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For any real number θ , the set of all real numbers x for which
there exists a constant c(x) > 0 such that infp∈Z |θq − x − p| � c(x)

|q|
for all q ∈ Z\{0} is a 1/8-winning set.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let Mm,n(R) denote the set of m×n real matrices and M̃m,n(R) denote Mm,n(R)×R
m . The element

in M̃m,n(R) corresponding to A ∈ Mm,n(R) and b ∈ R
m will be expressed as 〈A,b〉. Consider the

following well-known sets from the theory of Diophantine approximation [8]:

Bad(m,n) :=
{
〈A,b〉 ∈ M̃m,n(R)

∣∣∣ ∃c(A,b) > 0 s.t. ‖Aq − b‖Z � c(A,b)

‖q‖n/m
∀q ∈ Z

n\{0}
}

where ‖ · ‖ is the sup norm on R
k and ‖ · ‖Z is the norm on R

k given by ‖x‖Z :=
infp∈Zk ‖x − p‖. The set Bad(m,n) is called the set of badly approximable systems of m affine forms

in n variables. For any b ∈ R
m , let Badb(m,n) := {A ∈ Mm,n(R) | 〈A,b〉 ∈ Bad(m,n)}, and, for any

A ∈ Mm,n(R), let BadA(m,n) := {b ∈ R
m | 〈A,b〉 ∈ Bad(m,n)}.

The set Bad0(m,n) is called the set of badly approximable systems of m linear forms in n variables and
is an important and classical object of study in the theory of Diophantine approximation. Although
it is a Lebesgue null set (Khintchine, 1926), it has full Hausdorff dimension and, even stronger, is
winning (Schmidt, 1969). Winning sets have a few other properties besides having full Hausdorff
dimension; see Section 1.2 for more details.

For the larger set Bad(m,n), however, less is known. Among its known properties are that it has
Lebesgue measure zero, but full Hausdorff dimension. The former property follows from the doubly
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metric inhomogeneous Khintchine–Groshev Theorem [3, Chapter VII, Theorem II]. The latter property
is a result of D. Kleinbock (1999) proved using mixing of flows on the space of lattices [8]. Recently
(2008), Y. Bugeaud, S. Harrap, S. Kristensen, and S. Velani have given a simpler proof of Kleinbock’s
result; their main result is that, for every A, BadA(m,n) (and some related sets) has full Hausdorff
dimension [2]. Using the Marstrand slicing theorem [5, Theorem 5.8], Kleinbock’s result follows. In
view of these results, a natural question that arises is whether, like Bad0(m,n), these sets BadA(m,n)

and Bad(m,n) are winning instead of just having full Hausdorff dimension. In this note, we show that
Badθ (1,1) is winning for every real number θ .1 For results and open questions concerning general n
and m, see Remark 2.3 below.

1.1. Statement of results

Our main result, which generalizes the m = n = 1 case of the aforementioned main result in [2]
(their main result is Theorem 1 of [2]), is the following (see Section 1.2 for the definition of 1/8-
winning):

Theorem 1.1. For any real number θ , Badθ (1,1) is a 1/8-winning set.

This theorem is proved in Section 2 below. A number of corollaries will follow immediately because
of the properties of winning sets (see Section 1.2). A model one is:

Corollary 1.2. For any countable set {θn} ⊂ R and any countable family { fm} of invertible affine maps R → R,
the set

⋂∞
m=1

⋂∞
n=1 fm(Badθn (1,1)) is 1/8-winning and thus has full Hausdorff dimension.

1.2. Background on winning sets and continued fractions

The proof of our result requires two tools: Schmidt games (see [9] for a reference) and continued
fractions (see [6] for a reference). We will discuss both.

