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§0. Introduction

This paper is a continuation of the work described in [13]. In that paper we con-
sidered categories ( satisfying the following eight axioms:

(1). Taere is a triple T = (T, i, u) on S (the category of sets) such that 7(Q) =
{p} (a one point set) and C is equivalent to ST.

(2). U: C—~ S, (the category of pointed sets) factors through the category of
groups.

(3). All operations in ( are finitary.

(4). There is a generating set §2 for the operations in C, and

Q= Q“ U Q, US!:

(where £2; is the set of i-ary operations in Q).
(S).lIfs€ SZ':, = Qz\(f;ﬂ (where + is the group operation arising from (2)), then

as(b+tcy=aebtarc.

(6). If w € Q) =Q\{~} (where — is the inverse associated with the group struc-
ture ), then

w(ag *b)=w(a)*b.
(7). If x, x5, X3 € X, an object in C, and * € 23, then

Xy H(xy *x3)= (x5 % x3) + x|,

* This research was partially supported by N.R.C. Grant A 7861. It is a part of the author’s
Ph.D. dissertation, University of Hlinois.
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(8). For each ordered pair (-, #) € 25X82), there is a word w such that
(xyexy) ex3 = wlvixyxg), x(x3x)), (xx3hxy, (x3%2)x),
X(x;x3) X3 (x3xp), (X X3)x9, (X3%1)X5)

where each juxtaposition represents an operation in £25.

The categories satisfving (1)—(8) were called categories of interest. We associated
to each object A4 in C a class EA consisting of equivalence classes of sequences of the
form

0-7Z4-A+F-M-0.

(Here ZA is the center of A4 in the sense defined in [2].)
We considered the problem: Given a diagram

R
ip
(0.1) 0+24~A-F->M~-0,

ts there an extension 0 - 4 -+ T — R — 0 which induces p?

We showed that this can be settled by associating with (0.1) a cohomology class
[p] € H2(R. ZA). [p] is called the obstruction of p. The cohomology used is that
obtained from the triple on S,.

In §1 of this paper we will place further restrictions on C and then treat the ques-
tion of when H2(R, Z) is precisely the set of obstructions. In §2, we show that to a
certain extent relative cohomology groups can also be used to measure obstructions.

The author wishes once again to express her gratitude to Michael Barr for many
helpful suggestions.

§ 1. Elements of //2(R, Z) as obstructions
In this section, we restrict our attention to those categories of interest in which a
more restrictive form of axiom (8) is imposed. We require:

(8)". For each ordered pair (-, ) € 25 X §5, there is a word w involving no binary
operation except + such that | : ‘

(ryoxg) ¢ x3 = wlx;(xpx3), xy (x322), (XX3)x), (x3%2)xy,
x3(xyx3), x3(x3x1), (xX3)x3, (x3%))x3),

where each juxtaposition represents one of the operations in Q'z.
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It is clear that categories satisfying (1)--(7) and (8)’ are categories of interest in
the sense of |13, Definition 1.14]. Moreover, all the categories of the interest which
were provided as examples in [13, §1] satisfy (8)'. In the case of associative algebras
with multiplication represented by =, it sufficies to let 25 = {*, #?}_ We can then
take

lb’(ll‘, 02, ﬂ3, a. 05, 06' as, 08) = a, .
For Lic algebras, take £25 = {[ , |!. Then
w(ay, @y, ay, a4, a5, ag, a7, ag) =ay + ag.
as can be seen from the fact that [a, b] = ~ (b, a] and the Jacobi identity
[la.b].c] + [Ib.cl.a]l + [[c.al,b] = 0.
In the example of groups, we can choose €2 so that Q'Z = @, and thus axioms (8) and
(8)' are both vacuous.
The main result of this section gives a criterion for determining when HXR,2)

coincides precisely with the set of obstructions. That this is not always the case can
be seen in the following example.

Example 1.1. Let K be a ring of global dimension greater than or equal to 2 and C
the category of K-moduies. There are K-modules R and A such that Ext2(R,4)70.
Such is the nature of K.

Since + is commutative and we can take Q}_, =@, if A is a subobject of T, then
A< T. Also, Z4 = A and Z(T, A) = T. Therefore all sequences in E4 have the form

1
0~444%030-0.

