
Theoretical Computer Science 412 (2011) 4100–4109

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Constant-factor approximations of branch-decomposition and largest
grid minor of planar graphs in O(n1+ϵ) time✩

Qian-Ping Gu a,∗, Hisao Tamaki b
a School of Computing Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
b Department of Computer Science, Meiji University, 1-1-1 Higashi-mita, Tamaku, Kawasaki-shi, 214-8571, Japan

a r t i c l e i n f o

Keywords:
Graph algorithms
Branch-decompositions
Graph minors

a b s t r a c t

We give constant-factor approximation algorithms for computing the optimal branch-
decompositions and largest grid minors of planar graphs. For a planar graph G with n
vertices, let bw(G) be the branchwidth of G and gm(G) the largest integer g such that G has
a g × g grid as a minor. Let c ≥ 1 be a fixed integer and α, β arbitrary constants satisfying
α > c + 1 and β > 2c + 1. We give an algorithmwhich constructs in O(n1+ 1

c log n) time a
branch-decomposition of Gwith width at most α bw(G). We also give an algorithm which
constructs a g × g grid minor of G with g ≥

gm(G)

β
in O(n1+ 1

c log n) time. The constants
hidden in the Big-O notations are proportional to c

α−(c+1) and c
β−(2c+1) , respectively.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The notions of branchwidth and branch-decompositions were introduced by Robertson and Seymour [23] in relation
to the more celebrated notions of treewidth and tree-decompositions [21,22] in graph minor theory. Grid minors also
play an important role in graph minor theory. All these notions have important algorithmic applications. A graph of small
treewidth/branchwidth admits efficient dynamic programming algorithms for a vast class of problems on the graph [2,5].
A tree-/branch-decomposition-based dynamic programming algorithm usually runs in exponential time in the width of the
tree-/branch-decomposition. Grid minors are fundamental in many algorithms studied in algorithmic graph minor theory
and bidimensionality theory [9–12]. The ratio of the treewidth or branchwidth of a graph over the largest size of the grid
minor of the graph typically appears in the exponent of the running time of those algorithms.

For an arbitrary graph G, the treewidth tw(G) of G and the branchwidth bw(G) of G are linearly related by inequalities
bw(G) ≤ tw(G) + 1 ≤ ⌊

3bw(G)

2 ⌋, and there are simple translations between tree- and branch-decompositions that prove
these inequalities [23]. The problems of deciding the treewidth/branchwidth of a given graph and constructing a tree-
/branch-decomposition of minimum width have a long history of research. For general graphs, the problem of deciding
whether a given graph has treewidth smaller than k is NP-complete, if k is part of the input [1]. If k is upper-bounded by a
constant, then both the decision problem and the optimal decomposition problem can be solved in linear time [6], although
the dependency of the time on k is huge. There are exact parallels for branchwidth and branch-decompositions to these
results: NP-completeness [26] and a linear-time algorithm for fixed k [7].

For some classes of graphs, however, these two types of width/decomposition problem dramatically differ in terms of
known results. For example, it is easy to construct an optimal tree-decomposition of chordal graphs in polynomial time,

✩ A preliminary version of this paper appeared in (Q.P. Gu, H. Tamaki, Constant-factor approximations of branch-decomposition and largest grid minor
of planar graphs in O(n1+ϵ) time, in: Proc. of the 2009 International Symposium on Algorithms and Computation, ISAAC 2009, 2009, pp. 984–993) [19].
∗ Corresponding author. Tel.: +1 778 782 6705; fax: +1 778 782 3045.

E-mail addresses: qgu@cs.sfu.ca (Q.-P. Gu), tamaki@cs.meiji.ac.jp (H. Tamaki).

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.07.017

http://dx.doi.org/10.1016/j.tcs.2010.07.017
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:qgu@cs.sfu.ca
mailto:tamaki@cs.meiji.ac.jp
http://dx.doi.org/10.1016/j.tcs.2010.07.017

Q.-P. Gu, H. Tamaki / Theoretical Computer Science 412 (2011) 4100–4109 4101

while it is NP-complete to decide, given a chordal graph G and a positive integer k, if the branchwidth of G is smaller than
k [20]. This situation is partially reversed on planar graphs, where the decision problem for branchwidth can be solved in
O(n2) time by thewell-known rat-catching algorithm of Seymour and Thomas [26] and optimal branch-decompositions can
be constructed in O(n3) time [15,26], while it is not knownwhether the problem of deciding the treewidth of a planar graph
is polynomially solvable or NP-complete (the problem is widely believed NP-hard though).

Approximation algorithms for computing the width and minimum-width decompositions have also been extensively
studied (see recent work [3,4] for literature). Because of the relationship between treewidth/tree-decomposition and
branchwidth/branch-decomposition stated above, the approximation problems for these two types ofwidth/decomposition
are almost equivalent. For general graphs, the best known approximation factor achievable in polynomial time is O(

√
log k)

[13], where k is the optimal width, and constant-factor approximation algorithms take time exponential in the optimal
width [3,24]. For planar graphs, the best-known approximation result for treewidth is the obvious O(n2 log n) time 1.5-
approximation algorithm, which uses the rat-catching algorithm of Seymour and Thomas [26] and a binary search. Tree-
decompositions take O(n3) time for 1.5-approximation. Bodlaender, Grigoriev, and Koster give another constant-factor
approximation algorithm for the treewidth of planar graphs that runs in O(n2 log n) time but uses less memory [4].

