x P(α1, . . . , αn, x, k)}with

P decidable and �Q a finite sequence of alternating quantifiers. If n > 0 and Qn = ∃1, then the problem is in the class �1
n . If

n > 0 and Qn = ∀1, then it is in the class�1
n.

1
n := �1

n ∩�1
n.

For the analytical hierarchy we can draw a similar diagram as the one in Fig. 1: replace�0
1 by�1

1 etc. We have the same

results as Lemma 4.12: each class is a proper subclass of the ones above it. The entire arithmetic hierarchy is also a proper

subclass of the lowest class,1
1.

For later use, we note the positions of certain “standard” problems for Turing machines; we refer to [13,31].

Lemma 4.15. We have the following well-known results:

(i) the blank tape halting problem {M | M halts on the blank tape } is�0
1-complete,

(ii) the initialized uniform halting problem {M | M halts on all inputs } is�0
2-complete,

(iii) the totality problem {M | M halts on q0Sn for every n ∈ N } is�0
2-complete,

(iv) the set WF := {M | >M is well-founded } is�1
1-complete.

These sets will be the basis for the hardness results in the following sections: we will show that {M | M halts on the

blank tape } is many-one reducible to “WN for a single term” and thus conclude that “WN for a single term” is�0
1 . This will

be done by effectively giving for every Turing machine M, a TRS RM and a term tM such that

M halts on the blank tape iff WNRM(tM).

Similar constructions will be carried out for the other problems that we consider.

5. Strong and weak normalization

We use the translation of Turing machines M to TRSs RM from [23]; we give the basic details of the translation in the

following.

Definition 5.1. For every TuringmachineM = 〈Q , 
, q0, δ〉wedefine a TRS RM as follows. The signature is� = Q∪
∪{�}
where the symbols q ∈ Q have arity 2, the symbols f ∈ 
 have arity 1 and � is a constant symbol, which represents an

infinite number of blank symbols. The rewrite rules of RM are:

q(x, f (y))→ q′(f ′(x), y) for every δ(q, f ) = 〈q′, f ′, R〉
q(g(x), f (y))→ q′(x, g(f ′(y))) for every δ(q, f ) = 〈q′, f ′, L〉

together with four rules for ‘extending the tape’:

q(�, f (y))→ q′(�,�(f ′(y))) for every δ(q, f ) = 〈q′, f ′, L〉
q(x, �)→ q′(f ′(x), �) for every δ(q,�) = 〈q′, f ′, R〉
q(g(x), �)→ q′(x, g(f ′(�))) for every δ(q,�) = 〈q′, f ′, L〉
q(�, �)→ q′(�,�(f ′(�))) for every δ(q,�) = 〈q′, f ′, L〉 .
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We introduce a mapping from terms to configurations to make the connection between the M and the TRS RM precise.

Definition 5.2. We define a mapping ϕ : Ter(
 ∪ {�},∅)→ 
∗ by:
ϕ(�) := ε ϕ(f (t)) := fϕ(t)

for every f ∈ 
 and t ∈ Ter(
 ∪ {�},∅). We define the set of (intended) terms:

TerM := {q(s, t) | q ∈ Q , s, t ∈ Ter(
 ∪ {�},∅)} .
Then we define a map� : TerM→ ConfM by:

�(q(s, t)) := ϕ(s)−1qϕ(t) ∈ ConfM .

Here .−1 denotes the reverse of a string. For example, if 
 contains (among others) the two symbols 0 and 1, and

s = 1(1(0(�))) and t = 0(0(1(�))), we have�(q(s, t)) = 011q001.

The function � is introduced for simulating Turing machines by rewriting, as is expressed in the following lemma of

which the proof is straightforward.

Lemma 5.3. Let M be a Turing machine. Then RM simulates M, that is:

(i) ∀c ∈ ConfM. �−1(c) �= ∅,

(ii) for all terms s ∈ TerM: s→RM t implies t ∈ TerM and�(s)→M �(t), and

(iii) for all terms s ∈ TerM: whenever�(s)→M c then ∃t ∈ �−1(c). s→RM t.

The following is an easy corollary.

Corollary 5.4. For all s ∈ TerM: SNRM(s)⇐⇒ M halts on�(s).

Proof. Induction on item (ii) of Lemma 5.3. �

Let us elaborate a bit on Turing machines and the encoding of term rewriting.

Remark 5.5. As discussed in Section 4.1, terms and term rewriting systems can be encoded as natural numbers. Finite

rewrite sequences σ : t1 → . . . → tn can be encoded as lists of terms. Then there is a Turing machine that, given the

encoding of a rewrite sequence as input, computes the length of |σ | := n of the sequence, every term t1,…,tn, in particular

the first first(σ ) := t1 and the last term last(σ ) := tn. There is a Turing machine that, given the TRS as input, can check

whether a natural number n corresponds to a valid rewrite sequence, that is, check ti → ti+1 for every i = 1, . . . , (n− 1).
Furthermore for a given term t and n ∈ N it can calculate the set of all reductions of length≤ n admitted by t and thereby

check properties like ‘all reductions starting from t have length≤ n’ or ‘t is a normal form’.

