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Localising activity in the humanmidbrain with conventional functional MRI (fMRI) is challenging because the
midbrain nuclei are small and located in an area that is prone to physiological artefacts. Here we present a
replicable and automated method to improve the detection and localisation of midbrain fMRI signals. We
designed a visual fMRI task that was predicted would activate the superior colliculi (SC) bilaterally. A limited
number of coronal slices were scanned, orientated along the long axis of the brainstem, whilst simultaneously
recording cardiac and respiratory traces. A novel anatomical registration pathway was used to optimise the
localisation of the small midbrain nuclei in stereotactic space. Two additional structural scans were used to
improve registration between functional and structural T1-weighted images: an echo-planar image (EPI) that
matched the functional data but had whole-brain coverage, and a whole-brain T2-weighted image. This
pathway was compared to conventional registration pathways, and was shown to significantly improve
midbrain registration. To reduce the physiological artefacts in the functional data, we estimated and removed
structured noise using a modified version of a previously described physiological noise model (PNM).
Whereas a conventional analysis revealed only unilateral SC activity, the PNM analysis revealed the predicted
bilateral activity. We demonstrate that these methods improve the measurement of a biologically plausible
fMRI signal. Moreover they could be used to investigate the function of other midbrain nuclei.
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Introduction

There is increasing interest in extending functional magnetic
resonance imaging (fMRI) to the study of human brainstem neural
activity, particularly in the midbrain due to its role in modulating
behaviour. Animal studies indicate that the midbrain is involved in
many functions, including visual perception (Cynader and Berman,
1972; Goldberg andWurtz, 1972; Schiller and Koerner, 1971), reward
processing (Schultz et al., 1997), and nociception (Basbaum and
Fields, 1984). However, relatively little is known about how these
results may translate to humans. This is due to the fact that midbrain
signals are difficult to detect and quantify using non-invasive in-vivo
neuro-imaging techniques. This is due to the difficulty in obtaining a
reliable blood oxygen level dependent (BOLD) signal, the indirect
measure of neural activity utilised by fMRI, from the humanmidbrain.

It is challenging to measure a BOLD signal from this area for two
main reasons. Firstly, the nuclei within the midbrain are small and
tightly packed. In order to localise signals at a group level within one
of these structures, accurate registration to a standard brain template
must be carried out. However conventional registrationmethods used
for fMRI are optimised for whole-brain data sets, and do not optimise
for maximum accuracy of midbrain registration. Secondly, the
midbrain is prone to artefacts from the cardiac (Dagli et al., 1999;
Greitz et al., 1992; Poncelet et al., 1992) and respiratory (Raj et al.,
2001) cycles, which add structured noise to the data.We designed this
study to address these challenges, using novel registration methods
combined with physiological noise modelling to optimise for signal
identification in midbrain fMRI.

Registration

In cognitive neuroimaging the process of ‘registration’ typically
involves transforming functional data to a standard space template to
facilitate between-subject group analysis. In conventional whole-
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brain fMRI this is usually achieved in two steps: the functional data,
which has limited structural information, is first transformed onto a
high-resolution structural image, which is in turn transformed onto a
standard brain template. These two steps are then concatenated and
applied to the fMRI data.

Midbrain fMRI studies have used this conventional approach using
either a T1-weighted (T1w) structural image (Krebs et al., 2010;
Sigalovsky and Melcher, 2006; Zhang et al., 2006) or a proton density
structural image (Dunckley et al., 2005). However there are two
reasons to suggest that such methodology does not lead to robust
midbrain registration. Firstly, fMRI optimised for the midbrain
typically has a limited field-of-view (FOV). This is because high-
resolution functional scans are required to accurately localise activity
to a specific midbrain nucleus, so a long repetition time (TR) would be
required to collect data from the whole brain. In order to fit an
experiment within a reasonable scan time and maintain temporal
resolution, data are collected from slices over the midbrain only.
Within this limited FOV there is less structural information than
would be available in a whole-brain FOV, so the transformation of the
functional data onto the high-resolution structural image is not as
reliable or as accurate as the whole-brain equivalent. Secondly,
registration accuracy in midbrain fMRI needs to exceed the accuracy
that would normally be expected with whole-brain fMRI. This is due
to the smaller size of the midbrain nuclei, and the close proximity of
the nuclei to each other.