Any morphism p: R » M = 0iis just the zero map and is unobstructed since there is
always the exact sequence

0-4->4®R-*R~0

(which induces p). But Ext2(R, A) = H2(R, A) since Der(R, ZA) = Homg (R, A) in
this case.
We will prove:

Theorem 1.2. Let R be an algebra in C for which there exists a set X and a surjection
a: F(X) - R with Z(F(X), ker a) = 0. Given an R-module Z and a class & in H3(R,Z),
there is an object A, a sequence
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0+2A*A~E->M~>0

in EA, and an isomorphism p: R -+ M such that Z ~ ZA as an R-module (via p)and
Iol =£.

The hypotheses of this theorem appear to involve a restriction on R. The condi-
tion can however be viewed more accurately as a restriction on C. In Example 1.1,
we have seen a category of interest in which Theorem 1.2 is not always valid. More
generally, in any category of modules, + is commutative and 525 can be taken to be
empty. Hence Z(F(X), K) = F(X) for any K < F(X). Thus the theorem does not apply.
However, the obstruction theory is uninteresting since EA degenerates in the manner
described in Example 1.1.

There are several restrictions that we can place on C in order to insure that Theo-
rem | holds for any choice of R and Z in C. These are:

(9a). Foreach R in C, there is an X in S, and a surjection a: F{X) = R with
Z(F(X), kera)=0, or

(9b). There exist sets Y and X with Y € X and such that Z(F(X), F(Y))=0.

Remark 1.3. (9b) implies (9a).
Proof. Let X = UR Y Y, where Y is as in (9b). Consider a: F(X) - R determined by

ex)if x€ UR,
a(x) =
(0 ifx€eY.

Clearly F(}) C ker a and a is surjective. Therefore, Z(F(X), kera) = 0.

(9b} is a useful condition because it is easily checked in many special cases.

We will call a category which satisfies (1) -(7), (8)', and (9a) or (9b) a special
category of interest. The vatious categories in which obstruction theory has been
studied in the past — groups [6}], associative algebras over a field [8], associative al-
gebras {14], and commutative algebras [1; 7] - are special categories of interest.

Example 1.4. (a). Let C be the category of groups. We have immediately that
Z(Ftia, b,c}). Fia, b, c})) = Z(F({a, b, c})) = 0.

In [6], the case R = Z/2Z was handied as a special case in the proof of the theorem
corresponding to Theorem 1.2. This is not necessary with our treatment.

(b). Let C be the category of asscciative algebras. This case is essentially the same
as the case of commutative algebras, vhich is treated in [1]. If R is an associative al-
gebra, then GR is the polynomial ring whose noncommuting variables are determined
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by the underlying set of R:

Z(GR, kere)={xE€GR|xa=ax=0and g + x = x +q for all a Eker ¢}.

The second condition ( x = x +a)is satisfied trivially since addition is commuta-
tive for all objects in the category. Hence,

Z(GR, ker €) = i x EGR| xa =ax = 0 for all a € ker €}.

As in [1] we note that w, the variable corresponding tc 0, is in ker € but is not a zero
divisor. Thus, since < € Z(GR, ker €) must satisfy wx = xw = 0, we conclude that
x = 0. Hence ( satisfies (9a).

(c). Now let C be the category of K-Lie algebras where K is a commutative ring.
We will show that

L PR s

Z(F({a, b}), Flia, b})) = 0.
Let F,, ({a. b}) be the free K-module on {a, b}. Since + is commutative,
Z(F(ia b)), Flia, b}) ={x € F(ia, b} | [x, ¥] = [¥,x] =0 forall
Y€ F(ia bi)}.

We note that in a free Lie algebra, if [x, ¥] =0, then there is an element z in the al-
gebra and k|, k, € K such that x =k, zand v = k,z. So,if x EZ(F(‘a, b}),
F({a, b})), then in particular, [x,a] = [x. b] = 0. Therefore there exist k, k5, k3,
k¢ €Kandz,, z; € F(ia, b})such thatx =kyzy, a = kyzy, x = k32, and b = k42,.
F(ia, b}) has F,,({a, b}) as a module direct summand [5]. Since ¢, b € F,,,(/a, b}),
we may as well assume k5 =k4 = 1,2; =@ and z5 = b. Therefore x is a scalar multiple
of each generator. By freeness, we conclude x = 0.
Thus, our proof of Theorem 1.2 provides a uniform treatment of the body of
work mentioned above.