We arrive at our first results.

Theorem 5.6. The properties SN and WN for single terms are�0
1-complete.

Proof. For�0
1-hardness we reduce the blank tape halting problem to a termination problem for single terms. Therefore, let

M be an arbitrary Turing machine. Then SNRM(q0(�, �)) if and only if M halts on the blank tape by Corollary 5.4. Moreover

observe that RM is orthogonal and non-erasing, thus the SN and WN coincide [35]. Hence both properties SN and WN for

single terms are�0
1-hard by Lemma 4.4.

To show thatSN is in�0
1 , let R be a TRS and t ∈ Ter(�,X) a term. Since R is finite, the rewrite relation is finitely branching.

So by Lemma 2.2 the following formula holds:

SNR(t)⇐⇒ ∃n ∈ N. all reductions starting from t have length≤ n.

Thuswe have one existential number quantifier and by Remark 5.5 the predicate following the quantifier is recursive. Hence

SN for single terms is�0
1-complete.

To show that WN is in �0
1 , let R be a TRS and t ∈ Ter(�,X) a term. The term t is WN if there exists a reduction to a

normal form:

WNR(t)⇐⇒ ∃u, s. (t
u

→∗Rs ∧ s is a normal form).

This is a�0
1-formula, hence WN for single terms is�0

1-complete. �
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For showing�0
2-completeness of theuniformpropertiesSN andWNwewould like touse the equivalence “SN(RM)⇐⇒

M halts on all inputs”, in combination with Lemma 4.15 (ii). However, this does not work because of the following two

problems:

(1) In RM we have terms of the form q(w, v), where q is not the start state and wv is some arbitrary (finite) tape content.

That M halts on all inputs, does not guarantee that M halts when started in configuration 〈q,wv〉.
(2) In RM we have terms that do not correspond to a configuration at al, for instance terms of the form q(q(w, v), u).

To deal with problem (2), we can use a technique [35,39]. This technique states that by introducing sorts in an unsorted TRS,

termination on all terms is equivalent to termination ofwell-sorted terms. As this introduction of sorts is a kind of typing, it is

called type introduction. This equivalence holds for TRSs that are non-collapsing or non-duplicating; here it applies since RM
satisfies both. Thus, the goal is to assign sorts in such a way that well-sorted terms correspond to proper configurations. We

assign sort s0→ s0 to every f ∈ 
, sort s0 to � and sort s0× s0→ s1 to every q ∈ Q . The terms of sort s0 are normal forms.

The (non-variable) terms of sort s1 are in TerM after replacing all variables by �, and by Corollary 5.4 for all terms t ∈ TerM
we have SNRM(t) if and only if M halts on�(t). Hence SNRM holds if and only if M halts on all configurations ConfM.

We now need to deal with problem (1); we would like that M halts on all configurations ConfM if and only if M halts on

all inputs, starting from the initial state, but unfortunately this does not hold. We need a lemma about Turing machines; we

use the following result from [13].

Lemma 5.7 ([13]). For every Turing machine M that computes a function f : N → N we can effectively construct a Turing

machine M̂ such that

(i) M̂ also computes f .

(ii) M halts on all configurations if and only if f is total.

So, if M halts on all inputs (when started in the initial state), then M̂ halts on all configurations. This solves problem (1)

and we have the following Corollary, which follows from the fact that the initialized uniform halting problem (set (ii) in

Lemma 4.15) many-one reduces to the uniform halting problem (the set in the Corollary), using Lemma 4.4. Basically, this

corollary has already been stated and proved in [13].

Corollary 5.8. The uniform halting problem

{M | M halts on all configurations 〈q, tape〉 ∈ ConfM }
is�0

2-complete.

Theorem 5.9. The properties uniform SN and WN are�0
2-complete.

Proof. For�0
2-hardness:wehave seenhowtheuniformhaltingproblemforMmany-one reduces to theuniformtermination

problem for RM. Since RM is orthogonal and non-erasing SN andWN coincide [35]. Hence SN andWN are both�0
2-hard by

Lemma 4.4. That the uniform properties SN and WN are in�0
2 follows from the fact that these properties for single terms

can be described by�0
1-formulas and the uniform property ‘adds’ a universal number quantifier. �

6. Reduce, join and convert

For two terms t, u and a rewrite relation→we consider the following three basic properties:

• reduction: t→∗ u,
• joinability: t→∗ · ←∗ u, and
• conversion: t ↔∗ u.
We will prove that all of these properties are �0

1-complete. For proving �0
1-hardness, we extend the TRS RM from

Definition 5.1 by extra rules by which a fresh constant T can only reached from terms representing halting Turing machine

configurations.

