Implementing β -Reduction by Hypergraph Rewriting

Sabine Kuske ¹

Fachbereich Mathematik und Informatik Universität Bremen D-28334 Bremen, Germany email: kuske@informatik.uni-bremen.de

Abstract

The aim of this paper is to implement the β -reduction in the λ -calculus with a hypergraph rewriting mechanism called collapsed λ -tree rewriting. It turns out that collapsed λ -tree rewriting is sound with respect to β -reduction and complete with respect to the Gross-Knuth strategy. As a consequence, there exists a normal form for a collapsed λ -tree if and only if there exists a normal form for the represented λ -term.

1 Introduction

The λ -calculus (see [3,13,4]) can be considered as the computational basis for functional programming. Graph reduction for the λ -calculus was studied first in [20] and later in e.g. [17,16,10,1] improving the performance of implementations of functional languages. One main advantage of representing λ -terms by graphs is that common subterms can be shared such that several redexes can be reduced in parallel. Within the well developed theory of graph rewriting (see [5,8,9,7,18] for a survey), hypergraph rewriting was shown to be a suitable formalism for the implementation of term rewriting systems and logic programming (see [12,14,19,6]). The aim of this paper is to show how to implement the β -reduction in the λ -calculus with a hypergraph rewriting mechanism called collapsed λ -tree rewriting.

It is assumed that the reader is familiar with the basic concepts of the λ -calculus. Due to the space restrictions proofs are omitted here; they will appear in the long version of this paper.

 $^{^{1}}$ This work has been supported by the Deutsche Forschungsgemeinschaft and the ESPRIT Basic Research Working Group 7183, COMPUGRAPH II.

17.00171

2 Representing λ -terms by collapsed λ -trees

Collapsed λ -trees are acyclic directed hypergraphs with one root where each node represents a λ -term. Before introducing collapsed λ -trees, we recall some definitions concerning hypergraphs.

Let Σ be a set of *labels*. Then a *hypergraph* over Σ is a system H = (V, E, s, t, l) where V is a finite set of *nodes*, E is a finite set of *hyperedges*, $s: E \to V$, $t: E \to V^*$ and $l: E \to \Sigma$ are three mappings assigning to each hyperedge a source 2 , a sequence of targets, and a label, respectively. A hyperedge with label X will be called an X-hyperedge. The components of H will also be referred to as V_H, E_H, s_H, t_H , and l_H .

For $v \in V$, $outdegree_H(v)$ denotes the number of hyperedges in H with source v. Given two nodes $v, v' \in V$, a path from v to v' is a finite sequence $(\langle e_1, i_1 \rangle, \ldots, \langle e_n, i_n \rangle)$ with $e_1, \ldots, e_n \in E$, $i_1, \ldots, i_n \in \mathbb{N}$, $s(e_1) = v$, $t(e_n)|_{i_n} = v'$, and $t(e_j)|_{i_j} = s(e_{j+1})$ for $j = 1, \ldots, n-1$. By convention, each node $v \in V$ is connected to itself by the empty path (). H is called acyclic if for each $v \in V$ there is no non-empty path from v to v.

A hypergraph H' = (V', E', s', t', l') is a subhypergraph of H, denoted by $H' \subseteq H$, if $V' \subseteq V$, $E' \subseteq E$, and s', t' and l' are restrictions of the mappings s,t, and l, respectively. Given two hypergraphs H, H' over Σ , a hypergraph morphism $f: H \to H'$ consists of two mappings $f_V: V_H \to V_{H'}$ and $f_E: E_H \to E_{H'}$ that preserve sources, targets and labels, that is, $s_{H'} \circ f_E = f_V \circ s_H$ and $t_{H'} \circ f_E = f_V^* \circ t_H$ (where f_V^* is the natural extension of f_V to sequences), and $l_{H'} \circ f_E = l_H$.

