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Insulin resistance is a major cause of type 2 diabetes mellitus (T2DM). Resistin, an adipocyte-secreted hormone,
antagonizes insulin. Transgenic mice that overexpress the resistin gene (Retn) in adipose tissue are insulin-resistant,
whereas Retn (5/5) mice show lower fasting blood glucose, suggesting that the altered Retn promoter function
could cause diabetes. To determine the role of RETN in human T2DM, we analyzed polymorphisms in its 5′ flanking
region. We found that the 5420G/G genotype was associated with T2DM (397 cases and 406 controls) (P p

; adjusted odds ratio p 1.97 [by logistic regression analysis]) and could accelerate the onset of disease by 4.9.008
years ( [by multiple regression analysis]). Meta-analysis of 1,888 cases and 1,648 controls confirmed thisP p .006
association ( ). Linkage disequilibrium analysis revealed that the 5420G/G genotype itself was a primaryP p .013
variant determining T2DM susceptibility. Functionally, Sp1 and Sp3 transcription factors bound specifically to the
susceptible DNA element that included 5420G. Overexpression of Sp1 or Sp3 enhanced RETN promoter activity
with 5420G in Drosophila Schneider line 2 cells that lacked endogenous Sp family members. Consistent with these
findings, fasting serum resistin levels were higher in subjects with T2DM who carried the 5420G/G genotype.
Therefore, the specific recognition of 5420G by Sp1/3 increases RETN promoter activity, leading to enhanced
serum resistin levels, thereby inducing human T2DM.

Type 2 diabetes mellitus (T2DM [MIM #125853]), a
common disease that affects ∼5% of adults, is character-
ized by insulin resistance (DeFronzo et al. 1992). Major
genetic factors for T2DM remain to be determined, al-
though its association with some polymorphisms has been
reported (Altshuler et al. 2000; Horikawa et al. 2000;
McCarthy and Froguel 2002). Resistin (resistance to in-
sulin) (MIM 605565), an adipocyte-secreted hormone,
antagonizes insulin (Steppan et al. 2001; Pravenec et al.
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2003; Rajala et al. 2003; Banerjee et al. 2004; Steppan
and Lazar 2004). Transgenic mice that overexpress the
resistin gene (Retn) in adipose tissue are insulin-resistant
(Pravenec et al. 2003), whereas Retn (�/�) mice show
lower fasting blood glucose (Banerjee et al. 2004), sug-
gesting that altered Retn promoter function could cause
diabetes. Despite the established role of Retn in rodents
(Steppan et al. 2001; Pravenec et al. 2003; Rajala et al.
2003; Banerjee et al. 2004), a link between RETN and
human T2DM remains to be elucidated (Engert et al.
2002; Ma et al. 2002; Cho et al. 2004; Steppan and Lazar
2004).

We initially sequenced an ∼1-kb upstream region of
RETN in 24 Japanese patients with T2DM (see online-
only appendix C for a description of our methods), since
we reported that SNPs in the exons and introns of RETN
were not associated with T2DM (Osawa et al. 2002). We
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Table 1

Characteristics of the Study Populations

PANEL AND

SUBJECT GROUP

NO. OF SUBJECTS

(MALE/FEMALE)

NO. OF SUBJECTS

WITH GENOTYPE

MEAN AGE � SD
(YEARS)

BMI
(kg/m2)

HbA1C

(%)C/C C/G G/G At Testing At Onset of Diabetesa

Panel 1:
Patients with T2DM 200 (96/104) 86 84 30 60 � 12 48 � 12 23 � 4 7.6 � 1.7
Controls 200 (107/93) 97 88 15 54 � 8 NA 23 � 3 4.8 � .3

Panel 2:
Patients with T2DM 197 (119/78) 82 85 30 60 � 11 50 � 12 24 � 4 8.6 � 2.1
Controls 206 (108/98) 87 98 21 63 � 6 NA 23 � 3 5.0 � .3

Panel 3:
Patients with T2DM 149 (101/48) 48 85 16 56 � 14 49 � 13 25 � 4 7.6 � 1.7
Controls 158 (71/87) 63 83 12 67 � 9 NA 24 � 3 4.9 � .3

NOTE.—Subjects in panels 1 and 2 were from the same region in Japan. Subjects in panel 3 were from a different area of Japan.
See online-only appendix A for a description of subjects.

a NA p not applicable.