W. Schmidt introduced the games which now bear his name in [9]. Let 0 < α < 1 and 0 < β < 1.
Let S be a subset of a complete metric space M . Two players, Black and White, alternate choosing
nested closed balls B1 ⊃ W1 ⊃ B2 ⊃ W2 · · · on M . The radius of Wn must be α times the radius
of Bn , and the radius of Bn must be β times the radius of Wn−1. The second player, White, wins if
the intersection of these balls lies in S . A set S is called (α,β)-winning if White can always win for
the given α and β . A set S is called α-winning if White can always win for the given α and any β .
A set S is called winning if it is α-winning for some α. Schmidt games have four important properties
for us [9]:

• The sets in R
n which are α-winning have full Hausdorff dimension.

• Countable intersections of α-winning sets are again α-winning.
• The bilipschitz image of an α-winning set is α-winning.
• Let 0 < α � 1/2. If a set in a Banach space of positive dimension is α-winning, then the set with

a countable number of points removed is also α-winning.

Let us now discuss continued fractions. Let pi/qi be the i-th order convergent of an irrational
number θ . Define

�i := ‖θqi‖Z.

1 For Badθ (1,1), we have a slight strengthening of the aforementioned consequence of the Khintchine–Groshev Theorem:
Badθ (1,1) has Lebesgue measure zero for every irrational number θ [7]. This result is essentially a corollary of two elementary
facts from the theory of continued fractions (see [10] for this short, second proof and for a connection with shrinking targets).
There is yet a third proof of this result; see [1].
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We will use the following well-known facts:

• For all i ∈ N, 1
2 �−1

i−1 < qi < �−1
i−1.

• Let 0 � j < k < qi . Then, ‖θk − θ j‖Z > �i−1.

1.3. The setup

Let θ ∈ R. Define

Bad+
θ :=

{
x ∈ R

∣∣ ∃c(x) > 0 s.t. ‖θq − x‖Z � c(x)

q
∀q ∈ N

}
.

Note that Badθ (1,1) = Bad+
θ ∩ −Bad+

θ ; thus showing Bad+
θ is 1/8-winning will prove Theorem 1.1.

Also, we may assume that these sets are restricted to the circle T
1 := R/Z, as they are invariant under

integral translations.
Henceforth, let us consider Bad+

θ . If θ is rational, then the set is just T
1 with a finite number of

points removed and hence is winning. Therefore, we assume that θ is irrational henceforth.
For convenience, let us call the elements in

{
θq ∈ T

1
∣∣ qi � q < qi+1

}
the elements of generation i.

Finally, we note a simple property of continued fractions.

Lemma 1.3. Let qi+1 � q < qi+2 . Given a 0 < r < 1/2 such that, for all elements θ p of generations � i,
‖θq − θ p‖Z � r�i , then q � r

2 qi+2 .

Proof. There are unique numbers 0 � s < qi+1 and 1 � n �  qi+2
qi+1

� such that q = nqi+1 + s. Thus,

n�i+1 = ‖θq − θ s‖Z � r�i . Hence, q � r �i
�i+1

qi+1 � r
2 qi+2. �

2. A proof of Theorem 1.1

Let α = 1/8 and c = (
(αβ)

4 )3. We will play an (α,β)-game on T
1. Let us start with the following

lemma, which tells us how to choose Wm given Bm (note that the radius of a ball B is denoted ρ(B)):

Lemma 2.1. Let U be any union of balls on T
1 with radius � (αβ)�N/4 around the elements of generations

� N. If

(αβ)�N < 2ρ(Bm) � �N ,

then one can choose Wm disjoint from U .

Proof. Case: Bm does not intersect any ball of U .
Pick any allowed Wm .

Case: Bm intersects exactly one ball of U .
Even if Bm contains the whole ball of U , there is, at least, a subinterval in Bm of length 1/4 of the

length of Bm that misses U . Pick Wm to be in this subinterval.

Case: Bm intersects more than one ball of U .
Note that Bm cannot intersect more than one element of generations � N (unless one has exactly

two elements of generations � N , one at each end). Thus, at least a subinterval in Bm of length
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(1 − (αβ)/2)�N � 1/2�N does not meet U . Now α2ρ(Bm) � 1/8�N . Therefore, we can choose Wm

to be in this subinterval. �
Since the Schmidt game can be played until, for some J ∈ N, 2ρ(B J ) � �1, we may assume with-

out loss of generality that J = 1. Note that there exists an N0 � 2 such that 2ρ(B1) � �N0−1, but that
2ρ(B1) > �N0 (follows since �N0 < �N0−1).