Definition 6.1. For an arbitrary Turing machine M we define the TRS HM to consist of the rules

q(x, f (y))→ T for every f ∈ 
, q ∈ Q with δ(q, f ) is undefined

q(x, �)→ T for every q ∈ Q with δ(q,�) is undefined.
where T is a fresh constant.
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Lemma 6.2. Let M be any Turing machine and let→ be the rewrite relation with respect to RM ∪ HM, as defined in Definitions

5.1 and 6.1. Then the following properties are equivalent:

(i) M halts on the blank tape,

(ii) q0(�, �)→∗ T,

(iii) q0(�, �)→∗ · ←∗ T,

(iv) q0(�, �)↔∗ T.

Proof. (i)⇒(ii): Let �(q0(�, �))→∗M �(s) be the halting computation on the blank tape. Then q0(�, �)→∗ s according

to Lemma 5.3, and s→HM T according to the definition of HM.

(ii)⇒(iii): trivial.

(iii)⇒(iv): trivial.

(iv)⇒(i): Assume q0(�, �) ↔∗ T. Take such a conversion of minimal length. The last step in this conversion is of the

shape s →HM T where �(s) is a halting configuration. Due to minimality the conversion q0(�, �) ↔∗ s does not involve

T and is completely in RM. From Lemma 5.3 we now conclude that the initial blank tape configuration is→M-convertible

with a halting configuration. So it remains to show that a configuration is halting if and only if it is→M-convertible with a

halting configuration. This follows by induction on the length of the conversion from the observation that if c→M d then c

is halting if and only if d is halting, which follows from the fact that the Turing machine is deterministic. �

Theorem 6.3. Given a TRS R with rewrite relation→, and two terms t, u, all of the following three properties are�0
1-complete:

• reduction: t→∗ u,
• joinability: t→∗ · ←∗ u, and
• conversion: t ↔∗ u.
Proof. As all reductions, joins and conversions can be enumerated, all of these properties, being of the shape ∃ · · · , are in

�0
1 . For the first one this is immediate from Lemma 4.8 (iii), the rest is similar.

From Lemma 6.2 we conclude�0
1-hardness, and hence�0

1-completeness, of all three basic properties. �

With the sameargument as in Lemma6.2, but now for an arbitrary configuration rather than only the initial configuration,

we obtain the following lemma, which will be used later for results on confluence.

Lemma 6.4. Let M be any Turing machine and let→ be the rewrite relation with respect to RM ∪ HM, as defined in Definitions

5.1 and 6.1. Then for all configurations c ∈ ConfM and terms t ∈ �−1(c) we have that M halts on c if and only if t→∗ T.

7. Unique normal forms

Recall that a TRS R

• has the unique normal form property on t, denoted UNR(t), if there is at most one normal form n satisfying t ↔∗ n,
• has the unique normal form property on t with respect to reduction, denoted UN→R (t), if there is at most one normal form

n satisfying t→∗ n.
In the literature these notions are mainly considered in their uniform variants, but as they admit the single term versions,

we include those as well. In this section we prove that all of these properties are �0
1-complete. In order to do so we take

RM ∪HM and add a few extra rules introducing an extra normal formU and forcing thatT andU are the only normal forms.

More precisely, for a Turing machine M we define the TRS SM to consist of RM ∪ HM from Definitions 5.1 and 6.1, extended

by the rules

q0(�, �) → U

q(x, y) → q(x, y) for all states q ∈ Q

f (x) → f (x) for all f ∈ 

� → �

Lemma 7.1. The following properties are equivalent

(i) M does not halt on the blank tape,

(ii) UN→SM(q0(�, �)),
(iii) UNSM(q0(�, �)),
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(iv) UN→SM(t) for all terms t,

(v) UNSM(t) for all terms t.

Proof. Write→ for→SM .

(v)⇒(iii)⇒(ii): trivial.

(v)⇒(iv)⇒(ii): trivial.

(ii)⇒(i): Assume M halts on the blank tape. Then according to Lemma 6.2 we have q0(�, �)→∗ T. Moreover, we have

q0(�, �)→∗ U. Since T and U are normal forms, this contradicts UN→SM(q0(�, �)).
(i)⇒(v): Assume (v) does not hold. Then there are two distinct normal forms that are convertible. Due to the addition

of the rules q(x, y)→ q(x, y), f (x)→ f (x) and � → � the only normal forms are T, U and the variables. As there are no

collapsing rules, variables are not convertible to other terms, and the only possible two distinct normal forms are T and U.

Take a conversion from T to U of minimal length. Then this is of the shape

T↔∗ q0(�, �)→ U,

in whichU is not involved in the conversionT↔∗ q0(�, �). Moreover, again due to minimality in this conversion no terms

are rewritten to itself. Hence this conversion only uses rules from RM ∪ HM. Now by Lemma 6.2 we conclude that M halts

on the blank tape, contradicting (i). �

Theorem 7.2. The properties UN and UN→ are�0
1-complete, both uniform and for single terms.