Table 2

Allele Frequencies of SNPs in the 5′ Flanking Region of RETN for
200 Patients with T2DM and 200 Control Subjects in Panel 1

SNPa

NO. OF ALLELES

(FREQUENCY [%]) IN

x2 PPatients with T2DM Controls

�1093ArG 41 (10.3) 29 (7.3) 2.25 .13
�1082CrT 0 (0) 1 (.3) … …
�821GrA 1 (.3) 0 (0) … …
�638GrA 89 (22.3) 77 (19.3) 1.10 .30
�537ArC 24 (6.0) 14 (3.5) 2.76 .10
�420CrG 144 (36.0) 118 (29.5) 3.84 .05
�358GrA 89 (22.3) 77 (19.3) 1.10 .30

NOTE.—Allele frequencies represent minor alleles that are different
from the reference sequence. The x2 test was used for the statistical
analysis.

a The nucleotide number of each SNP is counted from A of the start
codon as 1.

identified five common SNPs: �1093ArG, �638GrA,
�537ArC, �420CrG, and �358GrA. When the
regions encompassing these SNPs were sequenced in 176
additional cases and 200 controls, two additional SNPs,
�1082CrT and �821GrA, were found. We sequenced
the regions that included all these SNPs, in a total of 200
cases and 200 controls (see panel 1 in table 1). These
SNPs were in Hardy-Weinberg equilibrium in controls.
Of these SNPs, only the allele frequency of �420CrG
tended to be increased in patients with T2DM compared
with controls ( ; ) (table 2). When the2x p 3.84 P p .05
frequency of the �420G/G genotype was compared with
that of the C/C genotype, the G/G genotype was associ-
ated with T2DM ( ; odds ratio [OR] p 2.26;P p .018
95% CI 1.14–4.47) (see panel 1 in table 3). The fre-
quencies of the C/G and C/C genotypes did not differ
between cases and controls, suggesting that only homo-
zygotes of �420G are associated with T2DM.

To assess the possibility that �420CrG in RETN is a
primary variant that determines susceptibility to T2DM,
we first examined the pattern of linkage disequilibrium
(LD) around RETN by typing 26 frequent SNPs selected
from the ∼70-kb region (fig. 1A). The LD between
�420CrG and its nearby SNPs existed in a quite re-
stricted area. In this area, the LD of �420CrG with its
adjacent SNPs—namely, �638GrA or �358GrA—was
strong, whereas that of �420CrG with distant SNPs—
namely, �1093ArG or �299GrA—was weak. Thus, the
LD of �420CrG did not extend beyond �1093ArG or
�299GrA, suggesting that the association of �420CrG
with T2DM is not caused by LD of an unidentified sus-
ceptibility variant around RETN with �420CrG.

We next calculated, using panel 1, the ORs of minor-
allele homozygotes to major-allele homozygotes and
those of heterozygotes to major-allele homozygotes for
seven frequent SNPs that have minor-allele frequencies
15% and are located between �1093 and �299 (fig.
1B). The OR of minor-allele homozygotes to major-allele
homozygotes was highest at �420CrG and was lower
for SNPs distant from �420CrG. Of all the ORs, only
the OR of �420G/G to �420C/C was significantly
larger than 1 ( ). When haplotype frequenciesP p .018
defined by these seven SNPs were estimated for cases
and controls, frequencies of any particular haplotypes
including �420CrG were not significantly increased in
patients with T2DM (table 4 [online only]). Collectively,
all these findings suggest that the SNP �420CrG itself
is the primary variant that determines susceptibility to
T2DM.

To identify specific transcription factors that bind to
the DNA element, we examined whether one base sub-
stitution (CrG at �420) affects the specific binding of
proteins to the DNA element (fig. 2A). An electrophor-
etic mobility shift assay (EMSA), by use of nuclear ex-



