View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Implementing G-Reduction by
Hypergraph Rewriting

Sabine Kuske!

Fachbereich Mathematik und Informatik
Universitit Bremen
D-28334 Bremen, Germany
email: kuske@informatik.uni-bremen.de

Abstract

The aim of this paper is to implement the g-reduction in the A-calculus with a
hypergraph rewriting mechanism called collapsed A-tree rewriting. It turns out that
collapsed A-tree rewriting is sound with respect to f-reduction and complete with
respect to the Gross-Knuth strategy. As a consequence, there exists a normal form
for a collapsed A-tree if and only if there exists a normal form for the represented
A-term.

1 Introduction

The A-calculus (see [3,13,4]) can be considered as the computational basis
for functional programming. Graph reduction for the A-calculus was studied
first in [20] and later in e.g. [17,16,10,1] improving the performance of im-
plementations of functional languages. One main advantage of representing
A-terms by graphs is that common subterms can be shared such that several
redexes can be reduced in parallel. Within the well developed theory of graph
rewriting (see [5,8,9,7,18] for a survey), hypergraph rewriting was shown to
be a suitable formalism for the implementation of term rewriting systems and
logic programming (see [12,14,19,6]). The aim of this paper is to show how
to implement the J-reduction in the A-calculus with a hypergraph rewriting
mechanism called collapsed A-tree rewriting.

It is assumed that the reader is familiar with the basic concepts of the
A-calculus. Due to the space restrictions proofs are omitted here; they will
appear in the long version of this paper.

! This work has been supported by the Deutsche Forschungsgemeinschaft and the ESPRIT
Basic Research Working Group 7183, COMPUGRAPH II.

© 1995 Elsevier Science B. V. Open access under CC BY-NC-ND license.

https://core.ac.uk/display/82338151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

A LS

2 Representing A-terms by collapsed A-trees

Collapsed A-trees are acyclic directed hypergraphs with one root where each
node represents a A-term. Before introducing collapsed A-trees, we recall some
definitions concerning hypergraphs.

Let ¥ be a set of labels. Then a hypergraph over Y is a system H =
(V, E,s,t,1) where V is a finite set of nodes, F is a finite set of hyperedges,
s -V, ttEF — V*and I E — X are three mappings assigning to each
hyperedge a source ?, a sequence of targels, and a label, respectively. A
hyperedge with label X will be called an X-hyperedge. The components of H
will also be referred to as Vi, Ky, sy, ty, and [g.

For v € V', outdegreey(v) denotes the number of hyperedges in H with
source v. Given two nodes v,v" € V., a path from v to v’ is a finite sequence
((e1,21)y ..y (€nytn)) with eq,... e, € By iy, ... 0, € IN, s(er) = v, ten)]i, =
o' ? and t(e;)|i; = s(ejq1) for j = 1,...,n — 1. By convention, each node
v € V is connected to itself by the empty path (). H is called acyelic if for
each v € V there is no non-empty path from v to v.

A hypergraph H' = (V' F' &', t',1') is a subhypergraph of H, denoted by
H CH,ifV'CV, E CFE, and s, t" and " are restrictions of the mappings
s,t, and [, respectively. Given two hypergraphs H, H' over ¥, a hypergraph
morphism f: H — H' consists of two mappings fy : Vg — Vg and fg: Eg —
K that preserve sources, targets and labels, that is, sy o fg = fy 0 sy and
tgro fr = fi oty (where fi is the natural extension of fy to sequences), and

ZH’ o] fE == ZH

Collapsed A-trees

Let C be a set of constants with A\, A ¢ . Then an acyclic hypergraph
H=(V,E, s,t,1)over {\, A}UC is a collapsed A-tree if there is a unique node
rooty € V with no incoming hyperedge, and if for all v € V and all e € E, (1)
outdegreey (v) < 1, (2) |t(e)| =22 if l(e) € {\, A} and |t(e)| =0 if I(e) € C,
(3) outdegreey (t(e)]1) = 0if I(e) = A, and (4) s(e) is on every path from rooty
to t(e)|y if I(e) = A.