Proof of Theorem 1.2. We will proceed very much as in [1], but instead of relying on
the standard resolution, we will use

el el el
0+ R & F(X) &= F(X,) ———= F(X3) ...
0 0.1
t re

where a is the surjection described in the statement of the theorem.
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Represent & by a derivation p: F(X3) = Z. Since pis a cycle

and by the simplicial normalization theorem we may aiso suppose pt® = pr! = 0. Let

V=1x.2)€ FX)XZlelx=0..
Let
I= (%, py)ive F(X3)and elv=ely =0},

Then I C V since e!e¥v = ePe2y = 0. We claim that / < V. Let (x,z) € ¥ and
(¢, py)€ I, and take

vi=lx+y - Ok

in F(X3). Then

ey’ = x+ely - x,

L]

-pv' = ~(pO% + Ox + pv +y + p(-t¥%) - y - Vx)

= «(Ox+py+y—-10x - piOx + 0x — vy - Ox)
= Ox - py - Ox

= aelefx - py - aelelrx

= arlx - py - aelx

= -py.

Therefore

(x.2)+ (e, - py) - (x,2)=(x + ey —x, - py)= (e, - p¥")
which is in /. We can also check that for any + € Q,,

(x.2) # (%, - py) = (e0(:Ox + ), — p(10x » y))

and this is in / also.
Let 4 = V/I. Next, consider the composite Z - ¥V -+ 4 which we cali «.

]

«z)=(0.2)+1

Fed

i
It is not hard to see that this is an injection.
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Finally, we mus: show that the image of Z in 4 is actually Z4. Clearly it is con-
tained in ZA. To see the reverse inclusion, choose any (x, z) + / € Z4. This part of
the proof requires the hypothesis that Z(F(x), ker a) = 0. For any (x’, z') € V we are
assuming that

(. 2)*+(x,2)=(x"*x,0)
and
(x2)+(x\2)~(x,2)-(x,Z)=(x +x - x - x',0)
belong to 7 (where » € Q5). In particular, there exist v, )’ € F(X3) such that
e\l)v = ez}r = elbv' - 82_},' = 0,
ey =x"*x,
ey =xtx - x-x.

Hence,

e(xr - x, - ee()y = e()el); — 6082)’ = 0

and similarly

ex+x - x-x')=0,
Thus, for any x' € ker e!, we have

20x’ e« elx =0,

eOx +e0x" = e0x' + ¢0x.

By the simplicial normalization theorem tkis means e%x is an element of
Z(F(X), ker a) = 0. Hence, ex = 0 and so x = ey. Using the simplicial normalization
theorem again, we can assume ely = 2y = 0. Therefore Z4 C Z + /.

Starting with R and an R-module Z we have found 4 such that Z4 ~ Z. Next we
construct a diagram (see (0.1) above) for which [p] = £.

A is seen to be an F(X)-structure by specifying a set of derived actions. The
actions of F(X) on 4 are induced by the following actions of F(X) on V. For
yeF(X)and(x,2)EV,

ye(x,z)=(ty ¢ x,ay *2),

yr(x,z)-y=(y+tx-ty,ay +z — ay).
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One easily checks that these actions restrict to actions on /. Thus F(X) acts an

A = V/I. A computation shows that T = F(X) X A is an object in C. We note that

this computation depends upon the substitution of axiom (8)' for axiom (8). It is

easy to see that A can be regarded as an ideal in T by identifving it with 0 X 4.
Next, let £ = T/Z(T, A). We observe that (x,a) € Z(T, A) if and only if

. ~(@' sx)=d" *a,
(1.5) , ,
~-XxX+*a +x=ata -a

foralla’ € 4 and » €K2,. Let A : 4 — E be given by M@) = (0, a) + Z(T, A); then it
is easy to check that

0+Z4-4AME% M0
isexact. Here M =T/(Z(T,A) + A).

it remains for us to define p : R > M. To do this, we first define py: F(X) = E.
Let

Po(x) = (x,.0) + Z(T, A).
Given r € R, there exists y € F(X) such that r = a(y). So let

o) = mpy(y).
It remains to show that p is well-defined. Suppose a(y) = a(y’). We will show that for
any x € F(X,), py(€0 ~ el)x € NMA). Thus a(y - »') = 0 implies y ~ " = e(x) for
some x € F(X,), and so

Mpgy — Mgy’ = Mpgex € A4 = 0.
Moreover, p is onto because pa = mpg, and mp, is onto since

n(x,a) + Z(T, A)) = m(x,0) + Z(T, A))
forany (x,a)E€T.