Figure 1 LD and OR results for RETN �420CrG, a primary variant associated with susceptibility to T2DM. A, The LD of �420CrG
did not extend beyond �1093ArG or �299GrA. The pairwise LD of 26 frequent SNPs, as measured by r2, is shown in the upper panel (see
online-only appendix F for a description of our methods). The physical positions of these SNPs (counted from the translation start site of RETN
as �1) are shown in the lower panel. Arrows indicate a restricted LD area around �420CrG. Five SNPs are labeled in the figure: �1093ArG
(7), �638GrA (8), �420CrG (9), �358GrA (10), and �299GrA (11). The other SNPs are summarized in table C2 (online only). B, The
OR of minor-allele homozygotes to major-allele homozygotes was highest at �420CrG, and this OR was significantly larger than 1 among
the seven frequent SNPs that have minor-allele frequencies 15% and that are located between �1093 and �299 in RETN. The ORs of minor-
allele homozygotes to major-allele homozygotes and of heterozygotes to major-allele homozygotes were calculated by use of panel 1 subjects,
for each of the following variants: �1093ArG, �638GrA, �537ArC, �420CrG, �358GrA, �157CrT, and �299GrA. The distance was
counted from the translation initiation site.
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Figure 2 Identification of Sp1 and Sp3 as major transcription factors binding only to the diabetes-susceptibility DNA element with �420G
in RETN. A, Specific protein binding to the diabetes-susceptibility DNA element was analyzed. For the EMSA, nuclear extracts prepared from
differentiated 3T3-L1 adipocytes were incubated with 32P-labeled double-stranded oligonucleotide probes that corresponded to the region (�434/
�406) of RETN, as described in appendix D (online only). The wild-type (WT) probe includes C at �420, and the mutant (Mut) probe includes
G at �420. Unlabeled double-stranded oligonucleotides for WT and Mut sequences (a 200-fold molar excess) were used as competitors for
WT and Mut probes, respectively. An arrow indicates complexes with specific nuclear factors. B, Only an Sp transcription factor consensus
binding site competes with the diabetes-susceptibility DNA element for specific protein binding. For a competition analysis, a 200-fold molar
excess of unlabeled double-stranded oligonucleotides for consensus binding sites for a variety of transcription factors was added. Cold oligo-
nucleotides for the mutant (Mut) DNA element (positive control [second lane from the left]) and the Sp consensus binding site (fourth lane)
competed with the protein binding. An arrow indicates complexes with specific nuclear factors. C, Sp1 and Sp3 are major transcription factors
binding specifically to the diabetes-susceptibility DNA element. Antibodies against Sp1, Sp3, and GST (negative control) were added to the
reaction. S p supershifted complex with specific nuclear factors and antibodies; A p complex with specific nuclear factors; NS p complex
with nonspecific binding nuclear proteins; FP p free probes. These data represent at least three independent experiments.
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Table 3

Association of the RETN 5420G/G Genotype with T2DM

Panel(s) (No. of Cases/Controls)
and Genotype Comparisona x2 P OR 95% CI

Panel 1 (200/200):
G/G vs. C/C 5.59 .018 2.26 1.14–4.47
C/G vs. C/C .12 .728 1.08 .71–1.63
G/G vs. C/C � C/G 5.63 .018 2.18 1.13–4.19

Panels 1 and 2 (397/406):
G/G vs. C/C 6.59 .010 1.83 1.15–2.90
C/G vs. C/C .00 .974 1.00 .74–1.34
G/G vs. C/C � C/G 7.44 .006 1.83 1.18–2.84

Panels 1, 2, and 3 (546/564):
G/G vs. C/C 8.38 .004 1.81 1.21–2.71
C/G vs. C/C .36 .548 1.08 .84–1.39
G/G vs. C/C � C/G 8.18 .004 1.74 1.19–2.55

NOTE.—The x2 test was used for the statistical analysis. The nu-
cleotide position is counted from A of the start codon as 1.

a See table 1 for the number of subjects with each genotype.

Figure 3 Activation of the RETN promoter with the diabetes-
susceptibility SNP �420G binding specifically to Sp1/3. Either the
wild-type (with �420C) or mutant (with �420G) RETN promoter
reporter was transiently transfected into SL2 cells with effectors—
namely, pPac (control), pPac-Sp1, or pPac-USp3, and the internal con-
trol pPac-bGal. Luciferase activity was measured as described in ap-
pendix E (online only). Relative luciferase activities are shown as the
mean fold induction � SE, relative to the activity of each reporter
with a control effector. The data represent four independent experi-
ments with duplicate wells for each condition. The asterisk (*) indicates

, compared with the wild-type promoter activity with the sameP ! .05
effector (ANOVA).

tracts from 3T3-L1 adipocytes, indicated that proteins
bound specifically to the susceptible DNA element that
included G at �420 (mutant probe) (third lane from the
left in fig. 2A) but not to the wild-type element that
included C (wild-type probe) (first lane in fig. 2A). A
mutant competitor inhibited protein binding to the mu-
tant probe (fourth lane in fig. 2A).

To determine which consensus DNA element shares
binding proteins with this susceptible DNA element, we
added oligonucleotides of each binding site for various
transcription factors as competitors (fig. 2B). Only oli-
gonucleotides for Sp binding sites reduced specific pro-
tein binding (fourth lane from the left in fig. 2B), sug-
gesting that the susceptible DNA element binds specif-
ically to Sp transcription factors. A positive-control com-
petitor also reduced the specific protein binding (second
lane in fig. 2B [Mut]).

