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Wedescribe here extensive, previously unknown, genomic polymorphism in 120 regions, covering 19 autosomes
and both sex chromosomes. Each contains duplication within multigene clusters. Of these, 108 are extremely
polymorphic with multiple haplotypes.
We used the genomic matching technique (GMT), previously used to characterise the major histocompatibility
complex (MHC) and regulators of complement activation (RCA).
This genome-wide extension of this technique enables the examination ofmany underlying cis, trans and epistatic
interactions responsible for phenotypic differences especially in relation to individuality, evolution and disease
susceptibility.
The extent of the diversity could not have been predicted and suggests a new model of primate evolution
based on conservation of polymorphism rather than de novo mutation.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Over half of the observed genetic variation in humans is clustered
within genomic regions containing segmental duplications. Interest-
ingly, these polymorphic regions account for only approximately 5%
of the genome and tend to be clustered within distinct genomic
blocks [1–7]. The principal aim of the present study is to develop a
screening test which prospects for biologically important differences
and especially those which underlie disease susceptibility and primate
evolution. The secondary aim is to determine whether genome-wide
polymorphism is sufficient to account for the individuality of humans.

The genomic matching technique (GMT) was developed as an ap-
proach to finding suitable bone marrow donors and recipients. After
exhaustive testing, the procedure has proven efficient and reliable in
recognising alternative polymorphic sequences (haplotypes) within
family studies. Identity by GMT predicts a successful transplant
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outcome [8,9]. To our initial surprise, it transpires that haplotyping
is achieved by amplifying duplicated sequences flanked by highly
conserved priming sites. In a new application of the technique,
here referred to as “duplotyping”, we ask how much polymorphism
exists in regions of known duplication. After designing a primer
pair with the potential to amplify linked duplicons, we tested each
pair by comparing the amplification products from different sub-
jects. In this way, we were able to estimate the extent of polymor-
phism within each duplicated region.

Previous testing of genomic regions, such as the MHC and the RCA,
has confirmed the utility of this approach. Multiple amplification prod-
ucts reflect duplicons of varied lengths as happenswhen different inser-
tions and deletions (indels) accumulate in one copy rather than
another. These indels have been shown to be characteristic of each hap-
lotype so that length can be used for haplotyping and for duplotyping.

Differences in the amount of product of a given length relate to the
number of duplicated sequences of that length. Thus, duplication can
be detected even when the duplicons have the same sequence in cis
and have not yet accumulated indels (homoduplications).

Duplotyping of the human MHC has already demonstrated the
importance of duplication in polymorphic blocks and their relevance
to complex disease [10]. Clusters of multicopy gene families [11–14]
are distributed throughout ~3.5 megabases (Mb) and were found to
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Table 1
Tabulation and analysis of products from a 3 generation family CEPH Pedigree 1362.

Generation II II III III III III III III III III III III I I I I III

1a 1a 1 2 3 4 5 6 7 8 9 10 1 1a 2 2a 11

Product #

66 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 501

64 2 3 3 2 3 3 2 2 4

60 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 4 489

59 3 4 3 3 3 2 2 2 2 2 2 2 2

57 3 3 3 3 3 3

55 3 3 3 3

53 3

49 3 3 3

47 3

46 3 3 4 4 3 4 4 3 3 3 3 3 3 2

44 3 3

43 4 4 4 4 4 3

41 3 3

40 3 4 4 4 3 4 4 4 4 3 3 3 3 3 3 3 3 4 404

39 3 3 3

38 3 3 3 3 3 3 3 3 3

35 3 3 3 3 3

33 3 3 3

30 3 3 3 3 3 3

29 3 3 3 3 3 3 3 3 3

24 3 3 3 3

23 3 3 3 3 3

21 3

16 3 3 3 3 6 3 3 6 6 3 3 3 3 3 3 3 3 3 331

15

11 5 4 5 5 5 3

10 5

9 4

8 5 6 6 6 6 4

7

6 4 5 5 5 6 6 6 6 6 5
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contain extreme levels of polymorphism including genomic duplica-
tions, Gene Copy Number Variations (GCNV)s, retroviral and genomic
indels and SNPs [15–17]. Specific combinations of these features,
including both coding and non-coding polymorphisms, segregated as
nuclear haplotypes through multi-generation families [17]. These hap-
lotypes are precise markers of several hundred kilobases (kb) of
sequence [10]. Their occurrence in unrelated individuals implies con-
servation over many generations and led to the designation ancestral
haplotypes (AHs). Recombination occurs between rather than within
blocks [10,17–20]. The high polymorphic content and the apparent
“freezing” of diverse sequences resulted in these regions being termed
“polymorphic frozen blocks” (PFBs) [10,19].