Collapsed λ -trees

Let C be a set of constants with $\lambda, A \notin C$. Then an acyclic hypergraph H = (V, E, s, t, l) over $\{\lambda, A\} \cup C$ is a collapsed λ -tree if there is a unique node $root_H \in V$ with no incoming hyperedge, and if for all $v \in V$ and all $e \in E$, (1) $outdegree_H(v) \leq 1$, (2) $|t(e)| = 2^3$ if $l(e) \in \{\lambda, A\}$ and |t(e)| = 0 if $l(e) \in C$, (3) $outdegree_H(t(e)|_1) = 0$ if $l(e) = \lambda$, and (4) s(e) is on every path from $root_H$ to $t(e)|_1$ if $l(e) = \lambda$.

Let H be a collapsed λ -tree. Then each $v \in V_H$ represents a λ -term $term_H(v)$ over the variable set $\mathcal{V}_H = \{v \in V_H \mid outdegree_H(v) = 0\}$ and the set C as follows. If outdegree(v) = 0 then $term_H(v) = v$. Otherwise, let e be the unique hyperedge with $s_H(e) = v$. Then $term_H(v) = l_H(e)$ if $l_H(e) \in \mathcal{C}$, $term_H(v) = (term_H(t_H(e)|_1)term_H(t_H(e)|_2))$ if $l_H(e) = A$, and $term_H(v) = (\lambda t_H(e)|_1.term_H(t_H(e)|_2))$ if $l_H(e) = \lambda$. In the following, term(H) stands for $term_H(root_H)$. The two hypergraphs shown in Figure 2 are collapsed λ -trees, representing the λ -terms $(((\lambda v_1.(v_1v_2))a)((\lambda v_1.(v_1v_2)a)))$ and $((av_2)(av_2))$. It can be shown that each λ -term can be represented by a collapsed λ -tree up to α -conversion. In the following we do not distinguish between λ -terms that are equal up to α -conversion.

² Usually, each hyperedge has an arbitrary number of sources; but this is not needed here.

³ For a sequence w, $w|_i$ denotes its i^{th} element and |w| its length.

ILCONTE

3 Collapsed λ -tree rewriting

Collapsed λ -tree rewriting consists of collapsed λ -tree reduction on the one hand and a copying mechanism on the other hand. Both kinds of manipulating collapsed λ -trees are based on hypergraph rewriting and can be executed in arbitrary order. Before introducing collapsed λ -tree rewriting, we briefly recall hypergraph rewriting. (For a precise formal definition see, e.g. [19].)

A (hypergraph rewriting) rule is a tuple $r = (L, b: K \to R)$ where L, K, and R are hypergraphs, b is a hypergraph morphism and $K \subseteq L$. Let H be a hypergraph and let $f: L \to H$ be a hypergraph morphism such that the following gluing condition holds. (1) No hyperedge in $E_H - E_{f(L)}$ is incident to any node in $V_{f(L)} - V_{f(K)}$ and (2) for all nodes $x, y \in V_L$, f(x) = f(y) implies x = y or $x, y \in V_K$; analogously for all hyperedges $x, y \in E_L$. Then the application of r to H (via f) yields a hypergraph obtained by (1) removing f(L) - f(K) from H and (2) gluing the remaining graph with R in b(K).

Collapsed λ -tree reduction

Let H be a collapsed λ -tree. Then H reduces to the hypergraph H', denoted by $H \Longrightarrow H'$, if H' is obtained by (1) applying the following rule red to H and (2) deleting all nodes and hyperedges in the resulting hypergraph that do not lie on a path from $root_H$. The rule $red = (L, b: K \to R)$ consists of a collapsed λ -tree L and two hypergraphs K and R and can be depicted as in Fig. 1 where $v_1 = v_5$ ($v_3 = v_4$) means that the nodes v_1 and v_5 (v_3 and v_4) of K are mapped to the same node in R. For a collapsed λ -tree H and a hypergraph morphism $f: L \to H$, the subhypergraph f(L) of H is called an L-occurrence in H. Fig. 2 shows a collapsed λ -tree reduction.

Fig. 1. The rule red

Collapsed λ -tree reduction preserves collapsed λ -trees. Moreover, it performs the β -reduction in the λ -calculus.

Theorem 3.1 (Soundness of \Longrightarrow_{red})

Let H be a collapsed λ -tree and let $H \Longrightarrow_{\stackrel{red}{ted}} H'$. Then $term(H) \xrightarrow{+} term(H')$.