To identify which Sp factors bind to the susceptible
DNA element, we examined the effects of anti-Sp1 and
anti-Sp3 antibodies on protein-DNA binding (fig. 2C).
Whereas the anti-Sp1 antibody weakly affected protein
binding (third lane from the left in fig. 2C), the anti-Sp3
antibody strongly supershifted the complex (fourth lane
in fig. 2C). When the anti-Sp1 and anti-Sp3 antibodies
were added together, the complex was completely su-
pershifted (fifth lane in fig. 2C). A negative-control anti-
GST antibody had no effect (second lane in fig. 2C).
Therefore, we provisionally identified Sp1 and Sp3 as
major transcription factors binding specifically to the
susceptible DNA element.

We next tested whether the CrG substitution at �420
affects RETN promoter activity through the specific bind-
ing of Sp1 and Sp3 (fig. 3). To assess isolated effects of
Sp1 and Sp3, we employed Drosophila Schneider line 2
(SL2) cells, which lack endogenous Sp family transcription
factors. When Sp1 or Sp3 was overexpressed in SL2 cells,

the RETN promoter activity with G at �420 (mutant)
was significantly enhanced, compared with the activity
with C at �420 (wild type). Thus, Sp1 and Sp3 are major
transcription factors enhancing RETN promoter activity
by binding specifically to the DNA element with �420G.

To evaluate the association between the �420G/G ge-
notype and T2DM in a larger sample size, we further
sequenced only the regions containing �420CrG for the
197 cases and 206 controls in panel 2 (table 1), which
was collected from the same geographic area as panel 1.
When the G/G genotype was compared with the C/C ge-
notype in the combined data of panels 1 and 2, the
G/G genotype was associated with T2DM ( ;P p .010

; 95% CI 1.15–2.90) (table 3). The adjustedOR p 1.83
ORs of the G/G and C/G genotypes were estimated by
use of multiple logistic regression analysis, adjusted for
age, sex, and maximum BMI (see online-only appendix
F for a description of our methods). The adjusted OR of
G/G was significantly high (two-sided ;P p .008 OR p

; 95% CI 1.19–3.26). Since the adjusted OR of C/G1.97
was 1.08 ( ; 95% CI 0.78–1.49), we conclude thatP p .65
the �420G/G genotype increases the risk of T2DM. Mul-
tiple regression analysis, adjusted for sex and maximum
BMI, of 397 subjects with T2DM revealed that the age
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Figure 4 Meta-analysis confirming association of the �420G/G genotype with T2DM. The data from Engert et al. (2002), Ma et al.
(2002), and Cho et al. (2004) were combined with data from the present study. Samples from different geographic locations were analyzed
separately (panels 1 and 2 and panel 3). The total number of subjects typed was 1,888 patients with T2DM and 1,648 controls. ORs of G/G
genotypes to C/C genotypes were estimated, as described in appendix F (online only). Circles indicate ORs; bars represent 95% CIs; n p
number of subjects with G/G and C/C genotypes. SLSJ p Saguenay–Lac-Saint-Jean region of Quebec.

at onset of disease for patients with the G/G genotype
was 4.9 years younger than for patients with the C/C
genotype ( ; 95% CI 1.39–8.41). When panel 3P p .006
(table 1), which was collected from another area in Japan,
was added, the association of the G/G genotype with
T2DM was consistent ( ; ; 95% CIP p .004 OR p 1.81
1.21–2.71) (see panels 1, 2, and 3 in table 3). Therefore,
the �420G/G genotype is associated with T2DM in a
large number of Japanese subjects.

Although the association of �420CrG with T2DM
has been examined in several ethnic populations (Engert
et al. 2002; Ma et al. 2002; Cho et al. 2004), individual
studies did not have sufficient power, probably because
of limited sample size or a lower frequency of �420CrG
than that found in Japanese subjects. To obtain evidence
that was more conclusive (Lohmueller et al. 2003), we
conducted a meta-analysis of results from previous studies
(Engert et al. 2002; Ma et al. 2002; Cho et al. 2004) and
the present study, in which the OR was used as the metric
of association (fig. 4). The random-effects OR estimate
for the risk of developing T2DM was significantly higher
in subjects with �420G/G compared with subjects with
�420C/C (one-sided ; ; 95% CIP p .013 OR p 1.31
1.03–1.66), and no evidence of between-study heteroge-
neity was found in the meta-analysis ( ). There-P p .470
fore, the G/G genotype is associated with susceptibility to
T2DM, which supports a common-disease/common-var-
iant hypothesis (Lander 1996). Since the OR of the G/G
genotype appears to be higher in Japanese subjects, racial
differences may exist.