Following the definition of MHC polymorphism, it became possi-
ble to investigate the role of genetic susceptibility to diseases. It tran-
spired that particular AHs are associated with specific diseases
[10,21,22]. The mechanisms responsible are multifactorial and de-
pendent upon haplospecific interactions of coding and non-coding
sequences [23,24]. AHs provide a means of defining these interac-
tions [10,17,20,25] including epistasis.

The extent and importance of ancestral or extended haplotypes was
first demonstratedwith the identification of haplospecific copy number
variations of the complement gene, C4 within the central MHC [26,27].
Each AH has a specific copy number, which relates, in turn, to serum
concentration and susceptibility to disease [28].

Although first discovered in the MHC, quantal structure of the
genome is now recognised as characteristic of the entire genome
[1,29,30], as is the importance of segmental duplications and GCNV on
phenotype [31]. Recently high throughput assays such as SNP andMul-
tiplex Ligation-dependent Probe Amplification (MLPA) [32] have been
used to detect differences in copy number but with limited success.
The MHC and HapMap experiences show that SNP haplotypes of com-
plex regions are misleading. Genomic duplication and especially
GCNVs complicate the assignment of SNPs and the determination of
phase remains ambiguous until the haplotypes have been assigned inde-
pendently by demonstrating inheritance by family segregation [20,25,33].

Accordingly, we have developed the genome wide “duplotyping”
approach in order to discover new haplotypes directly. The approach
relies upon the amplification of multiple polymorphic elements located
within linked duplicons, avoiding the risk of inferring haplotypes from
independent SNPs andmicrosatellites. Eachof the duplicons has evolved
independently from an ancestral sequence. It follows that the specific
combinations of duplicons define informative haplotypes efficiently.

Each test requires a single PCR, making the “duplotyping” ap-
proach an excellent cost-effective and informative alternative to di-
rect sequencing of multiple individuals. The utility of the technique
has been demonstrated over decades of clinical practice [34–38].
Matching GMT profiles of donors and recipients predicts a successful
bone marrow transplant [8,9].

GMThas also defined haplotypes in the canineMHC [39], the human
RCA [40] and the zebrafish orthologue of human Mannose binding lec-
tin (MBL2) [41]. Recently, Lester and colleagues demonstrated an epi-
static interaction between the RCA alpha block haplotypes and the
MHC in Primary Sjögren's Syndrome [24].

Here we extend the approach to 80 genomic blocks and reveal
previously unknown haplospecific polymorphism in humans and in
syntenic clusters of other species.
2. Results

2.1. Quantitation and characterization of amplification products

2.1.1. Haplotype analysis in families
An example of the amplification profile is shown in Table 1. In this

case, primer pair CYO_5_2was used to amplify samples from17members
of a well studied 3 generation CEPH (Centre d'Etude du Polymorphisme
Humain) family used to assign individual haplotypes and the resulting
composite genotypes throughout the genome.

The raw results (shown in Supplementary Fig. 1) are tabulated using
an internationally verified and reproducible scoring system, which has
been proven to reflect copy number [39,41]. This system allows detec-
tion of qualitative and quantitative differences in the amplification
products and therefore a precise estimate of polymorphism.

The direct contribution of each haplotype is revealed by compar-
ing the members between and within generations and by demon-
strating unequivocal segregation of inheritance.

As shown in Table 1, the grandparents (I1, I1a, I2, I2a) are desig-
nated ab, cd, ef and gh respectively. Their children are ac for the father
(II1) and eg for the mother (II1a). By inspection of the patterns, it is
possible to determine which products are attributable to each haplo-
type. To confirm these assignments, the patterns in the third genera-
tion are examined and the haplotypes are assigned.

The results shown in Table 1 are unequivocal because the family
has three of the four possible genotypes (ag, ae, ce, cg) in the third
generation and each has a different pattern as summarised in Fig. 1.



Heteroduplex Products
e e g a c a c c a
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Fig. 1. Summary of product profiles in a 3 generation family.
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Consider, initially, those products in the 242 to 331 base pair range.
There are 9 different products within this range including, in this partic-
ular case, P2 which is the same length as the 242 bpmarker resulting in
a score of 7 or 8 rather than 3. All scores of 7, 8 or 9 are explained by
double doses. Thus, there are 4 products in each subject. Two of these
4 can be assigned to one haplotype and the remaining 2 to the second.
For example, every subject with a has P4 and P8 whereas e has P4 and
P11. All with c have a score of 7 or 8 for P2 at 242 bp and a score of 4,
5, or 6 for P5. The g haplotype carries P4 + P6. The b, d, f and h haplo-
types must be P4 + P5, P4 + P10, P4 + P6 and P3 + P9 respectively.
Although some products are shared, each haplotype has a unique com-
binationwith the single exception of f and gwhich share P4 + P6. Such
sharing is expected given that ancestral haplotypes are inherited over
many generations.