Proof. From Lemma 7.1 we conclude�0
1-hardness for all four properties.

It remains to prove that all four properties are in�0
1. The property UN→R (t) can be expressed as ∀�u, �vP(�u, �v) for P(�u, �v)

being the conjunction of

• �u = (u1, . . . , un), where u1 = t and ui →R ui+1 for i = 1, . . . , n− 1,
• �v = (v1, . . . , vm), where v1 = t and vi →R vi+1 for i = 1, . . . ,m− 1,
• if both un and vm are normal forms, then un = vm.

As all ingredients of this characterization are decidable by Lemma 4.8, this proves that single term UN→ is �0
1. For single

term UN a similar argument is given by replacing→R in ui →R ui+1 and vi →R vi+1 by↔R. The uniform versions are

obtained by replacing the requirements u1 = t and v1 = t by u1 = v1. �

In this theorem, we consider the uniform properties on the set of all terms, not just ground terms. Also for the set of

ground terms �0
1-completeness of UN and UN→ holds, as in Lemma 7.1 we proved equivalence for a single ground term

and all terms, and the set of all ground terms is in between.

8. Confluence and ground confluence

We investigate the complexity of confluence (CR) and ground confluence (grCR), both uniform and for single terms.

For proving�0
2-completeness of confluence it is natural to try to use an extension of RM ∪ HM from Definitions 5.1 and

6.1 augmented with the following rules:

run(x, y)→ T
run(x, y)→ q0(x, y).

At first glance it appears that q0(s, t)→∗ T if the Turing machine M halts on all configurations (using rules from RM ∪ HM
by Lemma 6.4), but a problem arises if s and t contain variables, as the resulting termmay not represent a configuration. We

solve the problem as follows.

For Turing machines M we define the TRS SM to consist of the rules of the TRS RM ∪ HM from Definitions 5.1 and 6.1

extended by the rules:

run(x, �)→ T (1)

run(�, y)→ q0(�, y) (2)

run(x,S(y))→ run(S(x), y) (3)

run(S(x), y)→ run(x,S(y)) . (4)

It is then easy to see that T and q0(�, s) are convertible using the rules (1)–(4) if and only if s is a ground term of the form

Sn(�).
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Theorem 8.1. Uniform confluence (CR), and uniform ground confluence (grCR) are�0
2-complete.

Proof. For proving �0
2-hardness we reduce the totality problem to confluence. Let M be an arbitrary Turing machine. We

consider the TRS SM defined above. By [1], confluence is a persistent property, and we may thus reduce confluence of SM to

confluence of a correspondingmany-sorted TRSs.We assign sort s0→ s0 to all symbols from
, sort s0 to�, sort s0×s0→ s1
to every symbol in {run} ∪ Q , and sort s1 to T. Then, by [1], the obtained many-sorted TRS is confluent if and only if SM is

confluent. Observe first that the terms of sort s0 are normal forms. For terms of s1 with root symbol �= ‘run’ the reduction

exhibits no branching as RM ∪ HM is orthogonal and all redexes occur at the root as all subterms are of sort s0. For terms

of sort s1 with root symbol ‘run’ we observe that (3) and (4) are inverse to each other. Hence, whenever s→∗(3)∪(4) t then
also s→∗(3) t or s→∗(4) t.

Therefore it suffices to consider the case

s2←(2) s1←∗(3) run(t1, t2)→∗(4) s3→(1) T

where t1, t2 ∈ Ter(
 ∪ {�},X). From the existence of such reductions we conclude that there exists n ∈ N such that

s1 ≡ run(�,Sn(�)), s3 ≡ run(Sn(�), �), and s2 ≡ q0(�,Sn(�)). Conversely, for every n ∈ N such reductions exist. As a

consequence the TRS S is confluent if and only if q0(�,Sn(�))→∗S T for every n ∈ N, that is, by Lemma 6.4 if and only if M
halts on q0Sn for every n ∈ N. Moreover, the only terms containing critical pairs are on the form run(t1, t2)where t1 and t2
are ground terms; hence, ground confluence coincides with confluence for S, and we have thus proved�0

2-hardness.

To show that both properties are in�0
2 let R be a TRS. Then R is confluent if and only if the following holds:

CRR ⇐⇒∀s. ∀u, v. ∀t1, t2. (s
u

→∗Rt1 ∧ s
v

→∗Rt2
⇒ ∃r, q. ∃t3. (t1

r

→∗Rt3 ∧ t2

q

→∗Rt3))
Byquantifier compressionwecan simplify the formula such that there is only a singleuniversal quantifier followedbya single

existential quantifier. The corresponding formula for grCR is almost the same, as the quantification of t over (encodings of)

all terms is merely replaced by a quantification over all ground terms. Therefore both the uniform properties CR and grCR
are�0

2-complete. �

Theorem 8.2. Confluence (CR), and ground confluence (grCR) for single terms are�0
2-complete.

