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Abstract 

We propose a technique for the analysis of manufacturing yield of nano-crossbar architectures for different values of defect percentage and 
crossbar-size. We provide an estimate of the minimum-size crossbar to be fabricated wherein a defect-free crossbar of a given size can always be 
found with a guaranteed yield. Our technique is based on logical merging of two defective rows (or two columns) that emulate a defect-free row 
(or column). Experimental results show that the proposed method provides higher defect-tolerance compared to that of previous techniques.

© 2015 The Authors. Published by Elsevier B.V. 
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1. Introduction 
As the device dimension of the conventional lithography-based VLSI technology gradually shrinks from micron 

to submicron and further below, nanoscale fabrication is expected to dominate the future high-speed VLSI 
technology. These molecular-electronic devices can be built with very high densities (1012 devices per cm2), and 
operated at very high frequencies of the order of THz [1]. Such nanoscale devices need new technology for 
fabrication and newer methodology for circuit design and analysis. Among the various successful nano-electronic 
devices, resonant-tunnelling diodes (RTD), single-electron transistors (SET), spin transistors, ballistic-electron 
device, carbon nanotube (CNT), and quantum dot cell [2,3,4] offer the most promising technologies. Recently, an 
amazing two-terminal device with nanometer dimensions, known as memristor, is shown to possess the properties of 
both memory and resistor [21, 22, 23]. Such devices can be used to construct high-density resistive memory arrays. 
Nanowire crossbar arrays that incorporate memristive devices can be integrated on a CMOS subsystem [22], and 
they have found applications in many promising areas. Fabrication technologies of many such emerging devices and 
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systems such as 2D nanowire crossbars, are based on low-cost self-assembly process or its variant [5], which 
overcomes the limitations of conventional nanoscale lithography [1]. In general, nanoscale crossbar-based 
architectures provide several advantages such as ease-of-programmability, fault-tolerance, low-cost fabrication, and 
high device-density. However, there are several potential drawbacks associated with such nano-crossbars that deploy 
two-terminal devices, especially, the lack of signal gain, and the absence of an inverting function. 

A nanoscale crossbar, as shown in Fig. 1, consists of two parallel planes of nanowire arrays separated by a thin 
chemical layer with certain electrochemical properties [5, 7-11]. Each plane consists of a number of parallel 
nanowires of the same type [12]. The wires in one plane cross the wires in the other plane at right angles. The region 
where two perpendicular wires cross each other is called a junction or a cross-point. Some of these cross-points may 
become defective at the time of manufacturing or at later stages because of various imperfections. Given such a 
nanowire crossbar matrix with some defective junctions, a sub-matrix consisting of defect-free cross-points may be 
used instead of discarding the chip as a whole [13]. 

Various work on the study of defect-tolerance in nanoscale crossbars were reported in the past [6-15, 17-18]. A 
graph-based method for finding a defect-free sub-matrix of size (k×k) in a crossbar of size (n×n), where k < n,
appears in [24]. An application-independent defect-tolerant scheme is described for reconfigurable nano-
architectures [16]. Some variation- and defect-aware mapping techniques for logic synthesis with defective 
nanoscale crossbars have been proposed in [19, 20]. Test and repair techniques for defective (Memristor Look-Up 
Table) MLUT-based nanoscale asynchronous crossbar architectures are reported in [23].    

Discarding the whole crossbar structure in the presence of one or more cross-point defects is not economical 
because of the resulting yield-loss. A much better option would be to identify the usable (defect-free) sub-structures 
in the presence of some defective cross-points, so that they can still be used for logic synthesis. During the 
fabrication of nano-crossbar architectures, it has been observed that the defects that arise due to shorts between 
horizontal and vertical nano-wires are much less than those caused by missing or misplaced switches. Hence, “open” 
defects are more likely to occur in the crossbar. In this work, we attempt to locate a defect-free sub-matrix of 
switches of size (k×k) in a given (n×n) defective 2D-crossbar in the presence of possible stuck open faults. In other 
words, we restrict ourselves to inoperative or imperfect switches only, rather than shorted-wire defects, or 
interconnect-opens.  Given a defective crossbar, we also attempt to maximize the value of k so as to render a largest-
size defect-free sub-matrix useful. We perform simulation experiments for different defect densities, and results 
indicate that the proposed technique provides higher defect-tolerance compared to prior work [24].  