Also, there exists an n0 ∈ N such that 2(αβ)n0−1ρ(B1) > �N0 and 2(αβ)n0ρ(B1) � �N0 . Thus,

(αβ)�N < 2(αβ)n0ρ(B1) � �N (2.1)

where N � N0 is the largest natural number for which (2.1) holds.
We intend to use induction. In the initial induction step, consider the disjoint union of balls around

each element of generations � N of radius (αβ)�N/4; call this union U . By Lemma 2.1, we may pick
Wn0+1 to miss U . For any other step of the induction, Wn0+1 is already chosen.

As an aside for clarity, note that there are two infinite “processes” that are intertwined in this
proof. One is the count of the generations given by the convergents of θ and denoted in the proof
by the indices of �. The other is the count of the iterations of the Schmidt game and denoted in
the proof by the indices of W . The goal of the proof is to fit these two processes together by mak-
ing astute choices of White’s balls. To accomplish this fitting, one must consider the size of αβ�N

from (2.1) in relation to �N+1. There are two possible cases.

2.1. Case: αβ�N > �N+1

The condition implies that there exists an n1 ∈ N such that

(αβ)�N+1 < 2(αβ)n0+n1ρ(B1) � �N+1.

Also, there exists a maximal M � 1 such that

(αβ)�N+M < 2(αβ)n0+n1ρ(B1) � �N+M .

Moreover, (αβ)�N+1 < �N+M .

For any element θq of generation N + 1 in Wn0+1, q � (αβ)
8 qN+2 by Lemma 1.3. For any element

θq of generations > N + 1 in Wn0+1, it is obvious that q � (αβ)
8 qN+2. Thus, for all such θq,

c

q
� (αβ)2�N+1

4
� (αβ)�N+M

4
.

Now play freely until Bn0+n1+1 is chosen. Again by Lemma 2.1, we can choose Wn0+n1+1 to miss the
balls of radius (αβ)�N+M/4 around the elements of generations N + 1 to N + M .

2.2. Case: αβ�N � �N+1

It is easy to see from the theory of continued fractions that there exist a K ∈ N such that (αβ)�n >

�n+K for all n ∈ N. Therefore, the condition implies that there exists a 1 � m � K − 1 such that

�N+m+1 < αβ�N � �N+m.

Thus, we have

(αβ)2�N+m < (αβ)2�N < 2(αβ)n0+1ρ(B1) � αβ�N � �N+m.
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If (αβ)2�N+m < 2(αβ)n0+1ρ(B1) � (αβ)�N+m, then

(αβ)�N+m < 2(αβ)n0ρ(B1) � �N+m.

Since N is the largest natural number for which (2.1) holds, we obtain that m = 0, a contradiction.
Thus, we must conclude that

(αβ)�N+m < 2(αβ)n0+1ρ(B1) � �N+m.

Now, there exists an n1 ∈ N such that

(αβ)�N+m+1 < 2(αβ)n0+n1ρ(B1) � �N+m+1.

Also, there exists a maximal M ∈ N such that

(αβ)�N+m+M < 2(αβ)n0+n1ρ(B1) � �N+m+M .

Moreover, (αβ)�N+m+1 < �N+m+M .
If n1 = 1, then even more is true: (αβ)�N+m < �N+m+M . Now note that, for the elements θq of

generations N + 1 to N + m + M , we have

c

q
� c

qN+1
� (αβ)�N+m+M

4
.

Consider the disjoint union of balls around each element of generations � N + m + M of radius
(αβ)�N+m+M/4; call this union U . Again by Lemma 2.1, we can pick Wn0+2 to miss U .