Proof. For�0
2-hardness we use the totality problem. LetM be an arbitrary Turingmachine.We define the TRS S as RM∪HM

from Definitions 5.1 and 6.1 extended by:

run(x)→ T
run(x)→ run(S(x))
run(x)→ q0(�, x).

The term t := run(�) rewrites toT and q0(�,Sn(x)) for every n ∈ N. Furthermore we have q0(�,Sn(�))→∗S T if and only

if M halts on q0Sn by Lemma 6.4. Consequently, CR and grCR for single terms are�0
2-hard.

For �0
2-completeness note that we can formalize CR and grCR for single terms simply by dropping the universal

quantification over all terms (∀t ∈ N) from the respective �0
2-formulas for the uniform properties in the proof of

Theorem 8.1. �

9. Local confluence and local ground confluence

We now investigate the complexity of local confluence (WCR) and local ground confluence (grWCR) both uniform and

for single terms.

Theorem 9.1. The properties local confluence (CR) both for single terms and uniform, and local ground confluence (grCR) for

single terms are�0
1-complete.

Proof. For �0
1-hardness we use the blank tape halting problem. Let M be an arbitrary Turing machine, and let the TRS S

consist of RM ∪ HM from Definitions 5.1 and 6.1, extended by the following rules:

run→ T
run→ q0(�, �).
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The only critical pair is T← run→ q0(�, �). By the Critical Pairs Lemma [35], WCR holds if and only if all critical pairs

can be joined. As a consequence, for this system uniform WCR coincides with WCR(t) and grWCR(t) for the single term

t := run. Moreover, we have q0(�, �) →∗S T if and only if M halts on the blank tape by Lemma 6.2. Hence, WCR(t),
grWCR(t) and WCR hold if and only if M halts on the blank tape, and consequently all these properties are�0

1-hard.

Let (R, t) encode finite TRS R and term t. There is a Turing machine that on inputs (R, t) computes all (finitely many)

critical pairs, and all (finitely many) one-step reducts of t. For inclusion of all three problems in�0
1 , it thus suffices to show

that the following problem is in �0
1: Decide, on input (i) a finite TRS S, (ii) n ∈ N, and (iii) terms t1, s1, . . . , tn, sn, whether

for every i = 1, . . . , n the terms ti and si have a common reduct. This property can clearly be described by the following

�0
1-formula:

∃�u, �v, �p. (s1
u1→∗Rp1

v1←∗Rt1 ∧ · · · ∧ sn

un→∗Rpn
vn←∗Rtn) �

Surprisingly it turns out that uniform local ground confluence is �0
2-complete and thereby strictly harder than uniform

local confluence (on the set of all open terms).

Theorem 9.2. Uniform local ground confluence (grCR) is�0
2-complete.

Proof. For�0
2-hardness we use reduction from the uniform halting problem. LetM be a Turingmachine. We define the TRS

S as extension of RM with:

run(x, y)→ T
run(x, y)→ q0(x, y)

q(f (�x), g(�y))→ T for all combinations of symbols f , g such that

the left-hand side is not matched by a rule in RM

where �x and �y are vectors of distinct variables chosen such that the left-hand sides of all the above rules are left-linear.

Assume there exists a configuration c on which M does not halt. Then by Lemma 5.3 there exists q(s, t) ∈ �−1(c), and
by Corollary 5.4 RM is not terminating on q(s, t). Every reduct of q(s, t) is an RM-redex and contains no further redexes. In

particular, none of the rules above are applicable to any reduct. Hence, q(s, t) �→∗ T and thus T← run(s, t)→ q(s, t) is
not joinable.

Conversely, assume that M halts on all configurations. Let D = {run} ∪ Q , and let V be the set of ground terms having

a root symbol in D. Observe that all symbols not in D are constructor symbols; for local ground confluence, it thus suffices

to show that every reduct of a term in V rewrites to T. Every term from V is a redex, and all reducts of terms in V are in

V ∪ {T}. Thus it suffices to show that no term in V admits an infinite root rewrite sequence.

Claim. There is an infinite root rewrite sequence starting from a term in V iff if a ground term on the form q(s, t) admits

an infinite RM-root rewrite sequence.

Proof of claim. None of the rules added above can contribute essentially to such a sequence, and can be omitted.

Furthermore, the rules above can only replace a subterm by T, or a term on the form q0(x, y). As the rules of RM are non-

duplicating, and as no pattern of any rule contains the symbolT, only a fixed, finite number of contractions of the rules added

above can occur in an infinite reduction. Hence, there exists an infinite RM-root rewrite sequence. Furthermore, observe that,

below the root (which is in Q ), the left-hand sides of rules from RM match only symbols from
∪{�}. Let s′ and t′ be ground
terms obtained from s and t respectively by replacing all subterms having a root symbol not in 
 ∪ {�}with �. Then q(s′, t′)
admits an infinite RM-rewrite sequence, s′, t′ ∈ Ter(� ∪ {�},∅), and q(s′, t′) ∈ TerM. (End of proof of claim).