Let H be a collapsed A-tree. Then each v € Vg represents a A-term
termg(v) over the variable set Vg = {v € V| outdegreey(v) = 0} and the
set C as follows. If outdegree(v) = 0 then termpy(v) = v. Otherwise, let e be
the unique hyperedge with sy(e) = v. Then termpy(v) = lg(e) if ly(e) € C,
termp(v) = (termg(tu(e)|)termy(ty(e)|z)) if lu(e) = A, and termpg(v) =
(Mu(e)|r.termp(tu(e)|2)) if lg(e) = A. In the following, term(H) stands for
termg (rooty). The two hypergraphs shown in Figure 2 are collapsed A-trees,
representing the A-terms (((Avy.(v1v2))a)((Avi.(v1v2)a))) and ((avq)(awvsy)).
It can be shown that each A-term can be represented by a collapsed A-tree up
to a-conversion. In the following we do not distinguish between A-terms that
are equal up to a-conversion.

2 Usually, each hyperedge has an arbitrary number of sources; but this is not needed here.
3 For a sequence w, w|; denotes its i'" element and |w]| its length.

2

A LS

3 Collapsed \-tree rewriting

Collapsed A-tree rewriting consists of collapsed A-tree reduction on the one
hand and a copying mechanism on the other hand. Both kinds of manipulating
collapsed A-trees are based on hypergraph rewriting and can be executed in
arbitrary order. Before introducing collapsed A-tree rewriting, we briefly recall
hypergraph rewriting. (For a precise formal definition see, e.g. [19].)

A (hypergraph rewriting) rule is a tuple r = (L,b: K — R) where L, K,
and R are hypergraphs, b is a hypergraph morphism and K C L. Let H be
a hypergraph and let f: L — H be a hypergraph morphism such that the
following gluing condition holds. (1) No hyperedge in Ey — Ey) is incident
to any node in Vi) — Vi) and (2) for all nodes z,y € Vi, f(z) = f(y)
implies © = y or z,y € Vi; analogously for all hyperedges =,y € Fr. Then
the application of r to H (via f) yields a hypergraph obtained by (1) removing
f(L) = f(K) from H and (2) gluing the remaining graph with R in b(K).

Collapsed A-tree reduction

Let H be a collapsed A-tree. Then H reduces to the hypergraph H’, denoted
by H:>H’ if H' is obtained by (1) applying the following rule red to H
and (2) deletmg all nodes and hyperedges in the resulting hypergraph that
do not lie on a path from rooty. The rule red = (L,b: K — R) consists of
a collapsed A-tree I and two hypergraphs K and R and can be depicted as
in Fig. 1 where vy = vs (v3 = vy4) means that the nodes vy and vs (v3 and
vy) of K are mapped to the same node in R. For a collapsed A-tree H and a
hypergraph morphism f : L. — H, the subhypergraph f(L) of H is called an
L-occurrence in H. Fig. 2 shows a collapsed A-tree reduction.

V1 V1 @ @®U1 =Us

1

2
U \ U3 2 @ U3 —

1
v4./ \0U5 Vs @ ® U5 @ U3z = Vs

Fig. 1. The rule red

Collapsed A-tree reduction preserves collapsed A-trees. Moreover, it per-
forms the F-reduction in the A-calculus.

Theorem 3.1 (Soundness of :d>)
Let H be a collapsed A-tree and let H — H'. Then term(H) % term(H').*

4 and % are the g-reduction relation in the A-calculus and its transitive closure.