We must now fill the gap in the above arguniem. Take any x € F(X,). We will
show that '

Po(eo - el)x =M,
where

a=(x-telx,0)+1.
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To begin, we note that
pole? — el)x — ha=(eOx - elx, —a) + Z(T, A)

and then verify that (e0x — elx, —a) satisfies (1.5). Let @’ = (x', ) + I be any element
of 4. We must show

(1.6) ~(a" + (%% - elx))=a' x(-a) forany s €Q},

(1.7) ~(e0x — elx)+a' +(eVx - elx)= -a+4a' +a.
For (1.6), we use the element

v=(1-10e!)(Ox = rlx)
which is in £(X3). Observe that

ely =0,

ely = (e2 - e21%1)(1Ox' + tlx) = 0,
since ¢2/0x' = re!x" and el x’' = 0. Also,

Oy =x" (elrlx - x).
Further,
py =0.
since ptf = 0. So ’

(e, ~py) = (x" » eOtlx - x' +x, 0)
isin /. Hence

—(@' * (e%x — elx))

(x' » (telx - te¥x), z « (aelx - aelx)) +1
[(x' * (te'x — te0x), 0) + 1] + [(eO¥, —py) + 1]
(x' »(telx - x),0)+/

(x',2)*(telx — x,0)+1

a *(-a).

To verify (1.7), let

y=(1 —0el) (—rlx + 0x" + t1x).
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One easily checks that

ely=e2y=py=0,
Oy = telx +x" +1e0x ~ x - x' +x.
Therefore

€y, -py)=(—reVx +x' +1e0x - x - x' +x,0)
is in / and since the actiuns of F(X) on V restrict to actions on /,

0=(elx +(eOy, - py) —elx) +1

=(telx - 1e0x +x" +7e0x - x —x" +x - telx,0) +1.
That is,
(teix—-teOx +x' +1e0x—-t1elx, z)+ 1= (tel x—x +x" +x - telx,z) + I.
Hence

(% - elx)+a’ +(e"x - elx)

(—(rePx — relx) + x" + (1eOx — telx),z) + 1

—(x - telx, 0) + (x",2) + (x - relx,0) +/

—~a+a ta.

A more surpiising fact about p is that it is an isomorphism. To show this we use
the hypothesis that Z(F(X), ker a) = 0. Suppose pr = 0. Take x € F(X) such that
ax =r. Then

mpgx = pax = pr =0,

Therefore there is an a € A such that A\ = px. Say-
a=(y,z)+1.

We see that

(x,0) + Z(T. 4) = pox
=M
=(0,a) + Z(T, A),
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and so (x, --a) € Z(T, A). Thus,
aex=a*aq
foralla’in 4 and » in 5, and
~x+ad' tx=-a+d +a.
More precisely, for any (), z') + /€ A,
et 2 ex)tI=(y +y,0)+1]
for all « € Q5, and
(tx+y +tx, -x+2°+x)+I=(—v+y +y,2)+1.
Therefore, for any ' € ker e!, there exist w, w' € ker e! Nker e2 such that

y e (tx - p)=elw,

~tx+y tix—-y-y +y=elw'.
Applying eV, we obtain

eVy' «(x - eOy) =0,
~x+e0y +x - ely —ely' +ely=0
for all y’ € ker e!, and, indeed,
(x—~eOp)+e0y' — (x ~ eOy) - 0y =x — €Oy 4 e0p" + Vv — x - 0y’
=x+(-x+ely +x)-x-ely' =0
for all ¥’ € ker e!. This means that x ~ €%y belongs to Z(F(X), ker &) = 0. Thus
r=ax=ay = aely =0,
Finally we must check that [p] = ¢. Define p;: F(X;)>P=E X Aby

pix = (pgelx, (—telx +x,0) +1).

Note that
d% x = pyetx + M(-telx +x,0) +1)
=pge'x - (pge® — pge!) (—x) = pgelx
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and
dlp,x = pye'x.

Choose py: F(X3) - B so that the appropriate diagrams commute. It is easy to check
that if x € F(X3), then

3pyx =(0,(~telex +ex,0) +1).
Let v =(1 — Oe!)(—1le2 + 1)x. Then
ely - 0'
ey =(e2 - e210el)(~1le? + 1)x
= -elx +e2x - Pelplx + Oelex =0,
Py =(e0 —el)(-tle? + 1)x
= -elrlelx + x - elx +eltledx
= -Pelelyx + ex,
py =px.
So(eVy, - py) +1=0, and therefore
(-telelx + ex, 02+ 1 =(ely,0) + 1
1 =(0,py) +1
=(0.px) +1.
That s,

dpyx = px.

Therefore {p] = {p} =¢.

§ 2. Relative theory

In his thesis [4], Beck showed that if U : C - A is triplzable, then the cohomology
group H(X, Y) relative to U classifies extensions which are splitin A [I, p. 67). In
[13]} and §1 we showed that if (' is a category of interest with A = S,, then
H2(X, ZY) relative to U classifies obstructions to extensions of X by Y. In this sec-
tion we turn to the case in which 4 is a category with more structure than S.. We
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will show that if A is suitably restricted, then H2(X, ZY) relative to U classifies ob-
structions to A-split extensions.