The unequivocal segregation of products within an informative 3
generation family indicates that the duplicated sequences can be
regarded as two polymorphic loci, designated short and long, which
are closely linked. The resulting haplotypes are inherited faithfully
without intervening recombination. The patterns suggest that S and
L arose by duplication and that the alleles at each arose by subsequent
insertion and deletion (indels).

Similar results were obtained when the same primer pair was
tested on other 3 generation families.

2.1.2. Value of secondary interactions between haplotypes
An individual's profile is due to the amplification of duplicons on the

paternal and maternal haplotypes plus any interaction between these
primary products. Such interactions can be confounding. For this rea-
son, it is essential to identify those amplicons which are generated di-
rectly from the haplotypes and are therefore heritable. Once these are
identified, the secondary interactions, as shown on non-denaturing
gels, become useful since they define the genotypes or combinations
of haplotypes.

Consider, now, the higher molecular weight products shown in
Table 1 and Supplementary Fig. 1. In general, these products relate
not to individual haplotypes but to combinations or genotypes.
Note, for example, that the eg and the ef heteroduplexes are very dif-
ferent with either P33 or P41 + P 44 + P 54 respectively even
though they share haplotype e and each of g and f has P4 + P6.
This must mean that there are different secondary interactions be-
tween e and g and between e and f. In this way, the higher molecular
weight heteroduplexes add discrimination and imply polymorphism
within the sequences between the priming sites. Note, this addition-
al information has proven to be reproducible although not yet expli-
cable structurally.

2.2. Extent of polymorphism

As a practical screen for the amount of polymorphism, each primer
pair was tested against an international panel of typing cells selected
to provide a snap shot of human diversity [42]. As one example, primer
pair CYO_5_2, which was characterised in families as above, produces
complex and informative patterns. The results are tabulated in
Table 2. As in the 1362 family, there are 4 lowermolecular weight prod-
ucts (P1 to P16) in most subjects indicating again that each of the 2
duplicons behaves as a polymorphic locus (see also Fig. 1). Those with
high scores reflecting double doses are deduced to be homozygous at
that locus. As expected given the genetic diversity of the panel, there
are more products than in family 1362. Those in the range of P5, P6,
P7, and P8 relate to either locus implying further polymorphism of
indels.

The subjects in lanes 14, 15 and 19 appear to have 3 rather than 4
products and raise some interesting possibilities including copynumber
variation. In keeping with other genomic regions such as C4 on
6p21-22, rare haplotypes could have 1 or 3 rather than the expected 2
loci and some duplications may be homoduplications (identical in cis).

Remarkably, for a single primer pair, these haplotypemarkers create
unique patterns in all 30 subjects. There are only two homozygotes, and
we estimate that there are more than 30 haplotypes present in this
panel. More haplotypeswould be expected in the population and there-
fore there are likely to be at least 50 haplotypes and 2500 genotypes in
the population represented by the panel.

This diversity is even greater when the higher molecular weight
markers are considered. Note that some individuals have more than
10 heteroduplexes. Others, such as 14, have none, in keeping with a re-
duction in copy number as postulated above. In Table 3, the results are
rearranged to demonstrate the “arrow head” effect. When the primary
products are heterozygous and of similar and intermediate length,



Table 2
Tabulation of panel products CYO_5_2_final.
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such as P4, P5, P6 or P7, the number of secondary products increases.
Contrariwise, there are fewer andweaker heteroduplexeswhen the pri-
mary products are of very different lengths. This phenomenon increases
the discriminatory power of the assay.

By extrapolation of the results in Table 3, just hundreds of base
pairs at this single genomic location have the potential to distinguish
between the individuals of multiple populations.

2.3. Polymorphic indices

To permit ranking of the degree of polymorphism, we compared
various indices such as the total number of products in the panel,
the maximal number in any subject, the proportion with unique pat-
terns and the frequency of heterozygotes. All correlated approximate-
ly and could be used but the total number of products – including
heteroduplexes –was selected as the most complete index for compar-
ing primers on a particular panel. Thus, the score for CYO_5_2was 66 as
shown in Table 3.