In recognition of the challenges facing midbrain registration, many
fMRI studies have circumvented the need for registration completely
and used a region-of-interest (ROI) approach. Voxels within individ-
ually defined ROIs are averaged and these averages are compared at a
group level (DuBois and Cohen, 2000; Guimaraes et al., 1998; Hawley
et al., 2005; Schneider and Kastner, 2005; Topolovec et al., 2004;
Tracey et al., 2002; Wall et al., 2009). However, ROI analyses rely
strongly on a-priori predictions, so may miss unexpected results.
Furthermore, the inclusion of non-active voxels in the ROI average can
remove genuine effects, and increase the likelihood of accepting false
negatives. Alternatively, manual registration has been used for
midbrain fMRI (Sylvester et al., 2007) but this is a time consuming
method and may be vulnerable to investigator bias. Automated linear
registration of structural images into standard space has been
optimised for the midbrain (Napadow et al., 2006; Pattinson et al.,
2009). However the use of non-linear registration methods may
circumvent the need for this optimisation, as these methods apply
transformation to standard space at a local level, rather than applying
the same transformation to the whole brain, as is the case with linear
registration (Klein et al., 2009).

Here we present an unbiased, user independent and novel
registration pathway that improves on conventional registration to
increase the accuracy with which functional data are transformed
onto the standard brain template at the level of the midbrain. This is
achieved with the addition of two intermediate whole-brain struc-
tural scans prior to transformation of the data to a T1w high-
resolution structural image. Functional data are first transformed onto
a whole-brain echo-planar image (EPI) that matches the functional
data, but with full field-of-view. This overcomes the problem created
by having only a limited number of slices to drive registration. The
resulting data is then transformed onto a high-resolution T2-
weighted (T2w) image. Both the functional images and T2w images
contain areas of low image intensity that correspond to the red nuclei
(RN) and substantia nigra (SN), due to their high iron content (Drayer
et al., 1986). The intensity boundaries surrounding these areas in the
midbrain can then be utilised to drive registration algorithms. If a T1w
image were used as the initial high-resolution structural image, only
the edges of the midbrain could be used for registration as there is
uniform signal throughout the midbrain structures with such a T1w
sequence. Thus, accuracy within the midbrain would be compro-
mised. Further, we propose to weight the cost function evaluation
within the registration algorithm towards accurate sub-cortex
registration (at the expense of accuracy with respect to registration
of cortex). The evaluation study was designed to demonstrate the
accuracy of this method at the level of the midbrain, compared with
the accuracy of conventional registration methods.

Physiological noise

One additional major challenge facingmidbrain fMRI is that, due to
its anatomical location, it is prone to physiological artefacts. During
the cardiac cycle the midbrain undergoes a bulk motion in the
direction of the foramen magnum, due to the increased intracranial
pressure as blood enters the brain (Poncelet et al., 1992). Such bulk
motion causes spatio-temporal blurring of the BOLD signal across
voxels. Also the large blood vessels adjacent to the midbrain are
subject to cardiac pulsality (Dagli et al., 1999; Greitz et al., 1992)
causing BOLD signal intensity changes in nearby tissue. Furthermore,
intracranial pressure changes and pulsatile movement of blood
vessels produce oscillatory motion in the cerebrospinal fluid (CSF)
surrounding the brain and brainstem (Friese et al., 2004; Klose et al.,
2000), which gives rise to in-flow signal artefact on the EPI typically
used to record functional information (Piché et al., 2009). In addition
to cardiac related artefacts, the respiratory cycle also causes bulk
magnetic susceptibility changes within the brain tissue during the
respiratory cycle (Raj et al., 2001). There is also a significant
interaction between these two sources of noise (Brooks et al., 2008;
Harvey et al., 2008).

In order to reduce the interference of physiological noise, many
midbrain fMRI studies use cardiac gating (D'Ardenne et al., 2008;
DuBois and Cohen, 2000; Guimaraes et al., 1998; Hawley et al., 2005;
Napadow et al., 2009; Sigalovsky and Melcher, 2006; Zhang et al.,
2006). In this approach, imaging data is collected in between
heartbeats, assuming that the brain is relatively stable during this
time. This limits the number of slices that can be collected per volume.
In addition, the TR that results from the variable heart rate causes
differences in the T1 relaxation (Guimaraes et al., 1998) that requires
correction. Most importantly, this approach does not correct for
respiratory artefacts or the noise resulting from an interaction
between the cardiac and respiratory cycles.