The only case in which we have been able to apply the approach used by Rarr in
[1] and generalized here is when ( and A are categories of interest in which + is com-
mutative. Since there are now two categories of interest under consideration, we will
use appropriate labels as needed. For example, {2 refers to the generating set of
operations for (" and AS2 to the corresponding set for A. In addition to the assump-
tion that + is commutative in both C and A, we assume that 423 can be chosen
empty.

For future reference we establish the following notation:

The cotriple G referred to below is the one associated with G = FU.

The category A is easily seen to be an abelian category. lts objects are abelian
groups whose structure may be enriched by some unary operations. Since the object
Y = F,F'(ix}), where {x} is just some one-point set, is a small projective generator
for A, and A is cocomplete by |13, Remark i.1] we know that A is equivalent to the
category of modules over the ring K = End(Y) [12, p. 104).

Let A be an abject in C for which the inclusion 0 -+ ZA4 - 4 splits in A. By this we
mean that there exists {: U4 - U(ZA) such that {(Ut) =idz4) For convenience,
wewrite{: 4 -~—ZA4.

Let E4 consist of equivalence classes of exact sequences in C of the form

14

024 % 4. 5 ELM-0,
¢

where there is an object Tsuch that A < T, E >~ T/Z(T, A),M ~T/(Z(T, A) + A), A
and = are the natural morphisms, and the following identities are satisfied:

SU O =idyza).
U o +u(UN) = idy,.
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Using results of Manes, we see that there is an object in C which can reasonably be
called A(A). Since all triples on S are regular {10, 2.1.2] and T is a triple on sets, we
have that T, = UF, preserves regular coimage factorizations [11, 2.7]. But UTs (with
which we car replace U/;) creates regular coimage factorizations [11, 2.6] and regular
coimage factorizations in S are just ordinary image factorizations [10, p. 74]. So,

U, (M(A)) is just the set

ix € ULE) x = U; (M) (a) for some a in Uy(A)}

and associated with M(A) are surjection y: A - A(4) and an injection §: N(A) = E
such that §y = A. Thus, in A we have:

Un4))
// \\\\
Uy P \\‘ g
yd
UA UE

1 4

Since U, U'UB = U Bis one-one and U, U'Uy = U,y is onto, we conclude that Ug is
monic and Uy is epic. Moreover,

UN = (UN)idgq = (UM (U )§ +v(UN))
= U(A S + (UNAUN) = (UNw(UN).
That is,
(U8 (Uy) = (UB(Un)v(UB) (Uy):
and since Up is monic and Uy is epic,
idi; iy = (Unv)(UB).
Thus, in A, we have a split exact sequence:

Us Un
0->UMA) ——= UF —UM~-0.
Uy
The objects of A, recall, may be viewed as modules over a ring K. In the usual way
(see for example [9, p. 15]), we obtain a morphism u: UM - UE such that

(Umyuy = idUM’
2.1) Uy = 0,
UE > (UMA)) e UM.
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Since C itself is a category of interest, the object P = £ X A4 can be formed precisely
asin [13, §4]. We can also form the sequence
o 1 2
d.d.d .
B + P

d° a4

>

ELM-0

in C and the derivation 3 : B — ZA4 as before.

In the light of the above discussion, if e € £ (i.e., e € U (F)), then, viewed as an
element of UE, it can be written uniquely in the form e = ya + m for some a in 4 and
min M. Hence, in A, the morphisms d®, d1: P — E are given by

dya+tm ay=ya+ad'y+m,
dli(ya+m,d’ y=ya + m.
As mentioned at the beginning of this section, we will show that H3(X, ZY) relative

to U classifies obstructions to extensions ot X by ¥ which are splitin A. We find how-
ever than an arbitrary sequence

042 TR~ 0
gives rise to a sequence
0+ ZAF =1 A = TIZ(T, )= THAT, 4) + 1)~ 0,
which is the representative of an element of E4, but not necessarily of EA. [t is easy
to construct examples by noting that any class of sequences in E4, represented. say,
by
0+ZA-A~-L-M-0
arises from a short exact sequence which is split in A, namely.
0-+A->P~+Pl4-0
where P=E X A.

