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Abstract-we give a set-theoretic description of the set of optimal solutions to a general positive 
semi-definite quadratic programming problem over an affine set. We also show that the solution 
space is again an &ne set, thus offering the opportunity to find an optimal solution by solving a 
corresponding operator equation. 
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1. INTRODUCTION 

Consider a general convex programming problem (C) of the following form: 

where X is a nonempty, closed, convex subset of a real Hilbert space H and C is a convex, 

real-valued function on H. It is not difficult to see that the (possibly empty) set X* of optimal 
solutions to (C) must also be convex. If X is affine in particular, then it is also not difficult to see 
that X’ need not be affine. Our objective here is to find additional assumptions on the convex 
objective function C which are sufficient to conclude that X* is afine whenever X is. 
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To this end, we assume that C is quadratic, i.e., C is of the form 

C(x) = f (x, Q(x)) + (x, 4, x E H, 

where Q : H 4 H is a bounded linear operator on H and c E H. Thus, we are considering a 
general quadratic programming problem (Q) given by 

z”,ix” k (2, Q(x)) + lx, 4. 

Without loss of generality, we may assume Q is self-adjoint. Recall that C is convex in this case 
if and only if the operator Q is positive semi-definite, i.e., (x, Q(x)) > 0, x E H. Consequently, 
we assume that Q is positive semi-definite in what follows. In particular, if Q is positive-definite 
in the sense of [I] and [2], then X’ can be shown [3] to be a singleton, i.e., (Q) admits a unique 
optimal solution in this case. 

Our objective in this note is to show that for the general convex quadratic programming 
problem (Q), if X is affine, then X* is also affine. We may thereby compute the optimal solutions 
to (Q) by solving a corresponding operator equation in H. We accomplish our objective by giving 
a set-theoretic description of X* in terms of X, Q and c, in which all the operations on these 
data are seen to preserve the afine property. 

2. DESCRIPTION OF OPTIMAL SOLUTIONS 

For the remainder of this note, we assume that X is an affine subset of H. 

The Frechet derivative [4] C’ of C is a mapping of H into the topological dual space H’ of H 

given by 

C’(x) = (. > Q(x)) + (., 4, x E H. 

Since the feasible region X # 0, we may fix an arbitrary ‘u E X. We then obtain the equivalent 
translated problem (Q”) defined as follows: 

where K is a closed subspace of H (hence, a Hilbert space) satisfying X = K + w, and T : H + H 
is the translation operator by U. If K* denotes the set of optimal solutions to (Q”), then X* = 
K*+w. 

If we denote by P the orthogonal projection onto K, then we may construct the related 
unconstrained optimization problem (Qk) by projection onto K: 

pei; CTP(z). (Q2;o 

Note that the objective values attained for (Q”) are the same as those attained for (Q;)K). 
However, the set of feasible solutions for (Q”) is K, while that for (Qk) is H = K ~3 K’. If H* 
denotes the set of optimal solutions to (Q&K), then H* = K* ~8 KL, so that P(H*) = K*. 

Let L(H, K) denote the space of bounded linear operators from H to K (similarly for L(H, H)). 
Then the Frechet derivative P’ of P is a mapping P’ : H + C(H, K), while the Frechet deriv- 
ative T’ of T is a mapping T’ : H -+ L(H, H). It is easy to verify that P’ and T’ are in 
fact constant mappings, where P’(x) = P, 5 E H, and T’(x) = IH, the identity operator on 
H, x E H. Consequently, if F = CTP, then the Frechet derivative F’ of F is the mapping 
F’ : H + H’, given by 

F’(x) = C’(P(x) + v)P + (P(.), c) 

= (P(.), Q(J=(x) + u)+ 4 , x E H. 
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By a familiar first-order necessary condition for unconstrained optimization [4, p. 1781, we have 

that if z E H is optimal for (Qk), then F’(s) equals the zero functional on H, i.e., 

(P(Y), Q(P(z) + u) + c) = 0, y E H. 

If we let S denote the set of solutions to this equation, so that 

S={xeH :(P(~),Q(P(x)+w)+c)=O}, 

then 

H* G S. 

Note that the preceding argument does not require that Q be positive semi-definite. 

Conversely, since C is convex, T is convex linear and P is linear, it follows that F is convex. 

Therefore, S C H* [4, p. 2271, i.e., H* = S. Consequently, from the above discussion, 

X’ = P(H*) + v = P(S) + v. 

We turn next to a description of S and consequently, of X*. If A c H, then Q-l(A) denotes 

the usual inverse image of A under Q. 

PROPOSITION 2.1. The subset S of H is given by 

S = [(Q-l(K* - c) - w) n K] @K’. 

Therefore, 
X* = [(Q-l(K’ - c) - v) n K] + v. 

PROOF. Suppose x E H belongs to the set on the right side of the first equation. For convenience, 

let L = Q-l((K’ - c)), a closed subset of H. Then there exists k E (L - v) f~ K and q E KI 
such that x = k + q. Hence, P(x) = P(k) + P(q) = k, which is in L - v. Thus, (P(x) + v) E L 
and Q(P(x) + w) + c E Kl, so that 

(P(Y), &W(z) + v) + c) = 0, y E H. 

Consequently, x E S. Since this argument is valid in reverse, we have the opposite inclusion as 

well. For the second part, simply evaluate P(S). I 

THEOREM 2.2. Suppose Q is positive semi-definite in problem (Q). If X is aEine in H, then the 
set X* of all optimal solutions to (Q) is also affine in H. 

PROOF. First observe that X* is affine in H because K and K* are closed subspaces, translates 
of affine spaces are affine, inverse images of affine spaces under linear operators are affine and the 
intersection of an affine space with a subspace is afTme. Similarly, S is affine because, in addition, 

the sum of an affine space and a subspace is affine. I 

Theorem 2.2 offers the opportunity to solve (Q) by solving an operator equation in H whose 

solution space is X*. Specifically, every affine space in H is of the form {z E H : Ax = b}, for 

some bounded linear operator A on H and b E H (per D. Schmidt). 
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