Alternative methods have been developed that use physiological
measures to model and remove structured noise from fMRI data
(Glover et al., 2000; Hu et al., 1995; Liston et al., 2006). Retrospective
Image Correction (RETROICOR) (Glover et al., 2000) was originally
developed for whole-brain fMRI, and physiological noise is removed
by first assigning a cardiac and respiratory phase to each slice of data
based on its acquisition time relative to the physiological cycles, then
modelling their likely effect on imaging data using a basis set
including four Fourier terms. Here we use a modified version of
RETRICOR, the Physiological Noise Model (PNM), which is imple-
mented via the general linear model and therefore avoids problems
relating to adjusting variance estimates for the loss of degrees of
freedom when pre-filtering. The PNM was developed for spinal
(Brooks et al., 2008) and brainstem (Harvey et al., 2008) studies. In
the brainstem a significant amount of noise is generated by an
interaction between the cardiac and respiratory cycles, which can be
successfully modelled with the PNM (Harvey et al., 2008; Pattinson et
al., 2009). In addition, low frequency fluctuations in the heart rate
may produce low-frequency noise in fMRI data (Chang et al., 2009),
and this is also accounted for within the PNM.

In this study we applied the PNM to an fMRI experiment using
visual stimulation, and compared the resulting activation with those
from a conventional analysis. The visual stimulus was a moving black
and white checkerboard, known to activate the superior colliculus
(SC) in fMRI using an ROI approach (DuBois and Cohen, 2000;
Schneider and Kastner, 2005) or manual registration (Sylvester et al.,
2007). Therefore, any failure to detect a task-related BOLD signal
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change in the midbrain with this stimulus could primarily be
attributed to sub-optimal processing.

Methods

MRI acquisition

Sixteen healthy subjects (seven female) aged between 22 and
60 years, with normal or corrected to normal vision, participated in
this study. Two subjects were excluded due to poor shimming during
acquisition of the functional data. Two subjects were excluded due to
an inability to detect their cardiac signal above background noise. Two
subjects were excluded because we failed to secure revisits for
structural scans. The ten participants included in the analysis showed
minimal movement during the functional scans (less than 1 mm),
which improved the chances of good signal-to-noise (SNR) within the
midbrain. MR scanning was performed on a 3T Philips Intera scanner
with an eight-channel phased array head coil. A full table of
acquisition parameters is available in the Supplementary materials.
Subjects lay supine on the scanner, with padding underneath and
surrounding the head. Physiological data were recorded using the
scanner's in-built system. This included a vector-cardiogram (VCG)
trace via electrocardiogram (ECG) pads on the chest, and a respiratory
trace via a pneumatic belt. In order to synchronise the physiological
data with the functional scans, the scanner's physiological recording
software was modified to simultaneously record a trigger at the
beginning of each slice acquisition.

Functional MR images were obtained using a T2*-weighted, EPI
sequence with a FOV that covered the long axis of the brainstem
(TE=44 ms, TR=1600 ms, flip angle=90°; resolution, 1.5×1.5 mm;
matrix size, 144×144; slice thickness, 1.5 mm; 16 coronal slices; no
slice gap; interleaved slice order). A SENSE factor of two in the left-
right direction was used to reduce susceptibility related artefacts in
the data. Slices were aligned parallel to the anterior wall of the fourth
ventricle. The slice orientation and placement was selected to
minimise inhomogeneity in the main magnetic field (Dunckley et
al., 2005). Immediately following the functional run, a whole-brain
EPI scan was collected, using the same shim settings and voxel size as
the functional run, but with more slices (147 slices; TE=44 ms ;
TR=14.3 s). Two further functional data sets were collected, but are
not reported here. A T2w structural scan (TE=80 ms; TR=2000 ms;
resolution, 1.8×1.8 mm; slice thickness, 2.19 mm; 80 slices) and an
MPRAGE T1w structural scan (resolution, 1.15×1.15 mm; slice
thickness, 1.2 mm; 150 slices) were also obtained.

fMRI paradigm
During the functional scan a visual stimulus was repeatedly

presented on a screen visible to subjects lying supine in the scanner.
The stimulus was a smoothly rotating semi circle made of alternating
black and white checks that scaled linearly with eccentricity. The
checks reversed contrast at 8 Hz and the semi-circle rotated at 1 Hz.
Each presentation lasted for 2 s, with a variable inter stimulus interval
of between 1400 ms and 11000 ms. The trials were jittered. Stimuli
were presented using the Psychophysics Toolbox extension (Brainard,
1997; Pelli, 1997) for MATLAB (2008b, Natick, Massachusetts; The
Mathworks Inc.).