The rest of the paper is organized as follows. Section II describes the proposed methods. Section III presents the 
experimental set-up and analysis of results. Concluding remarks and future work are briefed in Section IV. 

2. Proposed Method 

2.1.  Representation of a crossbar structure and the defects therein  
As stated earlier, we consider only stuck-open faults in a crossbar structure, an example of which is shown in Fig. 

2(a). The encircled-junctions are configurable, whereas, the star-marked junctions are assumed to be defective. Such 
a crossbar structure can be represented by a bipartite graph [16, 24] as shown in Fig. 2(b). Here, the set of nanowires 
in two planes are represented by two disjoint set of nodes; an edge between two nodes exists when the junction 
between the two corresponding wires is correctly configurable. The missing edges between two partitions indicate 
defective junctions. The bipartite-complement [24] of the representative graph of Fig. 2(b) is shown in Fig. 2(c), 

Fig. 1: Nanoscale crossbar 

 

Interlayer Plane 1 Nanowire 

Plane 2 Nanowire 
Junction
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where each edge represents a defective junction. Usually, more than 50% of junctions turn out to be defect-free, and 
hence, it is more convenient to handle the complementary graph rather than the original one. 

2.2. Merging defective rows or columns 
In order to make the best use of a defective crossbar, we first select two rows (or columns) of nanowires such that 

their defect-sets are disjoint, and then merge them together to construct a single defect-free row (or column). We 
iterate this process until all defects become invisible. The merged row (column) can be treated as a single logical 
input (output) during function mapping. We propose two algorithms (Algorithm 1 and Algorithm 2) to implement 
recursive merging. Algorithm 1 chooses the most-defective row (column) for merging with a compatible least-
defective row (column), whereas, Algorithm 2 selects two most-defective rows (columns) that are compatible with 
each other, as potential candidates for merging. 

The basic merging technique is illustrated in Fig. 3. Two wires with disjoint defect-positions can be merged 
logically. Equivalently, in the bipartite graph, two compatible nodes of a partition are merged into one to form a 
hyper-node such that they collectively produce an equivalent defect-free row or column. 
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First, column I1 is logically merged with column I2 to create a resulting defect-free-group (I1, I2), as shown in 
Fig. 3(b), where the defects of I1 can be compensated by I2 and vice versa. Next, row O1is merged with row O2 as 
shown in Fig. 3(c). Finally I3 and I4 are merged into one to form a defect-free crossbar as shown in Fig. 3(d). The 
above merging process, as reflected in the bipartite-complement of the crossbar graph, is illustrated in Fig. 4.  

2.3. Merging with Algorithm 1
Algorithm 1 selects the most-defective row (column) and a compatible least-defective row (column) for possible 

merging. The algorithm basically attempts to find a maximally-balanced bipartite sub-graph of the original crossbar 
graph. Since in the complementary graph, the edges represent defective junctions, our objective can be envisaged as 
that of making the complementary graph devoid of any edge. The algorithm first searches for the nodes that have 
degree zero. They are directly taken into the final solution. Instead of deleting the nodes to remove edges, two nodes 
in the same partition with disjoint defect-positions are merged to form a hyper-node such that these two nodes 
effectively produce a defect-free wire as illustrated in Fig. 4. In this algorithm, we merge two columns, and next, 
two rows such that we obtain a nearly-balanced bipartite graph. This technique is likely to reduce the probability of 
false rejection. The merging process of columns and rows is repeated alternately until no further merging is possible. 
Next, the nodes which still have some incident edges are examined and the one with the maximum degree from each 
partition is deleted alternately, until the graph is completely void of any edges. The algorithm can be formally 
described as follows. 