Consequently, �(q(s′, t′)) is a non-terminating configuration of M by Corollary 5.4, contradicting the assumption that

M halts on all configurations. �

10. Dependency pair problems

In this section we present the remarkable result that finiteness of dependency pair problems, although invented for

proving termination, is of amuch higher level of complexity than termination itself: Tt is�1
1-complete, both for the uniform

property and for the property for single terms. This only holds for the basic version of dependency pairs; for the version

with minimality flag we will show it is of the same level as termination itself.

For relations→1,→2 we write→1 / →2 = →∗2 · →1. For TRSs R, S instead of SN(→R,ε / →S) we shortly write

SN(Rtop/S); in the literature [12] this is called finiteness of the dependency pair problem {R, S}. So SN(Rtop/S) means that

every infinite→R,ε ∪ →S reduction contains only finitely many→R,ε steps. The motivation for studying this comes from

the dependency pair approach [2] for proving termination: for any TRS R we can easily define a TRS DP(R) such that we

have

SN(DP(R)top/R)⇐⇒ SN(R).
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The main result of this section is �1
1-completeness of SN(Rtop/S), even of SN(Stop/S), for both the uniform and the

single term variant. In the subsequent section we will consider the variant SN(Rtop/min S)with minimality flag which only

makes sense for the uniform variant, and show that it behaves as normal termination: it is�0
2-complete.

For proving�1
1-hardness of SN(Stop/S)we now adapt the translation of Turing machines to TRSs given in Definition 5.1.

The crucial difference is that every step of the Turing machine ‘produces’ one output pebble ‘•’. Thereby we achieve that the

resulting TRS R•M admits only finitely many steps at root level even if M does not terminate.

Definition 10.1. For every Turing machine M = 〈Q , 
, q0, δ〉 we define the TRS R•M as follows. The signature � is � =
Q ∪ 
 ∪ {�, •,T}where • is a unary symbol, T is a constant symbol, and the rewrite rules of R•M are:

	→ •(r) for every 	→ r ∈ RM

and rules for rewriting to T after successful termination:

q(x, 0(y))→ T whenever δ(q,S) is undefined
• (T)→ T .

Then we obtain the following lemma. (Recall the Definition of>M in 3.3.)

Lemma 10.2. For every Turing machineM = 〈Q , 
, q0, δ〉 and n,m ∈ Nwe have n >M m if and only if q0(Sn,Sm)→∗R•M T.

Moreover we define an auxiliary TRS Rpickn for generating a random natural number n ∈ N in the shape of a term

Sn(0(�)):
Definition 10.3. We define the TRS Rpickn to consist of the following three rules:

pickn→ c(pickn) pickn→ ok(0(�)) c(ok(x))→ ok(S(x)) .

The following lemma is straightforward.

Lemma 10.4. The TRS Rpickn has the following properties:

• pickn→∗ ok(Sn(0(�))) for every n ∈ N, and
• whenever pickn→∗ ok(t) for some term t then t ≡ Sn(0(�)) for some n ∈ N.

We are now ready to prove�1
1-completeness of dependency pair problems.

Theorem 10.5. Both SN(t, Rtop/S) and SN(Rtop/S) are�
1
1-complete.

Proof. We prove �1
1-hardness even for the case where R and S coincide. We do this by using that the set checking well-

foundedness of>M �1
1-complete. LetM be an arbitrary Turing machine. FromMwe construct a TRS S together with a term

t such that:

SN(Stop/S)⇐⇒ SN(t, Stop/S)⇐⇒ >M is well-founded.

Let S consist of the rules of R•M � Rpickn together with:

run(T, ok(x), ok(y))→ run(q0(x, y), ok(y), pickn), (5)

and define t := run(T, pickn, pickn).
As the implication from the first to the second item is trivial, we only have to prove (1) SN(t, Stop/S) ⇐⇒ >M is

well-founded and (2)>M is well-founded⇐⇒ SN(Stop/S).
(1) Suppose SN(t, Stop/S) and assume there is an infinite descending>M-sequence: n1 >M n2 >M . . .. Then we have:

run(T, pickn, pickn)→∗ run(T, ok(Sn1(0(�))), ok(Sn2(0(�)))) (∗)
→S,ε run(q0(Sn1(0(�)),Sn2(0(�))), ok(Sn2(0(�))), pickn)
→∗ run(T, ok(Sn2(0(�))), ok(Sn3(0(�))))
→S,ε . . .