Analysis

Data were analysed using the FMRIB Software Library (FSL) (http://
www.fmrib.ox.ac.uk/fsl). Pre-processing of the functional data included
motion correction to the mean volume using McFLIRT (Motion
Correction FMRIB's Linear Image Registration Tool) (Jenkinson et al.,
2002; Jenkinson and Smith, 2001), spatial smoothing (full width at half
maximum=2mm), and high pass temporal filtering. BET (Brain
Extraction Tool) (Smith, 2002) was applied to all brain images. Prior
tomodel estimationusingFEAT (FSLExpert Analysis Tool) v5.98, cardiac
peaks (the R-wave) were extracted from the ECG trace, and high
frequency scanner noise was removed from the respiratory trace. The
regressors of the PNM were estimated from physiological data using a
custom MATLAB routine (Brooks et al., 2008). Access to these files and
instructions on implementing the PNM in FEAT are available (http://
www.fmrib.ox.ac.uk/Members/jon/physiological-noise-correction).

Registration
All registration steps from functional space into T1w structural

space were carried out using rigid body transformations in FLIRT
(FMRIB's Linear Image Registration Tool) (Jenkinson et al., 2002;
Jenkinson and Smith, 2001) whilst registration from T1w structural to
standard space was carried out using FNIRT (FMRIB's Non-linear
Image Registration Tool).

Three alternative registration pathways were tested for each
participant (see Fig. 1). For the two-step registration pathway the
mean functional image was registered to the T1w structural, this was
then registered to the Montreal Neurological Institute (MNI) standard
brain template. For the three-step registration pathway the mean
functional image was first registered to the whole-brain EPI that
matched the functional data in terms of contrast and resolution. This
pathway is recommended by FSL (http://www.fmrib.ox.ac.uk/fsl/flirt/
ztrans.html) as a way to improve the registration of data with a
limited FOV. The whole-brain EPI was then registered to the T1w
image and the T1w registered to the MNI template. Four-step
registration started with the same transform of functional data to
the whole-brain EPI. This step was then optimised for the midbrain: a
hand drawn mask that covered the midbrain and pons of the EPI
image was used to weight the transform for accuracy within these
masked areas. Optimising a registration step in this way has
previously been reported (Napadow et al., 2006; Pattinson et al.,
2009). This corrected for any differences between themean functional
image and the whole brain EPI image due to headmovement between
the two scans. The second step was transforming the whole-brain EPI
onto a T2w structural scan. As with the first step of this pathway, the
transform was optimised using a weighting mask. The mask was in
the T2w space and covered the thalamus, midbrain and pons. It was
drawn once in standard space and transformed onto the individual
T2w structural images. EPI images contain distortion in the phase-
encode direction, so this adjustment to the transform allowed
optimisation of the midbrain by ignoring areas of the brain subject
to distortion. The third step was transforming the T2w image onto the
T1w structural, a transform that needed no optimisation. The fourth
step was transforming the T1w structural into theMNI template. In all
cases, the initial steps (up to the T1w structural) were concatenated
into a single transform before being applied to the functional data to
avoid image degradation through multiple transforms.

To test the three registration pathways the RN was defined in each
participant and transformed into standard MNI space using the
transforms derived from the three registration pathways. This
structure was selected as it was fully within the FOV of the functional
scans, and was clearly identifiable using an automated method free
from experimenter bias. No other areas of high contrast were suitable
as they were not completely covered by the FOV (e.g. the SN), or were
not definable using the automatedmethod in away that would ensure
exactly the same structures has been selected for each participant.
(e.g. the tissue-CSF boundaries). Also functional activity was not
investigated within the RN in the fMRI task, so the assessment of the
registration pathways was independent of the activation results. The
RN was defined in the mean functional images using an automated
tool that filled an area with a 3D mask, until a signal intensity change
was detected (MRIcro 1.4, Chris Rorden, Georgia Institute of
Technology, Atlanta, Georgia, http://www.cabiatl.com/mricro/). The
standard location of the RN was identified using the same tool on a
standard MNI T2w template (see Fig. 2A). Thus the location of the
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Fig. 1. Three alternative registration pathways. Functional data was co-registered into MNI standard space using three alternative registration pathways. The presence of the green
shaded areas in the four-step registration pathway indicates that a mask was used to weight the transform to the shaded area.
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participant's RN in standard space, using three registration pathways,
could be compared to the ‘gold standard’ of locating the RN on the
T2w standard template.

fMRI analysis
Two sets of statistical analyses were carried out on the functional

data, one with the PNM to remove physiological noise from the data,
and one without. The analyses were identical, with the exception of
the design matrix used in the general linear model (GLM).