2.4. Degrees of polymorphism

The results for 120 primer pairs are shown in Table 4. An adjusted
score was used to facilitate multiple comparisons. Note that CYO_5_2
described above is intermediate in ranking; 24 other primer pairs
yielded more polymorphism. Many individual subjects had more than
20 products. Some of these polymorphic regions were already known.
Note for example 6p22 (MHC) and 1q21(HFE2). On the other hand,
many regions identified here were not previously known to be poly-
morphic and certainly not to the extremedegree revealed in the present
study. Interestingly, there was a broad spread across the chromosomes.



Table 3
Tabulation and analysis of heteroduplex products.
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Table 3 (continued).
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2.5. Evolution of syntenic polymorphism

The “ZOO” panel reveals that primer pairs designed to amplify
human duplicons also amplify sites in other species. The scores
shown in Table 5 are semi-quantitative and indicative only. In the
first row, the results against a subset of humans are approximately
correlated with the scores shown in Table 4. For example, all with a
score of >10 in Table 5 were in the top 34 of the ranking shown in
Table 4.

Interestingly, some primer pairs identify extreme polymorphism
even when species are separated by hundreds of millions of years.
In some cases, such as CYO_9_4, Surfeit gene cluster (SURF1 to
SURF6) there appears to have been more or less progressive accumu-
lation in vertebrates. CYO_8_1 Myomesin 2 (MYOM2) is more poly-
morphic in birds than primates.

Some primer pairs are quite selective, as for example CYO_6_3 in
the mouse and CYO_22_3 and 22_4 in humans and chimps. Others,
such as CYO_10_4 Supervillin (SVIL), MAP3K8, Lysozyme like 1 and
2 (LYZL1 and LYZL2), have been remarkably conserved but in some
cases there is apparent drop-out as with CYO_9_3 interferon type
1cluster (IFN1@) in rodents. Three primer pairs amplified humans
and chimps but not orang-utan.
2.6. Significance of duplication and polymorphism

An important aim of the present study was to identify genomic
polymorphism of potential relevance to evolution and disease. We
therefore asked whether any of the primer pairs might be prioritized
by mapping to genomic regions known to influence susceptibility to
disease. An example of the approach is shown in Fig. 2. The density of
disease associations varies greatly along the 10 Mb region selected.
The major peak is close to the extreme polymorphism detected by
CYO_1_11. Thus, duplotyping defines the specific diseases to be in-
vestigated using CYO_1_11.

3. Discussion

3.1. Testing the approach

The first aim of the current study was to define a simple strategy for
discovery of genomic polymorphismas a prerequisite for explaining ge-
netic susceptibility to disease. Although GMT was developed for highly
polymorphic and clinically relevant regions like theMHC [36,40,43], we
now show successful extension to the entire human nuclear genome.
The approach has identified 120 regions on 21 chromosomes and at



Table 4
Degrees of polymorphism.

Name (CYO_) Region Total # of products

3_2 3p21-cen to 3q11.2 58
6_5 6p22 57
1_3 1p36.22 55
6_1 6p11.2 52
6_6 6p22 52
22_3 22q11.23 45
8_3 8p23.1 43
10_7 10q22.3 43
1_13 1p36 42
19_1 19q13.2 40
Y_9 Yq11.23 39
10_6 10q22.3 38
1_6 1p21 35
4_3 4q28-q31 35
X_13 Xq28 34
1_11 1q21-q23 33
9_4 9q34 32
10_2 10p11.2 32
22_4 22q13.1 32
Y_11 Yq11.23 31
X_5 Xp11.22 30
5_3 5q35.3 28
15_3 15q21.1 28
2_5 2q12.3-q13 27
1_5 1p22.2 26
5_2 5q21.1 26
12_3 12q24.33 26
15_1 15q11.2 25
17_6 17q12 25
X_3 Xp11.23 25
7_4 7q11.23 24
10_3 10p11.2 24
9_3 9p21-p22 23
12_2 12p11 23
17_3 17q11.2 22
X_8 Xq22.1 22
Y_8 Yq11.22 22
2_1 2p13.1 21
8_5 8p23.1 21
2_8 2q21.1 20
8_4 8p23.1 20
10_4 10p11.2 20
10_5 10q22.3 20
17_5 17q12 19
Y_7 Yq11.2 19
11_1 11p15.4 18
15_4 15q23 18
X_15 Xq28 18
7_2 7p14-p15 17
15_2 15q13.1 17
Y_3 Yp11.2 17
10_1 10p11.2 16
17_4 17q11.2 16
Y_4 Yp11.2 16
1_4 1p36.13 15
7_3 7p11 15
14_2 14q32.33 15
22_2 22q11.21 15
Y_5 Yq11.2 15
4_1 4q13 14
6_3 6p24-p25 14
Y_10 Yq11.23 14
8_2 8p23.2 13
22_1 22q11.21 13
X_12 Xq27 13
1_9 1p13 12
2_4 2q12.3-q13 12
3_3 3q29 12
6_2 6p24-p25 12
6_4 6p24-p25 12
10_8 10q26.3 12
12_7 12q24.33 12
20_1 20p11.1 12
12_1 12p13.2 11
13_3 13q12 11