 $[\]stackrel{4}{\longrightarrow}$ and $\stackrel{+}{\stackrel{\beta}{\longrightarrow}}$ are the β -reduction relation in the λ -calculus and its transitive closure.

Fig. 2. A collapsed λ -tree reduction

Splitting L-occurrences

Because of the gluing condition, the rule red cannot be applied to an Loccurrence X in a collapsed λ -tree H if the source of the λ -hyperedge in X occurs more than once as target of hyperedges in H. Hence, there may occur situations in which a β -reduction may be applied to term(H) but no corresponding collapsed λ -tree reduction can be performed. In such cases, it is desirable to provide a splitting mechanism for L-occurrences (see also [20]). To achieve this aim, one can use a set of so-called *split* rules consisting of the three subsets begin_split, main_split and end_split given in the Appendix. These make use of negative context conditions in the sense of [11]. The split of an L-occurrence is obtained by applying at most one rule of begin_split, then the rules of main_split as long as possible, and finally the rules of end_split as long as possible. Roughly speaking, splitting an L-occurrence X in a collapsed λ tree H consists of performing a recursive operation split(e) on the λ -hypered ge e in X that copies each path p from $s_H(e)$ to $t_H(e)|_1$ (provided that it is not already copied), and applies split(e') to each λ -hyperedge e' on p. The resulting derivation relation is denoted by \Longrightarrow_{split} and preserves collapsed λ -trees as well as the represented λ -terms.

Collapsed λ -tree rewriting

As indicated before, collapsed λ -tree rewriting, denoted by $\Longrightarrow_{\lambda}$, is the union of the relations \Longrightarrow_{red} and \Longrightarrow_{split} . From the soundness of \Longrightarrow_{red} and the fact that \Longrightarrow_{split} preserves collapsed λ -trees as well as the represented λ -terms follows that collapsed λ -tree rewriting is sound.

Theorem 3.2 (Soundness of \Longrightarrow)

Let H be a collapsed λ -tree and let $H \Longrightarrow_{\lambda} H'$. Then $term(H) \xrightarrow{*}_{\beta} term(H')$.

⁵ If one admits larger sets of rules one can renounce the negative context conditions.

 $[\]stackrel{6}{\longrightarrow} \stackrel{*}{\xrightarrow{\beta}}$ denotes the reflexive and transitive closure of $\stackrel{-}{\longrightarrow}$.

Since collapsed λ -tree representation of λ -terms may involve sharing, the application of red corresponds to a (non-empty) sequence of β reduction steps in the represented λ -term. Hence, for a collapsed λ -tree H and a λ -term t, $term(H) \xrightarrow{\beta} t$ does not imply that there is a collapsed λ -tree H' such that $H \Longrightarrow_{\lambda} H'$ and term(H') = t. But the Gross-Knuth strategy $\underset{gk}{\longrightarrow}$ (see [3]) that roughly speaking reduces all redexes in a λ -term in parallel, can be implemented by a sequence of collapsed λ -tree rewriting steps. From this fact, from the soundness of $\Longrightarrow_{\lambda}$ and from the normalizing property of \longrightarrow_{qk} , it follows that a collapsed λ -tree H has a normal form if and only if term(H) has a normal form.

Theorem 3.3 (completeness w.r.t. \xrightarrow{gk}) Let H be a collapsed λ -tree and let $term(H) \xrightarrow{gk} t$. Then there is a collapsed λ -tree H' such that $H \stackrel{*}{\Longrightarrow} H'$ and term(H') = t.

Corollary 3.4 (Normal forms)

Let H be a collapsed λ -tree. Then H has a normal form with respect to \Longrightarrow if and only if term(H) has a normal form with respect to $\xrightarrow{\beta}$.

Work to be done 4

There are several points of investigation that remain open. Some of them are given here. (1) The presented split procedure has to be compared with the copying mechanism proposed in [20]; (2) collapsed λ -tree rewriting should be compared with optimal λ -calculus reduction considered in [17,16,10,2] and with algebraic term graph rewriting presented by Kahl ([15]); (3) it should be studied which other properties of the λ -calculus (like the Church-Rosser property) carry over to collapsed λ -tree rewriting; and (4) reduction strategies for collapsed λ -tree rewriting could be considered.