Although it is not the case that short exact sequences which are split in A give
rise to sequences in E4, we can nevertheless ask whether a surjection p: R = M where

t A
04242 AT2ESM-0
1 4
represents a sequence in EA is induced by a short exact sequence in C; whether we
can classify such extensions if there are any; and whether indeed they are necessarily
splitin A.
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Let
o 1 2
(’0,91 ‘l.’ ,e ,€e
w [ 4 '0 ‘l ;

te a G-projective resolution of R [3] with the special property that e is split in A.
We will use the following fact:

Remark 2.3. If X is G-projective and A ::'{"‘i’ B is a surjection in C which is split by
tin A, then for anv g: X - B there e)ustsg X - Asuch that fg' = g.

Proof. Since X is G-projective, there exists s: X - GX such that eys = id ;. The morph-
sm

g =€4 F(1)G(g)s
has the desired property.

- Our first tisk in developing an obstruction theory is to construct Pg: Py. Py making
’thc following diugram comrautative:

(’o, e‘. ez eo

v p———PRP s €
e ————6X2“‘;'|"X,""’R‘“’0

2 P, 00 P

B :::_—.:pf-—d”:,if——”-weo

This can be done as in [1]. Recall the morphism u: UM - UE satisfying (2.1). By Re-
mark 1.3, there exists p; making the following square commutative:

X, ——R

Il

ETT2 M0

4

I do.di. p P P—FEis the kernel pair of m, then by the universal mappmg property
of P, there exist u: P P such that d% = 30 and 3u = d! and 9y:G2R - P such
that d'p, poe‘ fori=0and 1. In the present context we must show that u is split
in A. With this we can use Remark 2.3 to conclude the existence of p; : X; - P satis-
fying upy =7py. But recall that in A, E (that is U(E)) can be represented as A(4) ® M.
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Thus,

!
|

= {(ey, ey)l ¢; EE and ne; = ne,}

{(yay +m, ya; +m)la;,a, €EAand mEM] .

Suppose x = (ya + m’, a") belongs to P = E X 4 and ux =(va; +m, va; + m) €P.
Then

va, +m =dOux =dOx=y(@a +a')+m'.

By the uniqueness of representation in £ = A\(4) @ M, we have

3, = Y@ +a),
m=m'.
Similarly,
va, +m =dlux=dlx=ya+m'
so that
va, = va
as well. Thus,

ux=u(ya+m' a’)

=(y@+a)+m', ya+m').

We seek an additive map »: P - P which also preserves the unary operations in A€2)
and such that

Uuyr=idyp.
Notice that
024 ::;::-:A % \A4)~0

is a short exact sequence that splits in A and that there is a morphjsm
£: UMA)) = UA in A such that (Uy)f = idyp 4y Let

vyay+m, yay + m)=(yay +m, £v(a; - a3)).
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It is easy to check that v preserves +and w in AS2,. Moreover,

u(yay + m, ya> + m) = u(ya, + m, £v(a; - ay))
=(y(ay + &y(ay - ax)) + m. yay'+ m)
=((yay +vay — va3) + m, ya; +m)

=(ya; + m,yay + m).

py exists asin [1]. This depends only on the universal property of B and not on the
projectivity of X';. The proof that the cohomology class of dp, in Der(X;, ZA4) does
not depend on the choices of p), p) and p, is essentially the same as the proof of
[1. Proposition 2.1]. It uses only universal mapping properties of certain objects in
C and the existence of v.

As usual we say that p is obstructed if the cohomology class of dp, is not 0 and
unobstructed if it is 0.

Corresponding to |1, Theorem 2.2] and [13, Theorem 5.4] we have:

Theorem 2.4. A surjection p : R = M arises from an extension which is split in A iff
p is unobstructed.

Proof. Suppuse p arises from

£ a
0-AT="T&E=2R 0.

X v
As before, we have
. ! o
O0+K ——=T &—2R-0
Ug L4
¥y Yo
,vd%a L,
B_,_,_;P., 'I:G-v—‘-‘-—M""o

where f0. f1: K 2 T is the kernel pair of 0 ¥ = R, ug is the diagonal map, and v,
vy are the projections v;: T—= E =T/Z(T,A)and v): K - P = K/A,. Of course, v,
and vy are surjections.

Since o is split in A, there exists 0y: X| = T'such that oo, = e. Thus,

ny 0 = pOG, = pe.

Let py = vy04. The conclusion that dp, =0 can be reached precisely as in [1].
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Next, let p be unobstructed. As before we can assumc 0p, = 0. In the pullback
diagram

Q_....‘!J__.p

T

GR—— F
Py

q; is easily seen to be split in C since py = p, ide, =d I(s9p4). Call the splitting map
5. @25 = idy . implies that ¢ is surjective.
Consider the diagram:

We need only check that ¢ is split in A. But,
Up(Ug) (Us)w = (Ue)(Uqy) (Us)w = (Ue)w =id 5.