Table 4 (continued)

Name (CYO_) Region Total # of products

1_2 1p36.21 10
8_1 8p23.2 9
X_4 Xp11.22 9
1_1 1p36.33 8
1_7 1q21 8
1_8 1q21 8
2_2 2q11.1 8
5_1 5p15.33 8
7_6 7q34 8
12_4 12q24.33 8
20_3 20p11.21 8
X_10 Xq22.2 8
9_2 9p24.1 7
12_8 12q24.33 7
13_1 13q12 6
11_2 11p11.2 5
11_3 11p11.2 5
X_1 Xp22.33 5
X_2 Xp22.33 5
Y_2 Yp11.2 5
Y_6 Yq11.2 5
13_2 13q12 4
17_7 17q24.1 4
20_2 20q13.13 4
X_7 Xq22.1 4
X_9 Xq22.1 4
X_14 Xq28 4
3_1 3p21-cen to 3q11.2 3
12_5 12q24.33 3
19_2 19q13.31 3
X_6 Xq11.2 3
1_10 1q21-q23 2
1_12 1q44 2
2_7 2q21.1 2
4_2 4q28-q31 2
2_3 2q11.2 1
2_6 2q13 1
9_1 9p24.1 1
12_6 12q24.33 1
17_1 17p11.2 1
X_11 Xq26 1
Y_1 Yp11.2 1
7_5 7q22.1 –

14_1 14q32.33 –

17_2 17q11.1 –
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least 80 genomic blocks. Some regions are extremely polymorphic; 108
show obvious differences including length, content and copy number,
which together define heritable haplotypes. The true magnitude of the
diversity is only just becoming apparent, emphasizing the need for
multicentre studies to explore the relevance of thousands of haplotypes
to susceptibility of thousands of diseases.

3.2. Evolution and individuality

The second aim was to estimate whether the degree of genomic
diversity is sufficient to explain evolution and individuality. A central
tenet of Darwinian Theory is that variation is the substrate upon which
natural selection operates. Over the past 100 years, most have assumed
that sufficient variation could only be possible through ongoing, so-
called random, mutation due to, according to general belief, errors in
copying DNA. One major weakness of this model is that the variation
or, in current terminology, the polymorphism, must be heritable to ex-
plain how selected characteristics become inherited and therefore de-
fining for a particular species or population. Mutation, even if initially
de novo and random, would have to become conserved.

3.3. Heritability and extent

The present results reveal that polymorphism is both heritable and
plentiful suggesting that ongoingmutationmay not be necessary. Indeed,



Table 5
Syntenic clusters.

Species Common Ancestor (MYA) CYO_8_1 CYO_10_4 CYO_9_4 CYO_9_3 CYO_Y_4 CYO_Y_8 CYO_6_3 CYO_Y_11 CYO_22_4 CYO_Y_10 CYO_6_4 CYO_X_14 CYO_17_5 CYO_Y_9 CYO_12_2

Human 0 8 9 >10 >10 6 5 2 >10 6 7 >10 5 5 10 7
Chimpanzee 5 5 8 >10 >10 3 6 3 8 4 7 7 8 5 7 4
Orangutan 20 6 7 >10 >10 2 1 0 1 1 1 6 4 3 9 4
Rhesus 30–40 1 3 >10 >10 6 5 1 6 1 1 >10 8 10 5 5
Mouse 90 4 5 8 5 5 1 >10 3 0 0 8 >10 7 5 3
Rat 90 5 2 b10 3 2 2 1 0 0 1 2 3 6 0 0
Dog 140 4 >10 >10 >10 3 4 0 2 2 0 0 2 4 5 5
Horse 140 8 >10 >10 >10 5 5 4 0 3 1 4 8 4 >10 3
Cow 140 8 8 >10 >10 2 3 3 1 3 0 4 8 5 6 1
Sheep 140 7 8 >10 >10 3 4 6 1 1 0 6 4 3 2 2
Chicken 220 >10 9 7 >10 4 7 2 0 0 1 4 4 4 5 1
Budgerigar 220 >10 8 9 >10 1 5 4 1 0 0 3 6 2 6 4
Snake 220 7 6 8 4 0 1 1 3 1 1 0 0 0 0 0
Axolotl 350 >10 3 0 0 8 0 0 0 0 0 0 0 0 0 0
Zebrafish 365 2 0 1 0 0 0 0 1 0 0 0 0 0 0 0
Honeybee 630 2 5 2 0 0 0 0 0 0 0 0 0 0 0 0
Marron 630 10 3 0 1 0 0 0 0 0 0 0 0 0 0 0