Algorithm 1 
1. Read the size of the crossbar matrix (n) and the defect percentage (z)

2. Generate the random crossbar matrix with the required no. of 0's (indicating defects) 

3. Set no. of columns merged (NCM) 0, no. of rows merged (NRM) 0, possibility of merging (PM) 'yes' 

4. While (PM = = 'yes') 

    (a) Mark the columns having no defect or having defects at a junction of already merged rows as ‘free’

    (b) While not a single column merging is done and there are some unmarked columns 

         i. pos  the unmarked column with the maximum number of defects  

        ii. If pos can be merged at all 

           A. mer  the unmarked column with the minimum defect that can be merged to column pos

           B. Mark pos and mer as 'free'

           C. NCM  NCM + 1 

       iii. Else mark pos as 'np'

            End if

          End While 

(c) Mark the rows having no defect or having defects at a junction of already merged columns as ‘free’

    (d) While not a single row merging is done and there is some unmarked row 

    i. pos  The unmarked row with maximum number of defects 

   ii. If pos can be merged at all 

       A. mer the row with minimum defect that can be merged to row pos

       B. Mark pos and mer as 'free'

       C. NRM  NRM + 1 

    iii. Else mark pos as 'np'

End While 

   (e) unmark columns and rows marked as 'np'

   (f) If neither merging of row nor columns could be done, set PM 'no' 

End While 

5. TFC  total number of columns marked as 'free' 

6. TFR  total number of rows marked as 'free'

5. No. of effective defect-free rows (u)  (TFR – NRM)

6. No. of effective defect-free columns (t)  (TFC – NCM) 

7. While there is some unmarked column or row  
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     If (t > u)

      While (t > u and there is some unmarked column) 

           i. Find defective column with maximum no. of defects 

          ii. Delete the column, i.e., mark it as ‘deleted’

         iii. Set resulting defect free rows as 'free'

          iv. u u + number of rows made 'free' in Step iii 

       End While 

     Else if (u > t)

      While (u > t and there is some unmarked row) 

           i. Find defective row with maximum no. of defects 

          ii. Delete the row i.e. mark it as ‘deleted’

         iii. Set resulting defect free columns as 'free'

         iv. t t + number of columns made 'free' in Step iii 

      End While 

     Else 

     i. Find some unmarked defective row or column with maximum no. of defects 

    ii. Delete the selected row or column i.e. mark it as ‘deleted’

   iii. If column is deleted 

          A. Set resulting defect free rows as 'free'

          B. u u + number of rows made 'free' in Step A 

        Else 

                A. Set resulting defect free columns as 'free'

                B. t t + number of columns made 'free' in Step A 

        End If 

   End If 

End While 

9. x  minimum of t and u
10. If there is even 1 defect-free junction in the entire crossbar, k is larger of 1 and x
11. Print k
12. Stop 

2.4. Algorithm 2  
Algorithm 2 selects two compatible columns or rows that are most-defective at every step. Merging two columns 

(or two rows) with a large number of defective junctions may also produce good results. Note that in this case, both 
of the defective columns (rows) can be tied together in one step. However, this approach suffers from too many false 
rejections at initial stages. At subsequent stages it is likely to perform better because the leftover wires will have a 
fewer number of defects. 

3. Experimental Results 
The algorithms have been implemented using Turbo C++ on Intel Core 2 duo 3.1 GHz processor with 2 GB of 

RAM under Windows operating system. 

