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Abstract

The aim of this paper is to implement the g-reduction in the A-calculus with a
hypergraph rewriting mechanism called collapsed A-tree rewriting. It turns out that
collapsed A-tree rewriting is sound with respect to f-reduction and complete with
respect to the Gross-Knuth strategy. As a consequence, there exists a normal form
for a collapsed A-tree if and only if there exists a normal form for the represented
A-term.

1 Introduction

The A-calculus (see [3,13,4]) can be considered as the computational basis
for functional programming. Graph reduction for the A-calculus was studied
first in [20] and later in e.g. [17,16,10,1] improving the performance of im-
plementations of functional languages. One main advantage of representing
A-terms by graphs is that common subterms can be shared such that several
redexes can be reduced in parallel. Within the well developed theory of graph
rewriting (see [5,8,9,7,18] for a survey), hypergraph rewriting was shown to
be a suitable formalism for the implementation of term rewriting systems and
logic programming (see [12,14,19,6]). The aim of this paper is to show how
to implement the J-reduction in the A-calculus with a hypergraph rewriting
mechanism called collapsed A-tree rewriting.

It is assumed that the reader is familiar with the basic concepts of the
A-calculus. Due to the space restrictions proofs are omitted here; they will
appear in the long version of this paper.
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2 Representing A-terms by collapsed A-trees

Collapsed A-trees are acyclic directed hypergraphs with one root where each
node represents a A-term. Before introducing collapsed A-trees, we recall some
definitions concerning hypergraphs.

Let ¥ be a set of labels. Then a hypergraph over Y is a system H =
(V, E,s,t,1) where V is a finite set of nodes, F is a finite set of hyperedges,
s -V, ttEF — V*and I E — X are three mappings assigning to each
hyperedge a source ?, a sequence of targels, and a label, respectively. A
hyperedge with label X will be called an X-hyperedge. The components of H
will also be referred to as Vi, Ky, sy, ty, and [g.

For v € V', outdegreey(v) denotes the number of hyperedges in H with
source v. Given two nodes v,v" € V., a path from v to v’ is a finite sequence
((e1,21)y ..y (€nytn)) with eq,... e, € By iy, ... 0, € IN, s(er) = v, ten)]i, =
o' ? and t(e;)|i; = s(ejq1) for j = 1,...,n — 1. By convention, each node
v € V is connected to itself by the empty path (). H is called acyelic if for
each v € V there is no non-empty path from v to v.

A hypergraph H' = (V' F' &', t',1') is a subhypergraph of H, denoted by
H CH,ifV'CV, E CFE, and s, t" and " are restrictions of the mappings
s,t, and [, respectively. Given two hypergraphs H, H' over ¥, a hypergraph
morphism f: H — H' consists of two mappings fy : Vg — Vg and fg: Eg —
K that preserve sources, targets and labels, that is, sy o fg = fy 0 sy and
tgro fr = fi oty (where fi is the natural extension of fy to sequences), and

ZH’ o] fE == ZH

Collapsed A-trees

Let C be a set of constants with A\, A ¢ . Then an acyclic hypergraph
H=(V,E, s,t,1)over {\, A}UC is a collapsed A-tree if there is a unique node
rooty € V with no incoming hyperedge, and if for all v € V and all e € E, (1)
outdegreey (v) < 1, (2) |t(e)| =22 if l(e) € {\, A} and |t(e)| =0 if I(e) € C,
(3) outdegreey (t(e)]1) = 0if I(e) = A, and (4) s(e) is on every path from rooty
to t(e)|y if I(e) = A.

Let H be a collapsed A-tree. Then each v € Vg represents a A-term
termg(v) over the variable set Vg = {v € V| outdegreey(v) = 0} and the
set C as follows. If outdegree(v) = 0 then termpy(v) = v. Otherwise, let e be
the unique hyperedge with sy(e) = v. Then termpy(v) = lg(e) if ly(e) € C,
termp(v) = (termg(tu(e)|)termy(ty(e)|z)) if lu(e) = A, and termpg(v) =
(Mu(e)|r.termp(tu(e)|2)) if lg(e) = A. In the following, term(H) stands for
termg (rooty). The two hypergraphs shown in Figure 2 are collapsed A-trees,
representing the A-terms (((Avy.(v1v2))a)((Avi.(v1v2)a))) and ((avq)(awvsy)).
It can be shown that each A-term can be represented by a collapsed A-tree up
to a-conversion. In the following we do not distinguish between A-terms that
are equal up to a-conversion.

2 Usually, each hyperedge has an arbitrary number of sources; but this is not needed here.
3 For a sequence w, w|; denotes its i'" element and |w]| its length.
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3 Collapsed \-tree rewriting

Collapsed A-tree rewriting consists of collapsed A-tree reduction on the one
hand and a copying mechanism on the other hand. Both kinds of manipulating
collapsed A-trees are based on hypergraph rewriting and can be executed in
arbitrary order. Before introducing collapsed A-tree rewriting, we briefly recall
hypergraph rewriting. (For a precise formal definition see, e.g. [19].)

A (hypergraph rewriting) rule is a tuple r = (L,b: K — R) where L, K,
and R are hypergraphs, b is a hypergraph morphism and K C L. Let H be
a hypergraph and let f: L — H be a hypergraph morphism such that the
following gluing condition holds. (1) No hyperedge in Ey — Ey ) is incident
to any node in Vi) — Vi) and (2) for all nodes z,y € Vi, f(z) = f(y)
implies © = y or z,y € Vi; analogously for all hyperedges =,y € Fr. Then
the application of r to H (via f) yields a hypergraph obtained by (1) removing
f(L) = f(K) from H and (2) gluing the remaining graph with R in b(K).