Acknowledgement. I am grateful to Renate Klempien-Hinrichs, Detlef Plump, and to the referees for their helpful comments.

References

- [1] Z.M. Ariola and J.W. Klop. Cyclic lambda graph rewriting. In Proc. Ninth annual IEEE Symposium on Logic in Computer Science, pages 416–426. IEEE Computer Society Press, 1994.
- [2] A. Asperti. $\delta o! \epsilon = 1$: Optimizing optimal λ -calculus implementations. In Jieh Hsiang, editor, Rewriting Techniques and Applications, volume 914, pages 102-116, 1995.
- [3] H.P. Barendregt. The Lambda Calculus, its Syntax and Semantics. North-Holland, Amsterdam, 1984.

TYOUNT

- [4] H.P. Barendregt. Functional programming and lambda calculus. In J. van Leeuwen, editor, *Handbook of Theoretical Computer Science*, volume B, pages 321–364. Elsevier The MIT Press, 1992.
- [5] V. Claus, H. Ehrig, and G. Rozenberg, editors. Graph Grammars and Their Application to Computer Science and Biology. LNCS 73, 1979.
- [6] Andrea Corradini and Francesca Rossi. Hyperedge replacement jungle rewriting for term-rewriting systems and logic programming. Theoretical Computer Science, 109:7–48, 1993.
- [7] H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors. *Graph Grammars and Their Application to Computer Science*. LNCS 532, 1991.
- [8] H. Ehrig, M. Nagl, and G. Rozenberg, editors. *Graph-Grammars and Their Application to Computer Science*, volume 153, 1983.
- [9] H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors. *Graph-Grammars* and Their Application to Computer Science. LNCS 291, 1987.
- [10] G. Gonthier, M. Abadi, and J.J. Lévy. The geometry of optimal lambda reduction. In Proc. of the 19th Symposium on Principles of Programming Languages (POPL 92), 1992.
- [11] A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application conditions. *Fundamenta Informaticae*, 1995. To appear.
- [12] A. Habel, H.-J. Kreowski, and D. Plump. Jungle evaluation. Fundamenta Informaticae, XV:37-60, 1991.
- [13] J. Hindley and J. P. Seldin. Introduction to Combinators and λ-calculus, volume 1 of London Mathematical Society Student Texts. Cambridge University Press, 1986.
- [14] B. Hoffmann and D. Plump. Implementing term rewriting by jungle evaluation. RAIRO Theoretical Informatics and Applications, 25 (5):445-472, 1991.
- [15] W. Kahl. Algebraic term graph rewriting with bound variables, 1994. Talk on the fifth International Workshop on Graph Grammars and Their Application to Computer Science, November 1994, Williamsburg, USA.
- [16] J. Lamping. An algorithm for optimal lambda calculus reduction. In Proc. 17th ACM Symp. of Principles of Programming Languages, pages 16–30, San Francisco, 1990.
- [17] J.J. Lévy. Optimal reductions in the lambda-calculus. In J.P. Seldin and J.R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, pages 159-191. New York: Academic Press, 1980.
- [18] Graph Grammars and Their Application to Computer Science. Lecture Notes in Computer Science, 1995. To appear.
- [19] D. Plump. Evaluation of Functional Expressions by Hypergraph Rewriting. PhD thesis, University of Bremen, 1993.
- [20] C.P. Wadsworth. Semantics and pragmatics of the lambda-calculus. PhD thesis, University of Oxford, 1971.

ILOUILE

Appendix

Fig. 3. The rules of $begin_split$ where $i,j\in\{1,2\}, i\neq j$ and $X\in\{A,\lambda\}$

Fig. 4. The rule of end_split

IXODIXE

Fig. 5. The rules of $main_split$ where dashed parts represent negative context, $i, j, k, l \in \{1, 2\}$ $i \neq j$, $k \neq l$ and $X \in \{A, \lambda\}$.