Finally, to examine whether the enhanced RETN pro-

moter activity with �420G is associated with enhanced
RETN expression in humans, we measured fasting se-
rum resistin levels by use of 93 samples available from
subjects with T2DM in panels 1 and 2 (fig. 5). Con-
sistent with our genetic and molecular data, subjects
with the G/G genotype had higher serum resistin levels
than subjects with the C/C genotype ( ). Sub-P p .0018
jects with the C/G genotype also had higher resistin lev-
els than those with the C/C genotype, although this dif-
ference was smaller. All these findings suggest that the
G/G genotype of a functional RETN promoter SNP at
�420 determines human T2DM susceptibility—proba-
bly through enhanced RETN expression.

Our in vitro data are supported by previous studies
(Smith et al. 2003; Cho et al. 2004). A DNA element
that includes �420G binds to unidentified factors in
nuclear extracts of 3T3-L1 adipocytes (Cho et al. 2004).
The RETN promoter activity with �420G (described as
�180) is enhanced to 400% of that with �420C in 3T3-
L1 adipocytes, without manipulation of expression of
Sp transcription factors (Smith et al. 2003). In humans,
obese subjects with the G/G genotype have higher re-
sistin mRNA levels in their abdominal subcutaneous fat
(Smith et al. 2003). Cho et al. (2004) reported that sub-
jects with the G/G genotype have higher serum resistin
levels, and our results support this finding. Taken to-
gether, these results lead us to propose that one base
substitution from C to G at �420 activates RETN tran-
scription by specific Sp1/3 binding, which could induce
insulin resistance associated with T2DM (fig. 6 [online
only]). By recognizing specific sequences in regulatory
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Figure 5 Increased fasting serum resistin levels in subjects with
T2DM and a �420G/G genotype. Serum resistin levels were measured
by use of a human resistin ELISA kit (LINCO Research), as described
in appendix B (online only). We analyzed 93 fasting serum samples
available from subjects with T2DM in panels 1 and 2. Data represent
mean � SE. Student’s t test was used for statistical analysis. The
asterisk (*) indicates ; two asterisks (**) indicateP p .012 P p

, compared with subjects with the C/C genotype..0018

regions, ubiquitous factors could affect disease suscep-
tibility. In the RETN promoter with �420G, Sp3 acted
as a stronger activator than Sp1, whereas Sp3 has been
shown to act as a transcriptional activator or an Sp1-
mediated transcription repressor (Bouwman and Philip-
sen 2002).

Controversy exists about whether an increase in serum
resistin levels is associated with human T2DM and obe-
sity (Lee et al. 2003; McTernan et al. 2003; Cho et al.
2004; Fujinami et al. 2004; Steppan and Lazar 2004).
Serum resistin probably exists as a hexamer (major form)
or a trimer (a more biologically active form) (Patel et
al. 2004), which may affect the assay results. Serum
resistin levels were higher in subjects with T2DM who
had the �420G/G genotype than in those who had oth-
er genotypes, a finding that is supported by Cho et al.
(2004), suggesting that the discrepancy may be resolved
by considering the different genotypes at �420. It should
be noted that the main source of human serum resistin
remains unknown, because it is most highly expressed
in macrophages (Nagaev and Smith 2001; Savage et al.
2001; Wellen and Hotamisligil 2003; Banerjee et al.
2004).

In summary, the �420G/G genotype in RETN is as-
sociated with susceptibility to T2DM. Sp1 and Sp3 bind
specifically to the DNA element with �420G and en-
hance the promoter activity. This provides evidence for
a link between an RETN promoter SNP and human
T2DM, encouraging further detailed studies in rodents
(Steppan et al. 2001; Pravenec et al. 2003; Rajala et al.

2003; Banerjee et al. 2004). Functional SNPs in regu-
latory regions could represent promising candidates for
susceptibility genes in other common diseases as well;
in fact, a similar mechanism has been recently reported
in an organic cation transporter gene, SLC22A4, and in
the gene encoding Runt-related transcription factor 1
(RUNX1) for rheumatoid arthritis (Tokuhiro et al.
2003).

Descriptions of the methods used in this study are
available in appendices A–F (online only).
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