Table 5 (continued)

Species CYO_19_1 CYO_3_3 CYO_5_2 CYO_10_3 CYO_10_7 CYO_12_1 CYO_22_3 CYO_15_3 CYO_2_8 CYO_10_6 CYO_X_15 CYO_3_2 CYO_Y_7 CYO_2_5 CYO_Y_5 n

Human 9 6 5 >10 >10 5 >10 3 7 9 7 4 5 8 4 4
Chimpanzee 9 4 5 >10 >10 2 8 8 3 4 4 4 3 3 4 2
Orangutan 4 4 1 3 >10 1 0 3 2 3 2 2 1 2 0 1
Rhesus 3 3 3 8 6 3 3 5 2 5 6 2 2 1 0 1
Mouse 5 1 0 0 0 0 0 5 0 0 0 0 0 0 0 1
Rat 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Dog 0 0 2 7 3 3 1 1 1 0 0 0 0 0 2 5
Horse 3 2 1 >10 5 1 5 3 1 0 0 1 1 0 1 5
Cow 1 0 0 >10 5 3 1 0 0 1 1 0 0 0 0 3
Sheep 0 1 1 9 3 1 0 0 0 1 0 0 0 0 0 3
Chicken 1 1 2 3 2 0 0 0 0 0 0 0 0 0 0 1
Budgerigar 4 5 1 4 0 0 0 0 0 0 0 0 0 0 0 1
Snake 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Axolotl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Zebrafish 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Honeybee 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1
Marron 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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NBLST6 1q21.1 Susceptibility to neuroblastoma, 6
PSORS4 1q21 Susceptibility to psoriasis, 4
SLEB14 1q21-23 Susceptibility to systemic lupus erythematosus, 14
HFE2 1q21.1 Hemochromatosis type 2 (juvenile)
MPZ 1q23.3 Myelin protein zero
FCGR3A 1q23 Low affinity IIIa receptor, Fc fragment of IgG (CD16A)

Fig. 2. Identification of the critical regions.
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the polymorphism revealed here must be protected from, or immune to,
mutation since it has accumulated and been retained over millions of
years.

The degree of polymorphism can bemodelled with someminimal
assumptions. Assume that there are 100 polymorphic frozen blocks
in the human genome. Assume also that there are 100 haplotypes
at each block. Since a given individual has paternal and maternal
haplotypes at each block there are 100 × 100 possible genotypes at
each block. Since meiotic recombination occurs between blocks
each of the possible genotypes at each block will be associated ran-
domly with each at other blocks. In a given individual with there
are 10400 possibilities. Clearly, there are more than sufficient possi-
ble genotypes to account for the individuality of the 8 billion humans
alive currently and also of all of their ancestors. Contrariwise, to ac-
count for human individuality, it is only necessary to postulate that
there are tens of independently segregating ancestral haplotypes at
tens of blocks. Clearly there is more polymorphism than has been ap-
preciated previously.

An attraction of heritable polymorphism is that it also accounts for
ancestry. Meiotic recombination shuffles pre-existing polymorphism
so as to create differences between siblings without compromising
the inheritance of benefits accumulated in previous generations. Thus,
given the vast diversity revealed by the present study, “anamnestic evo-
lution” achieves the twin benefits of individuality and inherited advan-
tage. Popular models of Darwinian evolution based on natural selection
of random mutations can be revised given the unexpected degree of
inherited, conserved polymorphism now demonstrated.

3.4. Conservation of polymorphism

The concept of conserving polymorphism is far fromnew [44]. There
have been severalmisunderstandings based, nodoubt, on the belief that
sequence differences are due to copying errors and therefore have no
inherent value until selected. In clinical genetics, unimportant differ-
ences are “just polymorphisms”. In coding regions, third base “changes”
are thought of as random mutations. By contrast, immunogenetics for
transplant matching has shown that many sequences are inherited
faithfully over many generations and contribute to the description of
haplotypes which are critical to biological outcomes. Many polymor-
phisms are actually trans-species [45] in that they have survived
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speciation events and can therefore contribute accumulated benefits. In
a study of different breeds of cattle, we began the process of classifying
differences into the many which are conserved and the few whichmay
represent relatively recent mutation [46].