3

A LS

H

P
i}
e

1
1 I
red

Fig. 2. A collapsed A-tree reduction

Splitting L-occurrences

Because of the gluing condition, the rule red cannot be applied to an L-
occurrence X in a collapsed A-tree H if the source of the A-hyperedge in
X occurs more than once as target of hyperedges in H. Hence, there may
occur situations in which a f-reduction may be applied to term(H) but no
corresponding collapsed A-tree reduction can be performed. In such cases, it
is desirable to provide a splitting mechanism for L-occurrences (see also [20]).
To achieve this aim, one can use a set of so-called split rules consisting of the
three subsets begin_split, main_split and end_split given in the Appendix. These
make use of negative context conditions in the sense of [11].7 The split of an
L-occurrence is obtained by applying at most one rule of begin_split, then the
rules of main_split as long as possible, and finally the rules of end_split as long
as possible. Roughly speaking, splitting an L-occurrence X in a collapsed A-
tree H consists of performing a recursive operation split(e) on the A\-hyperedge
e in X that copies each path p from sg(e) to ty(e)|l; (provided that it is
not already copied), and applies split(e’) to each A-hyperedge ¢’ on p. The

resulting derivation relation is denoted by = and preserves collapsed A-trees
split

as well as the represented A-terms.

Collapsed \-tree rewriting
As indicated before, collapsed A-tree rewriting, denoted by = is the union

of the relations :d> and :l> From the soundness of :d> and the fact that
re split re

= preserves collapsed A-trees as well as the represented A-terms follows that
split

collapsed A-tree rewriting is sound.

Theorem 3.2 (Soundness of :A>)
Let H be a collapsed A-tree and let H = H'. Then term(H) % term(H').°

5 If one admits larger sets of rules one can renounce the negative context conditions.

* . o .
6 . denotes the reflexive and transitive closure of —.

4

A LS

Since collapsed A-tree representation of A-terms may involve sharing, the
application of red corresponds to a (non-empty) sequence of 3 reduction steps
in the represented A-term. Hence, for a collapsed A-tree H and a A-term ¢,
term(H) Tt does not imply that there is a collapsed A-tree H' such that

H = H' and term(H') = t. But the Gross-Knuth strategy — (see [3]) that
g

roughly speaking reduces all redexes in a A-term in parallel, can be imple-

mented by a sequence of collapsed A-tree rewriting steps. From this fact, from

the soundness of = and from the normalizing property of —, it follows that
g

a collapsed A-tree H has a normal form if and only if term(H) has a normal
form.
Theorem 3.3 (completeness w.r.t. —k>)

g

Let H be a collapsed A-tree and let term(H) — t. Then there is a collapsed
g

A-tree H' such that H:I>H’ and term(H') = 1.

Corollary 3.4 (Normal forms)
Let H be a collapsed A-tree. Then H has a normal form with respect to =

if and only if term(H) has a normal form with respect to 7

4 Work to be done

There are several points of investigation that remain open. Some of them
are given here. (1) The presented split procedure has to be compared with
the copying mechanism proposed in [20]; (2) collapsed A-tree rewriting should
be compared with optimal A-calculus reduction considered in [17,16,10,2] and
with algebraic term graph rewriting presented by Kahl ([15]); (3) it should
be studied which other properties of the A-calculus (like the Church-Rosser
property) carry over to collapsed A-tree rewriting; and (4) reduction strategies
for collapsed A-tree rewriting could be considered.

Acknowledgement. [am grateful to Renate Klempien-Hinrichs, Detlef
Plump, and to the referees for their helpful comments.

References

[1] Z.M. Ariola and J.W. Klop. Cyclic lambda graph rewriting. In Proc. Ninth
annual IEEE Symposium on Logic in Computer Science, pages 416-426. IEEE
Computer Society Press, 1994.

[2] A. Asperti. dole = 1: Optimizing optimal A-calculus implementations. In Jieh
Hsiang, editor, Rewriting Techniques and Applications, volume 914, pages 102—
116, 1995.

[3] H.P. Barendregt. The Lambda Calculus, its Syntax and Semantics. North-
Holland, Amsterdam, 1984.

A LS

[4] H.P. Barendregt. Functional programming and lambda calculus. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages
321-364. Elsevier - The MIT Press, 1992.

[5] V. Claus, H. Ehrig, and G. Rozenberg, editors. Graph Grammars and Their
Application to Computer Science and Biology. LNCS 73, 1979.