To estimate and remove the influence of physiological noise from
the time series data in the PNM analysis, we applied a modified
version of RETROICOR (Glover et al. 2000), which models the cardiac
and respiratory cycles using sine, cosine and interaction terms
(Brooks et al., 2008). For each slice in the volume, a phase was
assigned independently according to its acquisition relative to the
cardiac and respiratory cycles. In total eight cardiac terms, eight
respiratory terms, and sixteen interactions terms were used to model
the structured physiological noise in the data. A heart rate regressor
was also included (Chang et al., 2009). To remove the modelled noise
from the data, these variables were included in the GLM. Removing
structured noise from the data set in this way makes the detection of
genuine effects more likely, and reduces the likelihood of accepting
false positives (Harvey et al., 2008).

For both analyses the first level of statistical analysis of the
functional data (at the individual subject level) was carried out using a
GLM approach. A model of the BOLD response to visual stimulation
was constructed by convolving the stimulus input function with a
gamma hemodynamic response function (HRF) with time-to-peak of
4 s. This short HRF has been shown to better represent the blood flow
properties of the superior colliculi (Wall et al., 2009). A temporal
derivative of the visual stimulation was also included, to allow for
variation in individual HRFs. A single regressor that described global
head motion was also included. For the PNM analysis, the 33
physiological regressors were also included in the GLM. Group
statistics were carried out using FLAME (FMRIB's Local Analysis of
Mixed Effects), (Beckmann et al., 2003; Woolrich et al., 2004).
Variance that was explained by and unique to the visual regressor was
represented as a statistical map, which was subsequently tested using
non-parametric permutation testing to correct for multiple compar-
isons (Nichols and Holmes, 2002). This testing was carried out with
RANDOMISE, part of FSL. All statistic images were cluster corrected
(Worsley et al., 1992) to a significance level of pb0.05 with a nominal
T-value of 2.3 using standard cluster correction within RANDOMISE.
Task activation was tested against an implicit ‘rest’ baseline. Prior to
thresholding, a hand drawn mask was applied to the functional data
to include only voxels from the superior and inferior colliculi. The
inferior colliculi voxels were included to ensure that the visual
response was correctly localised to the superior colliculi. The colliculi
were defined on the MNI template using an anatomical atlas (Naidich
et al., 2009). Fig. 3A shows the location of the SC on the MNI template.

Results

Registration

For each of the registration pathways a group RNmaskwas created
by adding together all ten individual RN masks that had been
transformed into standard MNI space. Fig. 2B shows the group RN
mask for each of the registration pathways. Upon visual inspection, it
is clear that the RN is poorly co-localised when the two-step
registration pathway is used, with a maximal overlap of four
individual RN masks. There is a marked improvement with the
three-step registration with a greater maximal overlap of seven.
However the four-step registration shows the greatest maximal
overlap of eight, with a more symmetrical and tightly packed
distribution of voxels. The maximal overlap was eight not because
the procedure failed for two participants, but because there was
individual variability in the location of the individual RNmasks within
the standard RN template. Using this registration procedure, each
individual RN mask did overlap with the standard RN template.
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Fig. 2. Assessing the accuracy of the registration pathways. All images are overlaid on an
MNI T1 standard brain. (A) The standard location of the RN, derived from an MNI T2
template. The nuclei are shown in white in transverse, coronal and sagittal planes. (B)
For each participant the RN were defined in functional space and then transformed into
standard space using the three registration pathways. The group RN maps show the
summation of all participants' RN in standard space for each registration pathway
(blue = two-step registration, red = three-step registration, green = four-step
registration). The legends indicate howmany participants' nuclei overlap at each voxel.
(C) The standard location of the RN is overlaid on the group RN maps as defined by the
three registration methods. All images are shown in radiological convention.
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Fig. 3. fMRI results. (A) The location of the SC, defined using anatomical boundaries on
the group T1 standard brain, are shown in coronal and sagittal planes. (B) The SC
responded to visual stimulation. Statistical maps computed from data without PNM
revealed activity in the right SC only. The pattern of activation was modified when
including a PNM, to include activity in the SC bilaterally. The statistical maps show
significant clusters of voxels within a colliculi mask (determined using non-parametric
permutation testing with a corrected threshold of pb0.05 and a nominal T-value of 2.3)
The T-values of the voxels within significant clusters are indicated by the legends. The
top panel (red-yellow) shows unilateral SC activity revealed using a traditional analysis.
The lower panel (blue-light blue) shows bilateral SC activity revealed using the PNM
analysis.
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Comparing the location of the group RN masks (Fig. 2C) shows that
the four-step registration results in the best co-localisation with the
standard RN mask.