Collapsed A-tree reduction

Let H be a collapsed A-tree. Then H reduces to the hypergraph H’, denoted
by H:>H’ if H' is obtained by (1) applying the following rule red to H
and (2 ) deletmg all nodes and hyperedges in the resulting hypergraph that
do not lie on a path from rooty. The rule red = (L,b: K — R) consists of
a collapsed A-tree I and two hypergraphs K and R and can be depicted as
in Fig. 1 where vy = vs (v3 = vy4) means that the nodes vy and vs (v3 and
vy) of K are mapped to the same node in R. For a collapsed A-tree H and a
hypergraph morphism f : L. — H, the subhypergraph f(L) of H is called an
L-occurrence in H. Fig. 2 shows a collapsed A-tree reduction.

V1 V1 @ @®U1 =Us

1

2
U \ U3 2 @ U3 —

1
v4./ \0U5 Vs @ ® U5 @ U3z = Vs

Fig. 1. The rule red

Collapsed A-tree reduction preserves collapsed A-trees. Moreover, it per-
forms the F-reduction in the A-calculus.

Theorem 3.1 (Soundness of :d>)
Let H be a collapsed A-tree and let H — H'. Then term(H) % term(H').*

4 and % are the g-reduction relation in the A-calculus and its transitive closure.
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Fig. 2. A collapsed A-tree reduction

Splitting L-occurrences

Because of the gluing condition, the rule red cannot be applied to an L-
occurrence X in a collapsed A-tree H if the source of the A-hyperedge in
X occurs more than once as target of hyperedges in H. Hence, there may
occur situations in which a f-reduction may be applied to term(H) but no
corresponding collapsed A-tree reduction can be performed. In such cases, it
is desirable to provide a splitting mechanism for L-occurrences (see also [20]).
To achieve this aim, one can use a set of so-called split rules consisting of the
three subsets begin_split, main_split and end_split given in the Appendix. These
make use of negative context conditions in the sense of [11].7 The split of an
L-occurrence is obtained by applying at most one rule of begin_split, then the
rules of main_split as long as possible, and finally the rules of end_split as long
as possible. Roughly speaking, splitting an L-occurrence X in a collapsed A-
tree H consists of performing a recursive operation split(e) on the A\-hyperedge
e in X that copies each path p from sg(e) to ty(e)|l; (provided that it is
not already copied), and applies split(e’) to each A-hyperedge ¢’ on p. The

resulting derivation relation is denoted by = and preserves collapsed A-trees
split

as well as the represented A-terms.

Collapsed \-tree rewriting
As indicated before, collapsed A-tree rewriting, denoted by = is the union

of the relations :d> and :l> From the soundness of :d> and the fact that
re split re

= preserves collapsed A-trees as well as the represented A-terms follows that
split

collapsed A-tree rewriting is sound.

Theorem 3.2 (Soundness of :A>)
Let H be a collapsed A-tree and let H = H'. Then term(H) % term(H').°

5 If one admits larger sets of rules one can renounce the negative context conditions.

* . o .
6 . denotes the reflexive and transitive closure of —.
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Since collapsed A-tree representation of A-terms may involve sharing, the
application of red corresponds to a (non-empty) sequence of 3 reduction steps
in the represented A-term. Hence, for a collapsed A-tree H and a A-term ¢,
term(H) Tt does not imply that there is a collapsed A-tree H' such that

H = H' and term(H') = t. But the Gross-Knuth strategy — (see [3]) that
g

roughly speaking reduces all redexes in a A-term in parallel, can be imple-

mented by a sequence of collapsed A-tree rewriting steps. From this fact, from

the soundness of = and from the normalizing property of —, it follows that
g

a collapsed A-tree H has a normal form if and only if term(H) has a normal
form.
Theorem 3.3 (completeness w.r.t. —k>)

g

Let H be a collapsed A-tree and let term(H) — t. Then there is a collapsed
g

A-tree H' such that H:I>H’ and term(H') = 1.

Corollary 3.4 (Normal forms)
Let H be a collapsed A-tree. Then H has a normal form with respect to =

if and only if term(H) has a normal form with respect to 7

4 Work to be done

There are several points of investigation that remain open. Some of them
are given here. (1) The presented split procedure has to be compared with
the copying mechanism proposed in [20]; (2) collapsed A-tree rewriting should
be compared with optimal A-calculus reduction considered in [17,16,10,2] and
with algebraic term graph rewriting presented by Kahl ([15]); (3) it should
be studied which other properties of the A-calculus (like the Church-Rosser
property) carry over to collapsed A-tree rewriting; and (4) reduction strategies
for collapsed A-tree rewriting could be considered.

Acknowledgement. [ am grateful to Renate Klempien-Hinrichs, Detlef
Plump, and to the referees for their helpful comments.
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Appendix
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Fig. 3. The rules of begin_split where 1,5 € {1,2},¢# j and X € {A, A}
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Fig. 4. The rule of end_split
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Fig. 5. The rules of main_split where dashed parts represent negative

context, 1,5, k, 1 € {1,2} i #£ j, k# land X € {A, A}