3.1. Construction of the largest defect-free sub-crossbar of size (k×k) for a given defect-percentage 
In our simulation experiments, we consider nanowire crossbars with sizes (n×n) varying from (40×40) to 

(120×120) incremented in steps of 40. The defects are injected at random positions for a given defect-percentage, 
which is varied from 0% to 30% incremented in step of 5. We observed that for defects in the range of 15% to 25%, 
our algorithms produce better results compared to previous approaches [24]. The experiment is repeated 1000 times 
for each value of defect-percentage, and the floor of the average is reported in Table 1. 
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Table 1: Variation of k with defect-percentage 

Defect  
%

Crossbar-size (n) = 40 Crossbar-size (n) = 80 Crossbar-size (n) = 120
Algo1 
[24] 

Algo2 
[24] 

Algo1 
(Prop.) 

Algo2 
(Prop.) 

Algo1 
[24] 

Algo2 
[24] 

Algo1 
(Prop.) 

Algo2 
(Prop.) 

Algo1 
[24] 

Algo2 
[24] 

Algo1 
(Prop.) 

Algo2 
(Prop.) 

0 40 40 40 40  80 80 80 80    120    120    120    120 
5 22 23 25 26 34 35 38 38 43 46 48 49 
10 17 17 21 21 22 25 29 29 28 29 38 39 
15 14 15 18 20 18 20 27 28 22 24 38 39 
20 11 12 17 17 14 16 28 30 17 20 39 40 
25 9 10 16 17 13 14 28 30 14 16 34 35 
30      7 9 16 16 10 11 25 28 13 14 30 31 

          
Table 2: Variation of k with crossbar-size 

Crossbar
Size

Defect  % = 15 Defect  % = 20 Defect  % = 25
Algo1 
[24] 

Algo2 
[24] 

Algo1 
(Prop.) 

Algo2 
(Prop.) 

Algo1 
[24] 

Algo2 
[24] 

Algo1 
(Prop.) 

Algo2 
(Prop.) 

Algo1 
[24] 

Algo2 
[24] 

Algo1 
(Prop.) 

Algo2 
(Prop.) 

20 9 9 12 12 8 8 11 11 7 8 10 11 

40 14 15 18 20 11 12 17 17 9 10 16 17 

60 16 17 22 24 12 14 22 24 11 13 22 24 

80 18 20 27 28 14 16 28 30 13 14 28 30 

100 20 22 34 36 16 18 34 37 14 15 31 33 

120 22 24 38 39 17 20 39 44 14 16 34 35 
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Fig. 5(a): k vs. defect % graph for 
(40 × 40) crossbar

Fig. 5(b): k vs. defect % graph for 
(80 × 80) crossbar

Fig. 5(c): k vs. defect % graph for 
(120 × 120) crossbar

Fig. 6(a): k vs. crossbar-size 
graph for defect percentage =15

Fig. 6(b): k vs. crossbar-size 
graph for defect percentage =20 

Fig. 6(c): k vs. crossbar-size 
graph for defect percentage =25 
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From Fig. 5, it is evident that our algorithms produce improved results compared to previous techniques [24], 
particularly when the defect-percentage exceeds 10%. Algorithm 1 and Algorithm 2 yield similar results with some 
improvements in the case of Algorithm 2. 

3.2. Variation of defect-free sub-crossbar size (k) with crossbar-size 
We also observe how the value of k changes with the increase of crossbar-size for some given defect-percentage. 

In Table 2, we have considered defect-percentage = 15%, 20%, and 25%. The crossbar-size is varied from (20×20) 
to (120×120) in steps of 20. Results shown in Fig. 6 demonstrate that the proposed algorithms work better with the 
increase in crossbar-size.  

4. Conclusion 
We have proposed two heuristics to identify the largest defect-free crossbar (k×k) in a nanoscale crossbar 

architecture with certain defects. Conversely, we can estimate, for a given value k and defect-percentage, the 
smallest value of n such that a (k×k) defect-free crossbar can effectively be constructed from an (n×n) defective 
crossbar. The proposed column- and row-merging technique yields an improved value for k (maximum defect-free 
crossbar-size) compared to earlier approaches. However, our algorithms can only handle stuck-open defects at 
crossbar-junctions. The study may be extended further to take care of stuck-closed defects in a future work.  
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