Conservation of polymorphismmust be important in understanding
evolution. Differences between individuals must be heritable to be con-
sequential. Patently, physical and molecular characteristics which de-
fine an individual are at least largely heritable and traceable to recent,
if not remote, ancestors. The differences between dizygotic twins and
siblings represent the meiotic shuffling of inherited features which, in
the absence of shuffling, are directly responsible for the similarity of
monozygotic twins.

It follows that the degree of heritable, conserved polymorphismmay
be far greater than demonstrated hitherto and of fundamental impor-
tance. The difficulty in the past has been that the only valid approach
is to sequence whole haplotypes after finding those which are immune
to meiotic recombination. Effectively this has meant undertaking ex-
haustive 3 generation family studies of each polymorphic frozen block
within the genome. The power of this approach has been demonstrated
using CEPH families but the magnitude of the effort on a genome-wide
basis has been daunting. Even with advances in sequencing technology
there is a need for a means of targeting the most informative regions
and then their conserved haplotypes.

Duplotyping provides a practical approach andhas proven effective in
revealing at least 108 promising targets. More interestingly, it has also
shown that the degree of polymorphism is greater than expected. Indeed,
it is no longer surprising to envisage that each individual, other than
monozygotic twins, has a unique and yet heritable DNA sequence.

3.5. Speciation and disease

The ZOOpanel used here shows remarkable conservation of priming
sites inter alia but also species specific differences in architecture, in-
cluding indels and deduced copy number. Although sequences may be
trans-species rather than de novo, it is clear by comparing different spe-
cies that rearrangements of polymorphic elementsmust occur. In a pre-
vious study we concluded that retroviral sequences were important in
speciation events [10,47] and that duplication, insertion and deletion
contribute to the creation of new genotypes utilising basically con-
served sequences.

Having defined new polymorphic blocks and some of their haplo-
types, it is now possible to ask questions concerning their importance
in evolution and diverse diseases. This investigation is proceeding in
pilot form but requires multicentre attention.

4. Materials and methods

The stepwise approach can be summarised.

4.1. Identifying the duplicated segments

Large genomic segments, known to contain duplications [5], were
downloaded from the NCBI human genome assembly, build 35.1
(http://www.ncbi.nlm.nih.gov/projects/genome/guide/human/index.
shtml) and examined using Accelrys Gene 2.5 (http://accelrys.com/
solutions/science/biosciences/). Dot plot analyses, DOTTER [48] and
Gepard (http://www.helmholtz-muenchen.de/en/mips/services/analysis-
tools/gepard/index.html) were used to determine the limits of the du-
plicated segments. Duplicons with a total length greater than 10 kb,
inclusive of retroelements, were recorded and analysed in further
detail.

4.2. Element discovery and examination

Dupliconswere examined for small (50–1000 nucleotide) horizontal
and vertical shifts (indels) in the conserved diagonal line of consensus.
Once identified, the elements were examined at the sequence level.
The elements targeted ideally contain imperfect, repetitive units that ex-
hibit some additional formof geometric complexity. The rationale is that
complex, imperfect elements are less prone to slippage and mutation
and therefore more stable than simple, perfect repeats such as dinucle-
otide microsatellites. Since the aim is to identify polymorphism indica-
tive of AHs, stability throughout human evolution is essential.

4.3. Conservation of flanking regions

Regions flanking elements must display sufficient conservation
between duplicons to allow binding and amplification of each copy
by a single PCR primer pair and be close enough to allow robust am-
plification. Occasional SNPs are permitted within the primer sites,
except within the last 5 bases of the 3′ end.

4.4. Unlinked amplification

The approach relies upon the specific amplification of linked
duplicons. To avoid unlinked amplification, elements are screened
for retroviral sequence and paralogous copies. Most of the problems
in this regard were avoided by systematic in silico modelling as de-
scribed below.

4.5. Retroviral elements

Sequenceswere examined using RepeatMasker (http://repeatmasker.
org/cgi-bin/WEBRepeatMasker). Based on the results, elements were
either accepted or rejected. Those that contain no evidence of retroviral
sequence or have awell dispersed retroviral sequence, such as a LINE, at
either the 5′ or 3′ end were included. Elements containing short, high
frequency retroelements such as Alus, were rejected.

4.6. Paralogous copies

Elements were examined using BLAT (http://genome.ucsc.edu/
cgi-bin/hgBlat) to identify any paralogous copies.