The rest is the same as in [13, §5]. The constructions are carried out in C, which is
a category of interest and G is only used in a formal way. That is, the identities used
are common to all cotriples. '

Next we prove an analogue of [13, Theorem 6.1].

Theorem 2.5. Let p: R =M be unobstructed. Let £ =L, denote the equivalence
classes of extensions

02 AT2T<T=2R~>0

which induce p. Then the group H' (R, ZA) (cohomology with respect to G) acts on
Z,, as a principal homogeneous set.



334 G. Orzech, Obstruction theory in algebraic categories, Il

Proof. From (4], we know that H!(R, ZA) can be thought of as equivalence classes
of extensions of R by ZA which are split in A and which induce the same module
structure on Z4 as that arising from p. Let A denote this set of equivalence classes.
The proof proceeds as in [1]. We note that there is already an addition given in

A=HV(R.ZA). The operation A X £ — E denoted by A + I is described as before.
Let

O-ZA 2l =2 == R-0
and

042 Tt—---—-R -0
represent classes in A and L, respectively Assume ¢4 < U and 4 < T to simplify no-
tation.

If V=i uMe(r) = (u)!is the pullback of ¢ and g and / = {(z2, —-2)l z € ZA} <V,
then we claim :hat

0-A5bViIAR >0,
with { and . * given by

$ia)=4(a, 0) + 1.
S, u) + Iy = (1) = Y(u),

is in £. The splitting map §": UR — U(V/]) is given by
B(r) = (Blr). a(r)) + 1.

It is easy to check that this is correct.
Similarly, we can show that £ X £ — A as defined in [1] works in the present
setting. If Z; € E, are presented by

vi
04 c—-—--—T(——ﬁ-—- -0

1

fori=1%,2and 7 : T, T/Z(T;, A) = E, then
0-24LwusR-0
is ap extension where
= ‘:(fl, lz)L‘!lt! T Tyl and\altl =y,72t2}.
J =i(@a)la€A],
(z)=(z,0)+J,
vi(ty. 1)) + N =¢1(1)) = 951 ).
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We need only check that it is split in A.
The following diagram is commutative for i = | and 2:

Y i
0"""‘"44 - 7} 1-—5—-—- R
i
f" [

O*ZA‘;“:TZA,:;'::'.E:%:M*O

Therefore, 17,8, = pg;; = p fori = 1 and 2, and so (7,8, — 7,8,)(r) € A4 for al!
r€ U(R). For each r € U;(R) choose an element a, in Uy{4) such that
(1287 ~ 7 B Nr) = Na,).

Now define §: R = T by

B(r) = (By(r) + ¥ @,), (B;(n) + ).

First we check that §(r)ET.

1By (1) + ¥Ma,)) = 1) By (r) + 7 ¥N@,) = 7 By(r) + 7 4, ¥Ma,)
=1y8,1r) + \vN@,) =1\ B, (r) + Ma,)
=1181() + 7385 (r) — 7y By (r) = 7255(n),
and

wi(By(r) + 1N @, )= By (r) + ¢y ¥N@,) =1 = ¢y, (7).

8 is readily seen to be a morphism in A.
Finally,

oB(r) = (B, (r) + YA(@,), B3(r) = ¢ (B (r) + ¥N(a,)) = p1B5(r) = 1.

So El - 22 €A.
The proof that
@ (A +A))+Z=A; +(Ay) +3),
b)(Z; - )+ I, =L,
CWA+Z)-Z=A
proceeds as in [13, §6]. It depends on nothing but the construction of several morph-
isms in C, and this is done without reference to A or G.
It remains only to show that every element of H2(R, Z) is an obstruction. As in
§ 1 we must restrict our attention to categories of interest that satisfy axiom (8).
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For the last theorem it is convenient to use the standard resolution for computing
cohomology. First we establish several useful facts.