J. Endrullis et al. / Information and Computation 209 (2011) 227–245 243

Note that q0(Sni(0(�)),Sni+1(0(�))) →∗ T (for all i ≥ 1) because M computes the binary predicate >M. So we have an

infinite reduction starting from t, contradicting SN(t, Stop/S). So there is no infinite descending>M-sequence.

(2) Suppose that >M is well-founded and assume that σ is a rewrite sequence containing infinitely many root steps.

Note that (5) is the only candidate for a rule which can be applied infinitely often at the root. Hence all terms in σ have

the root symbol run. We consider the first three applications of (5) at the root in σ After the first application the third

argument of run is pickn. Therefore after the second application the second argument of run is a reduct of pickn and the

third is pickn. Then before the third application we obtained a term t whose first argument is T, and the second and the

third argument are reducts of pickn. Observe from t on the rewrite sequence σ must be of the form as depicted above (∗)
(c.f. Lemma 10.4) for some n1, n2, . . . ∈ N. Then for all i ≥ 1: ni >M ni+1 since q0(Sni(0(�)),Sni+1(0(�))) →∗ T. This

contradicts well-foundedness of>M.

It remains to prove that both SN(Rtop/S) and SN(t, Rtop/S) are in�
1
1. Let R and S be TRSs. Then SN(Rtop/S) holds if and

only if all→R,ε ∪ →S reductions contain only a finite number of→R,ε steps. An infinite reduction can be encoded as a

function α : N→ N where α(n) is the n-th term of the sequence. We can express the property as follows:

SN(Rtop/S)⇐⇒∀α : N→ N.

((∀n ∈ N. α(n) rewrites to α(n+ 1) via→R,ε ∪ →S)⇒
∃m0 ∈ N. ∀m ≥ m0. ¬(α(m) rewrites to α(m+ 1) via→R,ε)) ,

containing one universal function quantifier in front of an arithmetic formula. Here the predicate ‘n rewrites to m’ tacitly

includes a check that both n and m indeed encode terms. For the property SN(t, Rtop/S) we simply add the condition

t = α(1) to restrict the quantification to such rewrite sequences α that start with t. Hence SN(Rtop/S) and SN(t, Rtop/S)

are�1
1-complete. �

10.1. Infinitary rewriting

Wenow sketch how the proof of Theorem10.5 also implies�1
1-completeness of the propertySN∞ in infinitary rewriting.

For its definition and basic observations see [24]. Since in Theorem 10.5 we proved�1
1-hardness even for the case where R

and S coincide, we conclude thatSN(Stop/S) is�
1
1-complete. This propertySN(Stop/S) states that every infinite S-reduction

contains only finitelymany root steps. This is the same as the propertySNωwhen restricting to finite terms; for the definition

of SNω see [41] (basically, it states that in any infinite reduction the position of the contracted redex moves to infinity).

However, when extending to infinite terms it still holds that for the TRS S in the proof of Theorem 10.5 the only infinite

S-reduction containing infinitely many root steps is of the shape given in that proof, only consisting of finite terms. So SNω
for all terms (finite and infinite) is �1

1-complete. It is well-known that for left-linear TRSs the properties SNω and SN∞
coincide, see e.g. [41]. Since the TRS S used in the proof of Theorem 10.5 is left-linear we conclude that the property SN∞
for left-linear TRSs is�1

1-complete.

11. Dependency pair problems with minimality flag

A variant in the dependency pair approach is the dependency pair problem with minimality flag. Here all terms in the

infinite→R,ε ∪ →S-reductions are assumed to be S-terminating. This can be defined as follows. For relations→1,→2 we

write

→1 /min→2 = (→∗2 · →1)∩ →SN(→2),

where the relation→SN(→2) is defined to consist of all pairs (x, y) for which x is→2-terminating. For TRSs R, S instead

of SN(→R,ε /min →S) we shortly write SN(Rtop/min S). In [12] this is called finiteness of the dependency pair problem

(R,Q , S)withminimality flag; in our setting themiddle TRS Q is empty. Again themotivation for this definition is in proving

termination: From [2] we know

SN(DP(R)top/min R)⇐⇒ SN(R).

For SN(Rtop/min S) it is not clear how to define a single term variant, in particular for terms that are not S-terminating. In

this section we prove that SN(Rtop/min S) is�0
2-complete. For doing so first we give some lemmas.

Lemma 11.1. Let R, S be TRSs. Then SN(Rtop/min S) holds if and only if

(→R,ε ∪ →S)∩ →SN(→S)

is terminating.
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Proof. By definition SN(Rtop/min S) is equivalent to termination of (→∗S · →R,ε)∩ →SN(→S). Since

(→∗S · →R,ε)∩ →SN(→S) ⊆ ((→R,ε ∪ →S)∩ →SN(→S))
+,

the ‘if’-part of the lemma follows.