4.7. Primer design and evaluation

Following the examination for retroelements and paralogous
copies, sequences were submitted to Primer 3 (http://frodo.wi.mit.
edu/primer3/input.htm), with an optimal primer annealing temper-
ature set to ~60 °C. Primer combinations selected by Primer 3 were
compared to the alignment of the elements. The primers that were
most likely to result in binding and amplification of the intended
duplicons were selected and analysed further. As a final examina-
tion, primer pairs are submitted to BLAT to exclude paralogous am-
plification. Primers were manufactured by Sigma-Genosys Oligos
(http://www.sigmaaldrich.com/life-science/custom-oligos.html).

4.8. Polymorphism analysis

Samples for this study include: a) 30 ethnically diverse and well de-
fined samples from the International Histocompatibility Workshop
Group (http://www.ihwg.org/order/blcl.html) [42] and b) three families
(CEPH/Utah Pedigree 1362, CEPH/Amish Pedigree 884 and Venezuelan
Pedigree 104) from Coriell Cell Repositories (http://ccr.coriell.org/).

4.9. Polymerase chain reaction

PCRswere performed in a 96-well Palm Cycler (Corbett Research) in
20 μl volumes using conditions previously described [40]. Optimal
primer annealing temperatures were defined prior to interrogating
the 4AOH panel and ranged between 52 and 62 °C (Supplementary
Table 1).

http://www.ncbi.nlm.nih.gov/projects/genome/guide/human/index.shtml
http://www.ncbi.nlm.nih.gov/projects/genome/guide/human/index.shtml
http://accelrys.com/solutions/science/biosciences/
http://accelrys.com/solutions/science/biosciences/
http://www.helmholtz-muenchen.de/en/mips/services/analysis-tools/gepard/index.html
http://www.helmholtz-muenchen.de/en/mips/services/analysis-tools/gepard/index.html
http://repeatmasker.org/cgi-bin/WEBRepeatMasker
http://repeatmasker.org/cgi-bin/WEBRepeatMasker
http://genome.ucsc.edu/cgi-bin/hgBlat
http://genome.ucsc.edu/cgi-bin/hgBlat
http://frodo.wi.mit.edu/primer3/input.htm
http://frodo.wi.mit.edu/primer3/input.htm
http://www.sigmaaldrich.com/life-science/custom-oligos.html
http://www.ihwg.org/order/blcl.html
http://ccr.coriell.org/
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4.10. Detection of amplicons and haplotypes

The separation and detection of haplotypes were performed using a
Corbett Research GS-3000 automated gel analysis system as previously
described [40]. A pUC 19 (Fisher Biotech) molecular weight ladder was
included. Amplicons were numbered according to their relative migra-
tion during non-denaturing electrophoretic separation (Fig. 1). Relative
intensitieswere tabulated using a range from1 to 9,where 1 is negative,
2 is equivocal and 3–9 are positive and relative (Table 1).

4.11. Examination of the approach to syntenic clusters

The CYODNA zoo panel consists of 4 humans (Homo sapiens), 2 chim-
panzees (Pan troglodytes), 1 orang-utan (Pongo pygmaeus), 1 rhesusmon-
key (Macaca mulatta), 3 cows (Bos taurus), 3 sheep (Ovis aries), 5 horses
(Equus caballus), 5 dogs (Canis familiaris), 1 mouse (Mus musculus), 1 rat
(Rattus norvegicus), 1 snake (Pseudonaja affinis), 1 chicken (Gallus
gallus), 1 budgerigar (Melopsittacus undulatus), 1 axolotl (Ambystoma
mexicanum), 1 zebrafish (Danio rerio), 1 marron (Cherax tenuimanus)
and 1 honeybee (Apis mellifera) (Table 5). To accommodate variations
in primer-binding site sequences, annealing temperatures were re-
duced by 5 °C. All other conditions were as previously described. Re-
sults of the analysis are reported in Table 5 and show the maximum
number of amplicons observed per individual within each species.

4.12. Genome wide identification of critical regions: Phenotype analysis

Fig. 2 is a graphical representation of the aggregate disease fre-
quency per Mb of each chromosome and was derived from examina-
tion of the OMIM and Phenotype resources at NCBI (NCBI Build 35.1);
(http://www.ncbi.nlm.nih.gov/).

The number of geneswith OMIM links, perMb of each chromosome,
was calculated. Similar analysis of the Phenotype data was performed,
including themultiple records observed at each locus. Totals perMb re-
gion of each chromosomewere tabulated. OMIM and Phenotype results
were multiplied and recorded for each Mb. The average for each chro-
mosome was subtracted from this value and the results smoothed by
comparing to neighbouring regions. Negative values were removed
and results were plotted as percentage of value at each Mb compared
to the maximum value on the chromosome. Results of this analysis
can be seen in Fig. 2.
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