The registration pathways were assessed statistically using a
repeated measure ANOVA. The number of voxels of the standard RN
mask that were covered by the individual RN masks was significantly
affected by the registration pathway used (F(2, 18)=6.52, pb0.05).
Planned contrasts showed that the four-step registration pathway led to
more overlap between the group RN mask and the standard RN mask
than the two-step registration (F(1, 9)=8.89, pb0.05) and the three-
step registration (F(1, 9)=6.86, pb0.05). Accuracy of the different
registration pathways was also made on the basis of the number of
voxels from the individualmasks that fell outside the standard RNmask
after normalisation to the template. There was a significant main effect
of chosen registration pathway (F(2,18)=6.33, pb0.05). Planned
contrasts showed the four-step registration pathway led to fewer
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voxels outside the standard RN mask than the two-step registration (F
(1, 9)=8.89, pb0.05) and the three-step registration (F(1, 9)=6.86,
pb0.05). Therefore, the fMRI data were analysed using the four-step
registration method.

fMRI

All statistic images were cluster corrected to a significance level of
pb0.05 with a nominal T-value of 2.3 using non-parametric
permutation testing (RANDOMISE). The resulting statistical maps
are shown in Fig. 3B. Conventional analysis revealed a significant
response in voxels within the right SC alone. When the PNM was
included in the GLM, visual activity was localised to the SC bilaterally.
To check that possible left SC activity in the conventional analysis was
not hidden due to conservative cluster thresholding, the analysis was
repeated with a less conservative threshold (TN1.83). Even with this
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Fig. 4. The distribution of Z-statistics in the SC revealed with the traditional and the PNM an
for both analyses (white = conventional analysis, black = PNM analysis).
low threshold (corresponding to uncorrected pb0.05), no activity was
revealed in the left SC without the PNM.

The distribution of the Z-scores of all voxels within the right and
left SC in both the conventional and PNM analysis is shown in Fig. 4.
There is an increase in the number of significant voxels in the right SC
when the PNM is included in the GLM (from 103 voxels to 148).
However the main effect of the PNM is the recovery of significant
voxels in the left SC (83 voxels with PNM). However, this cluster
extends by 28 voxels into the left inferior colliculus, so is not as well
localised as the right SC activity.

To check that the PNM did not lead to further false positives
outside of the colliculi, and to investigate the signal blurring that had
occurred in the left inferior colliculus for the PNM analysis, we
repeated the analysis using a mask that covered the entire midbrain.
Using this larger mask we found clusters of activity adjacent to the left
SC with both the conventional and the PNM analysis. In the case of the
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conventional analysis this cluster was adjacent to the left SC and
extended across 56 voxels. For the PNM analysis this cluster extended
from the left SC, but also included 46 non-SC voxels. Thus, when
compared to the conventional analysis, the PNM revealed biologically
plausible and expected areas of activity in the left SC, and reduced the
number of non-SC voxels marked as active. Activity in the right SC was
well localised for both the conventional and PNM analysis, with only 6
and 13 voxels within the non-SC midbrain respectively. No other
clusters were revealed outside of the SC, which is in line with our
hypothesis.

Discussion

By applying a novel registration pathway optimised for the
midbrain, and an established method to reduce physiological noise,
we have shown it is possible to improve the capability of high-
resolution fMRI to record task-induced activity within the human
midbrain in a small group of subjects (N=10). We tested these
optimisedmethods on a simple visual paradigm and showed that they
improve the accuracy with which activity is localised to midbrain
structures, and also reveal biologically plausible activity that in a
simpler analysis was obscured due to the presence of un-modelled
physiological noise.