For the ‘only if’-part assume that (→R,ε ∪ →S)∩ →SN(→S) admits an infinite reduction. If this reduction contains

finitelymany→R,ε-steps, then this reduction ends in an infinite→S-reduction, contradicting the assumption that all terms

in this reduction are S-terminating. Thus, this reduction contains infinitely many→R,ε-steps, hence can be written as an

infinite (→∗S · →R,ε)∩ →SN(→S) reduction. �

Lemma 11.2. Let R, S be TRSs. Then SN(Rtop/min S) holds if and only if for every term t and every m ∈ N there exists n ∈ N
such that

for every n-step (→R,ε ∪ →S)-reduction t = t0→ t1→ · · · → tn there exists i ∈ [0, n] and anm-step→S-reduction of ti.

Proof. Due to Lemma 11.1 SN(Rtop/min S) is equivalent to finiteness of all (→R,ε ∪ →S)-reductions only consisting of

→S-terminating terms. Since (→R,ε ∪ →S) is finitely branching, by Lemma 2.2 this is equivalent to:

For every term t there exists n ∈ N such that no n-step (→R,ε ∪ →S)-reduction t = t0 → t1 → · · · → tn exists for

which ti is→S-terminating for every i ∈ [0, n].
Since→S is finitely branching, by Lemma 2.2→S-termination of ti for every i ∈ [0, n] is equivalent to the existence of

m ∈ N such that no ti admits an m-step→S-reduction. After removing double negations, this proves equivalence with the

claim in the lemma. �

Theorem 11.3. The property SN(Rtop/min S) for given TRSs R, S is�0
2-complete.

Proof. SN(R) is �0
2-complete and SN(R) is equivalent to SN(DP(R)top/min R), so SN(Rtop/min S) is �0

2-hard. That

SN(Rtop/min S) is in�0
2 follows from Lemma 11.2. �

12. Conclusions and future work

We have analyzed the proof theoretic complexity of the basic properties of term rewriting systems and ascertained their

positions in the arithmetical and analytical hierarchies.

The position of�0
2 of the properties WN and SN is as expected, whereas the position�1

1 of dependency pair problems

is remarkably high.

For confluenceproblems,wehave shown that (ground) confluence is�0
2-complete bothuniformand for single terms. Sur-

prisingly, there is a difference between the arithmetical complexity of local confluence (on open terms) and local confluence

on ground terms. While the former is�0
1 , the latter turns out to be�0

2-complete.

There is a wide range of possible future research concerned with gauging the proof theoretic complexity of properties

of properties of (subclasses of) rewriting systems. For example, one may attempt to ascertain, for every property for which

undecidability is known, its precise position in the hierarchies. For certain properties this is quite easy, e.e. termination of a

single term rewrite rule: Undecidability was proved in [5] by using a reduction from the uniform halting problem for Turing

machines. As a consequence, this problem is�0
2-hard. As it is clearly also in�0

2 as an instance of termination of a finite TRS,

we immediately obtain�0
2-completeness.

For other properties, earlier undecidability results cannot easily be lifted to find the exact position in the hierarchies. For

instance, in [10] it was proved that restricting to the subclass of TRSs that areWN, the property SN is undecidable, so called

relative undecidability. The technique used there for proving this is based on reduction from Post’s Correspondence Problem

(PCP), by which it is not possible to prove hardness for classes higher in the arithmetical hierarchy than�0
1 or �0

1 . Instead

by adding a fresh symbol ⊥ and rules f (xn, . . . , xn) → ⊥ for every symbol f ∈ �, we easily force our construction from

Theorem 5.9 to be WN without changing validity of SN. In this way it is easily proved that uniform SN is�0
2-complete for

TRSs satisfyingWN. For all other relative undecidability results obtained in [10,11] one can wonder what is the precise level

in the hierarchies. For cases where this is higher than �0
1 or �0

1 , the constructions given there will not be helpful, as they

are all based on PCP.

Other possible futurework includes a further study of the place in the arithmetical and analytical hierarchies of properties

of variationsof rewriting: for examplegraph rewriting, conditional rewriting, probabilistic rewriting, and infinitary rewriting.

For some of these variants the proof theoretic complexity of the various fundamental properties may be expected to be the

same as in the “pure” setting we have considered in this paper. For infinitary rewriting, we expect that the extension to

infinite terms and reductions entails that most properties will be classified in the low levels of the analytical hierarchy—for
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example, we have already sketched a proof of how SN∞ behaves like dependency pair problems yielding�1
1. ForWN∞ we

are working on a proof of�1
2-completeness (surprisingly higher than SN∞); for other properties, we do not know.

Finally, we believe it interesting to study restricted classes of rewriting systems where the properties we consider are

undecidable, yet at strictly lower levels in the hierarchies than proved in this paper. Note that care must be taken with the

notion of “restriction”: For example, local confluence in general has turned out to be lower in the arithmetical hierarchy

than the “restricted” case of local confluence on ground terms.
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