Otherwise, n1 � 2. Now note that, for the elements θq of generations N + 1 to N + m, we have

c

q
� c

qN+1
� (αβ)�N+m

4
.

Consider the disjoint union of balls around each element of generations � N + m of radius
(αβ)�N+m/4; call this union U . Again by Lemma 2.1, we can pick Wn0+2 to miss U .

For any element θq of generation N + m + 1 in Wn0+2, q � (αβ)
8 qN+m+2 by Lemma 1.3. For any

element θq of generations > N + m + 1 in Wn0+2, it is obvious that q � (αβ)
8 qN+m+2. Thus, for all

such θq,

c

q
� (αβ)2�N+m+1

4
� (αβ)�N+m+M

4
.

Now play freely until Bn0+n1+1 is chosen. Again by Lemma 2.1, we can choose Wn0+n1+1 to miss the
balls of radius (αβ)�N+m+M/4 around the elements of generations N + m + 1 to N + m + M .

Using these two cases inductively, one can show that the set

{
x ∈ R

∣∣∣ ∃c(x) > 0 s.t. ‖θq − x‖Z � c(x)

q
∀q � qN+1

}

is 1/8-winning. By shrinking c(x) for each x, we note that this set is Bad+
θ . The proof is complete.
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Remark 2.2. If θ is a badly approximable number,2 one can easily see from the continued fraction
expansion of θ that there exists an upper bound for �n/�n+1 independent of n. This uniform bound
allows us to simplify the above proof for θ badly approximable (however, we conclude that the set is
α-winning for an α depending on this uniform bound).

Remark 2.3. In very recent joint work [4], M. Einsiedler and the author have, using a method different
from the one presented in this note, generalized Theorem 1 of [2] to conclude winning instead of just
having full Hausdorff dimension. Thus, as a special case, we can show that BadA(m,n) is winning for
every A ∈ Mm,n(R). Related results are also presented in [4]. Whether Bad(m,n) is winning, however,
is still an open question. The techniques developed in [4] may be useful in answering this question
(see [4] for more details).

Acknowledgments

The author would like to thank Manfred Einsiedler, Dmitry Kleinbock, and the referee for their
helpful comments. The author is particularly grateful to Dmitry Kleinbock for pointing out an im-
provement to the statement of Corollary 1.2.

References

[1] V. Beresnevich, V. Bernik, M. Dodson, S. Velani, Classical metric Diophantine approximation revisited, in: Analytic Number
Theory, Cambridge Univ. Press, Cambridge, UK, 2009, pp. 38–61.

[2] Y. Bugeaud, S. Harrap, S. Kristensen, S. Velani, On shrinking targets for Z
m actions on tori, preprint, arXiv:0807.3863v1,

2008.
[3] J. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Math., vol. 45, Cambridge University Press,

Cambridge, UK, 1957.
[4] M. Einsiedler, J. Tseng, Badly approximable systems of affine forms, fractals, and Schmidt games, preprint, 2009.
[5] K. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Math. and Math. Phys., vol. 85, Cambridge University Press,

Cambridge, UK, 1986.
[6] A. Khinchin, Continued Fractions, The University of Chicago Press, Chicago, 1964.
[7] D. Kim, The shrinking target property of irrational rotations, Nonlinearity 20 (2007) 1637–1643.
[8] D. Kleinbock, Badly approximable systems of affine forms, J. Number Theory 79 (1999) 83–102.
[9] W. Schmidt, Badly approximable numbers and certain games, Trans. Amer. Math. Soc. 123 (1966) 178–199.

[10] J. Tseng, On circle rotations and the shrinking target properties, Discrete Contin. Dyn. Syst. 20 (2008) 1111–1122.
2 In our notation, θ ∈ Bad0(1,1).


	Badly approximable affine forms and Schmidt games
	Introduction
	Statement of results
	Background on winning sets and continued fractions
	The setup

	A proof of Theorem 1.1
	Case: alphabetaDeltaN > DeltaN+1
	Case: alphabetaDeltaN <=DeltaN+1

	Acknowledgments
	References