Registration

The four-step registration pathway showed a significant im-
provement over both the conventional two-step registration used
previously in midbrain studies (Krebs et al., 2010; Sigalovsky and
Melcher, 2006; Zhang et al., 2006), and the three-step registration
pathway recommended by and typically used within the FSL
analysis pipeline. The optimised pathway improved the co-
localisation of the RN across participants on the standard brain
template. There was a greater overlap of the RN between
participants and a significantly greater overlap of the group RN
mask with the location of the RN on the standard brain template.
There were also fewer voxels falsely identified as belonging to the
RN when the optimised four-step registration pathway was used.
The reasons for the improvement of this method were twofold. First,
intermediate scans maintained the contrast of nuclei within the
midbrain until the data had been transferred onto a high-resolution
structural scan. Thus, the registration algorithms could utilise both
the midbrain edges and the borders of the internal midbrain nuclei
and maintain registration accuracy throughout this region. Second,
the use of weighting volumes prioritised midbrain registration and
ignored areas of the brain that suffered from EPI distortion or were
of no interest. Although only one nucleus within the midbrain was
used in the assessment of the midbrain registration accuracy, it is
reasonable to assume that increased accuracy would persist
throughout the entire midbrain, as no special efforts were made
during the registration optimisation to co-localise the RN over and
above any other midbrain area. The use of nonlinear algorithms
(FNIRT) ensured accurate registration throughout the whole-brain
for the transformation of high-resolution T1w structural images to
the standard T1 template, so this step did not require optimisation
for the midbrain.

Optimising the registration in this way improved the accuracy
withwhich themidbrain nuclei of individual participants' co-localised
on the standard brain template. This reduced any blurring of a
genuine signal that would occur with poor co-localisation, and
afforded greater confidence when assigning activity to a specific
structure.

The optimised registration pathway overcame many of the
challenges of midbrain registration, and permitted group level
analyses across participants on a standard template, rather than
relying on ROI analyses. The use of this type of group level analysis
permits voxel-wise comparisons that may reveal regions of activity
that are not within pre-determined ROIs, and are not predicted by a
prior hypothesis. It also provides the opportunity to detect patterns of
activity within an area that have previously been regarded as a single
ROI, as functional units of the midbrain may not match the anatomical
subdivisions used to define ROIs.

Physiological noise

Modelling and removing noise with the PNM significantly
improved the ability to measure a BOLD signal from the human
midbrain. Including cardiac, respiratory, interaction and heart rate
regressors in the GLM removed structured physiological noise from
the data and led to an increased number of voxels that were
demonstrated to be significantly active in response to the visual
stimuli. Activity in the left SC, which had been masked by
physiological noise, was revealed by the PNM analysis. The number
of false positive voxels was also reduced in the PNM analysis,
compared to the conventional analysis. This result is consistent with
electrophysiological recordings from the SC in awake primates, which
show that each colliculus holds a representation of the contralateral
visual field (Goldberg and Wurtz, 1972). The visual stimuli used in
this study covered both sides of the visual field, and so would have
resulted in activity in both the left and right SC.

Unlike RETROICOR, the PNM has been specifically optimised for the
spinal cord and brainstem (Harvey et al., 2008). Due to the noise
characteristics in these regions, higher harmonics of the physiological
cycles explain significant noise in the data, so are included in the PNM.
This is the first time the PNM has been tested with such high-resolution
scans. It is essential to use such small voxels in midbrain fMRI, as it
allows accurate localisation of activity to a specific nucleus, and reduces
partial volume effects.However, as voxel size decreases, sodoes the SNR
of the fMRI data, making it more difficult to detect real signal (Edelstein
et al., 1986). This study has shown that it is possible to measure a
midbrain signal at high resolution, and that using the PNM increases the
effective temporal SNR (Cohen-Adad et al., 2010; Hutton et al.), and
permits detection of significant effects in a relatively small group size of
ten subjects. We demonstrate that the PNM is effective within the SC,
and the PNMhas previously been shown to be effectivewithin the spine
(Brooks et al., 2008; Cohen-Adad et al., 2010) and themotor areas of the
brainstem (Harvey et al., 2008). In addition it has been shown that
physiological noise in the brainstem is widespread and spatially non-
specific (Harvey et al., 2008). Thus it is likely that the PNM will be
effective in other areas of the midbrain, although this will require
further investigation.