Lemma 2.6. For each R € C and each n, there is a n.orphism w". UG"R - UG"* R
in A such that

_ w'-YUe) for0O<isn -1,
(Ue')yw' = ‘
idpgng  fori=n,

Proof. As mentioned before, a siinplicial set that underlies an acyclic group complex
satisfies the full box condition. We can use the standard resolution of R to construct
an acyclic group complex in which we will apply this condition.
We proceed by induction on n. If n=0,let w® =n,,p: UR = UGR. Then
(er )Wo = (UGO)W/UR = idUR

s desired. Now assume the lemma holds for m € n. We can form a group complex

1 2
d”t‘i_.‘_d__g 40 a' r
Yy .Y, —=Y,—Y,
So.fl

by letting
Y, = ALG™'R, UGIR)
andd': Y, =Y, ,be gvenby
d'(f) = (Ue")f,
where f: UG"*1R - UG™*IR and €i: GM*!R - G™R for 0 < i< m. Since Aisan

abelian category, Y; is an abelian group. The complex is readily seen to be acyclic.
Next, let

w, (Ue/) for0<j<n,
}J‘i =
idUGI‘H‘]R f()l'j =n+1.
These are elements of Y,,. If i <j < n, then we can show that

diyi =di-1pi
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Ifj=n+1, then
dl'yl' = di“lyi.

Therefore there is a y € Y,y such thatd/y =y/ for 0 << n + 1. Let w,,; =
y. f0<i<nthen

(Ueiyw,,y =dly =y = w, (Ue').
Fori=n+1,
(Ueyw, g =d"*ly =yl =idyoneig.

The next lemma concerns the standard resolution. Following [13, (3.5)], we
note that '

{ n :
E (-1 (Ue"-Nx if n is odd,
=0

{om
| 2, (~1)/(Ueiyx if nis even.
J=0

We also remark that we are using the vonvention
¢ = Gnlegig.
Lemma 2.7. If €,x = 0, then x € im €,,,,.

Proof. Let h, = nygng where 7 is the unit associated with F - U. Sincenisa
natural transformation,

(TUe") nygng = nygn-1g (Ue")
for 0 < i < n. That is,

(Ue)hy, = h, (Ue")
for 0 <i<n, and

(Ue™)h, = idygng -



338 G. Orzech, Obstruction theory in algebraic categories, 11

If nis odd and
n
0=¢,x =2, (~1V(Ue"/)x,
/=0
then
"*l 3 .
€netlpye1 X = 2 (~1Y(UeHh,, x
i=0

n
=Z% (._])/(Llel‘)hn”x + (UG"*I )hn*lx
j=
n o
=), (=1Yh,(Ue)x +x
j=0

n
=h, 25 (- 1Y (Ue)x +x
j=0

n
=h,,(~2 (--1)/'(Ue~—i)x)+x
j=0
=h,(0)+x

=X.

Similarly if n is even. Note that we use the fact that A-morpkisms preserve + in the
above computation. ‘

Theorem 2.8. Let R be an algebra in C and suppose Z(G(R), ker €) = 0. Then given
any R-module Z and class £ € H2(R, Z), there is an object A, a sequence

02Z2AT2AT2E->M~0

ir: EA, and an isomorphism p : R = M such that Z ~ ZA as R-module (via p) and
[o] =&.

Proof. The proof is very much like that of Theorem 1.2. A is defined as in that proof.
Because + is commutative, some of the computations are much simplified in the
present context.

Recall that, given

V=1i{(x,2)EG?R X Z| e!'x = 0},
I ={(e%, -py)ly€G3Rand ely = 2y = ()},
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where p: G3R — Z is a cocycle that represents £, then / < V;and, letting 4 = V/I, it
can be shown that Z is embedded in A as Z4. We must also show that this embed-
ding splits in the category A. For this we use the morphism w, which is described
in Lemma 2.6. Ler §: UA ~ UZ be given by

$(x,2)+ ) =pwyx + 2.
To see that { is well-defined we show that if y € ker €! Nker €2 C G3R, then
pwyely - py = 0.
We first note that
ewyely - y) =(e¥ - el +€2)(wyely - v)
=e082e0y — el0p +ely — €lw, 0y + 2w,y ely — €2y

=w, 00y - 0y — w elely + €0y
=0.

Therefore there is a v € G*R such that

€v) = wyey -y,
and so
pw1€ly - py = p(wyely - ) = pe(v) =0

since p is a cocycle. { is easily seen to be a morphism in A and it is easy to check that

UV =80, 2)+ =z

The rest of the proof is exactly like the proof of Theorem 1. We must, however,
show that the sequence

¢ A L. 7
O*ZT-”«;:?A‘*[:-*M‘*O

constructed there is actually a sequence in EA. It suffices to construct u: UM -~ UE
in A such that (Um)u =id,,. But, recall that p is an isomorphism in C. We can there-
fore define u by

u(m) = (Upgmyg (Up~H) (m),
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and check that

(Umu(m) = (Un)(UpgInyg (Lo=1)(m)
= (Up)(UeP)nyp(Up~HY(m) = m.
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