[6] Andrea Corradini and Francesca Rossi. Hyperedge replacement jungle rewriting
for term-rewriting systems and logic programming. Theoretical Computer
Science, 109:7-48, 1993.

[7] H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors. Graph Grammars and
Their Application to Computer Science. LNCS 532, 1991.

[8] H. Ehrig, M. Nagl, and G. Rozenberg, editors. Graph-Grammars and Their
Application to Computer Science, volume 153, 1983.

[9] H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors. Graph-Grammars
and Their Application to Computer Science. LNCS 291, 1987.

[10] G. Gonthier, M. Abadi, and J.J. Lévy. The geometry of optimal lambda
reduction. In Proc. of the 19th Symposium on Principles of Programming
Languages (POPL 92), 1992.

[11] A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative
application conditions. Fundamenta Informaticae, 1995. To appear.

[12] A. Habel, H.-J. Kreowski, and D. Plump. Jungle evaluation. Fundamenta
Informaticae, XV:37-60, 1991.

[13] J. Hindley and J. P. Seldin. [Introduction to Combinators and A-calculus,
volume 1 of London Mathematical Society Student Texts. Cambridge University
Press, 1986.

[14] B. Hoffmann and D. Plump. Implementing term rewriting by jungle evaluation.
RAIRO Theoretical Informatics and Applications, 25 (5):445-472, 1991.

[15] W. Kahl. Algebraic term graph rewriting with bound variables, 1994. Talk on
the fifth International Workshop on Graph Grammars and Their Application
to Computer Science, November 1994, Williamsburg, USA.

[16] J. Lamping. An algorithm for optimal lambda calculus reduction. In Proc.
17th ACM Symp. of Principles of Programming Languages, pages 16-30, San
Francisco, 1990.

[17] J.J. Lévy. Optimal reductions in the lambda-calculus. In J.P. Seldin and
J.R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda-
Calculus and Formalism, pages 159-191. New York: Academic Press, 1980.

[18] Graph Grammars and Their Application to Computer Science. Lecture Notes
in Computer Science, 1995. To appear.

[19] D. Plump. Evaluation of Functional Expressions by Hypergraph Rewriting. PhD
thesis, University of Bremen, 1993.

[20] C.P. Wadsworth. Semantics and pragmatics of the lambda-calculus. PhD thesis,
University of Oxford, 1971.

A LS

Appendix

vy v2
;] 2 1 2

V1 V2 V1 @ ® V2
v 7 1
Y
i J 1 2
v3 0/ Vs \CU5 V3@ V1 @ @ U5 —
2 2
v

1V}

12 ve
v60/ \0U7 Ve @ ® U7 1 1
1 2
v1
2 1
V1 V1 @
1 2
v
12
s 2 e —
2 2
v &
1 2
vsC/ \0U4 V3 @ ® V4

vy

Fig. 3. The rules of begin_split where 1,5 € {1,2},¢# j and X € {A, A}

|

U1 ‘ U1

1 2
V2 0/ \0U3 V2 @ ® U2 V2 @ ® V3

Fig. 4. The rule of end_split

A LS

V1

:
S 1 2
i g
v @ \C,‘ V1 @
k k
D —_— v
ko1 -
V2 0/ v3 V2 @ ® U2 I V3 !
1 2
V4 0/ \. s Vs @ ® U5 V4 Vs
; .’ o
i 5]

1V}

U1 O V1 @
1 2
V2 O/ v3 2 @ ® U2

1 2
U4C/ \0U5 Vi @ ®Us \;/

V1 o1 V1
5]

1 2

v2 @ ® V3 v U3

U] 5
= — .
J % k
V4 C/ V5 \% Vs @ Vs @V 2 ./ V5 \CU6
J l

1 2

v 0/ \. vg V7 @ ® Us v Vg

Fig. 5. The rules of main_split where dashed parts represent negative

context, 1,5, k, 1 € {1,2} i #£ j, k# land X € {A, A}