Recently, an alternative method has been developed to remove
physiological noise from fMRI data using reference voxels that are
assumed to contain signal unrelated to stimulation to model noise in
the time series data (de Zwart et al., 2008). This method has been
applied to SC data (Wall et al., 2009), using an area of the cerebellum
as a reference region. However this method carries the risk of
removing “functional” signal from the data, or conversely not
removing all the physiological noise. If the noise properties vary
between the reference and task regions, noise removal will not be
optimal. Whilst it may be safe to assume the physiological noise is
similar between the posterior midbrain and the adjacent anterior
cerebellum, this assumption would be less valid in more anterior
portions of the midbrain. Thus a single reference region cannot
adequately model noise throughout the whole midbrain. The PNM,
however, models noise on a voxel by voxel basis, and therefore
accounts for local variations.

Limitations

The benefits of optimising fMRI for the midbrain, using the
methods described here, also brings with it practical costs. In terms
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of data acquisition, the added T2w scan requires an additional six
minutes of scan time. It is also worth noting that it is not a trivial
task to setup the ECG equipment for each participant, and the use of
pulse oximetry would provide a less invasive and faster pre-scan
setup.

In addition to these practical issues, there are also disadvantages
in limiting the FOV. Whilst it is necessary to do this to allow higher
resolution scanning at a reasonable temporal resolution, this does
limit the region that can be investigated. This is further restricted by
the optimised registration, which focuses on the midbrain, poten-
tially at the expense of regions outside this area. This means that
subcortical and cortical regions that the midbrain is interacting with
at a network level cannot be investigated. The PNM has previously
been tested in the brain and spinal cord (Cohen-Adad et al., 2010)
and shown to effectively increase the temporal SNR in both regions.
Thus it may be possible to investigate cortical and midbrain
networks using the PNM. However this would not be optimised
for the midbrain to the same extent as the methods presented here,
as the larger voxels required for whole-brain coverage would be less
reliable at assigning activity to a specific midbrain nucleus, due to
their small size and tightly packed arrangement. It would also be
difficult to achieve optimum registration at both the level of the
cortex and the midbrain simultaneously. Thus the role of such
focused and high-resolution midbrain fMRI presented here will be
to identify regions of activity that are induced in certain tasks with
greater reliability, which can then be combined with whole-brain
studies to look for network interactions.

Finally, the sample size used here was small, and although this was
sufficient for these purposes, a larger sample size may be required for
future studies, particularly if more complex tasks are administered
that might evoke more subtle neuronal responses.
Summary

The methodology presented here improves on previous tech-
niques used to measure BOLD responses in the superior colliculi.
Earlier studies did not attempt to optimise midbrain registration, and
either used an ROI approach to extract signal (DuBois and Cohen,
2000; Schneider and Kastner, 2005; Schneider and Kastner, 2009;
Sylvester et al., 2007; Wall et al., 2009), or relied on standard
registration techniques (Krebs et al., 2010). Many studies have not
attempted to reduce the effect of physiological noise (DuBois and
Cohen, 2000; Krebs et al., 2010; Schneider and Kastner, 2005;
Schneider and Kastner, 2009), whilst others have only corrected for
cardiac effects (Sylvester et al., 2007) or applied corrections that are
specific to only one area of the midbrain (Wall et al., 2009).

The methods outlined here can be used to further investigate
properties of the SC, such as the functional difference between the
superficial and deep layers and retinotopic organisation (Cynader
and Berman, 1972). Further research will investigate if these
techniques are effective throughout the midbrain. This could
include, for instance, the imaging of the pars compacta of the SN
and the adjacent ventral tegmental area in relation to reward and
salience. Previous attempts to image these dopaminergic nuclei
have either used cardiac gating (D'Ardenne et al., 2008), RETROICOR
(Guitart-Masip et al., 2011), or conventional fMRI (Aron et al., 2004;
Chase and Clark, 2010; Murray et al., 2008; Waltz et al., 2009;
Wittmann et al., 2005).

In conclusion, we report a methodology that optimises midbrain
fMRI, allowing accurate localisation of group derived activity and
improved ability to detect a signal from the surrounding noise. This
methodology is automated and replicable, and uses standard analysis
tools.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.neuroimage.2011.08.016.
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