Computing large gridminors of planar graphs is a key ingredient in algorithmic graphminor theory and bidimensionality
theory [9–12]. It is not known whether a largest grid minor can be computed in polynomial time for planar graphs. For a
graph G, let gm(G) denote the largest size of a grid minor of G, that is, the largest integer g such that G has a g × g grid
minor. From the definition of branchwidth (see Section 2), gm(G) ≤ bw(G). The branchwidth bw(G) is also upper-bounded
by some function of gm(G). For general graphs, the known upper bound is bw(G) ≤ 202(gm(G))5 , while for planar graphs a
linear bound bw(G) ≤ 4gm(G) is known [25]. This linear bound gives an algorithm which finds a g × g grid minor with
g ≥

gm(G)

4 for planar graphs.1 An O(n2 log n)-time algorithm which gives the same bound of g ≥
gm(G)

4 is also known [4].
The inequalities tw(G) ≤ ⌊

3bw(G)

2 ⌋ and bw(G) ≤ 4gm(G) give a linear bound tw(G) ≤ 6gm(G) for planar graphs. This bound
has been improved to tw(G) ≤ 5gm(G) [14,28]. The bounds bw(G) ≤ 4gm(G) and tw(G) ≤ 5gm(G) for planar graphs have
been exploited in many algorithms developed under bidimensionality theory, which work on a large grid minor if they find
one and otherwise use a tree-/branch-decomposition of small width. In those applications, improving the coefficient in the
bound is important, as it appears in the exponent of the running time of the algorithms. Recently, the present authors have
improved the bound, showing that bw(G) ≤ 3gm(G) + 1 for planar graph G [17].2 From the relation tw(G) ≤ ⌊

3bw(G)

2 ⌋, this
gives tw(G) ≤ 4.5gm(G) + 2 for planar graphs, improving the previous tw(G) ≤ 5gm(G) results of [14,28]. The algorithm
implied by their proof, given a planar graph G on n vertices and a positive integer k, runs in O(n2) time and either finds a
k×k gridminor or certifies that bw(G) ≤ 3k−2. This algorithm yields an asymptotic 3-approximation algorithm for finding
the largest grid minor of planar graphs which is the best known in terms of the approximation ratio but not faster than
other known constant-factor approximation algorithms. For branchwidth, the result may not have significant algorithmic
consequences, because of the rat-catching algorithm of Seymour and Thomas mentioned earlier.

The purpose of this paper is to build on the ideas in [17] to develop faster constant-factor algorithms for branch-
decompositions and largest grid minors of planar graphs. Our results are the fastest known constant-factor approximation
algorithms for both problems. To gain in speed, we sacrifice the approximation ratio. In fact, our algorithms are
parameterized and provide a trade-off between the running time and the approximation ratio. Our algorithm for gridminors
actually finds a more general cylinder minor fromwhich a grid minor can be straightforwardly derived. A k× k′ cylinder is a
Cartesian product of a cycle on k vertices and a path on k′ vertices. Our main results are expressed in the following theorem.

Theorem 1.1. Let c ≥ 1 be a fixed integer, δ > 0 be a constant, and λ =
1
2 or 1. Given a planar graph G with n vertices and

an integer k, there is an algorithm which in O(n1+ 1
c) time constructs either a branch-decomposition of G with width at most

(2λ(c + 1) + δ)k or a k × ⌈λk⌉ cylinder minor of G, where the constant hidden in the Big-O notation is proportional to c
δ
.

Because a k×⌈λk⌉ cylinder has branchwidthmin{2⌈λk⌉, k} [17], Theorem 1.1 with λ =
1
2 , together with a binary search,

implies the following result.

Theorem 1.2. Let c ≥ 1 be a fixed integer, δ > 0 be an arbitrary constant, and α = δ + c + 1. Given a planar graph G with n
vertices, we can in O(n1+ 1

c log n) time construct a branch-decomposition of G with width at most α bw(G).

Theorem 1.2 can be readily extended to planar hypergraphs. This theorem naturally implies an O(n1+ϵ)-time constant-
factor approximation algorithm for tree-decompositions of planar graphs, with an additional multiplicative factor of 1.5.

Since a k×⌈λk⌉ cylinder has a k×⌈λk⌉ grid minor, taking λ = 1, the following result can be obtained from Theorem 1.1
and a binary search.

Theorem 1.3. Let c ≥ 1 be a fixed integer, δ > 0 be an arbitrary constant, and β = δ + 2c + 1. Given a planar graph G with n
vertices, we can in O(n1+ 1

c log n) time construct a g × g grid minor of G with g ≥
bw(G)

β
.

1 An O(n2 log n) time implementation can be realized by using the rat-catching algorithm of Seymour and Thomas [26] to construct an oracle for the
tangles which are required in constructing the grid minor.
2 The bound stated in [17] is bw(G) ≤ 3gm(G) + 2 and is improved to bw(G) ≤ 3gm(G) + 1 by Remark 3.1 of [18].

4102 Q.-P. Gu, H. Tamaki / Theoretical Computer Science 412 (2011) 4100–4109

The next section gives preliminaries of the paper.We describe the basic approach for our algorithm in Section 3.Weprove
Theorem 1.1 in Section 4, assuming a main lemma, which asserts the existence of an efficient algorithm for performing a
certain subtask. This main lemma is proved in Section 5. The final section concludes the paper.

2. Preliminaries

A hypergraph G consists of a set V (G) of vertices and a set E(G) of edges, where each edge e of E(G) is a subset of V (G)
with at least two elements. For a set E ⊆ E(G) of edges, let V (E) denote ∪e∈E e. A hypergraph G is a graph if |e| = 2 for every
edge e ∈ E(G). We say that a vertex v and an edge e are incident to each other if v ∈ e. We say that two edges e1 and e2 are
incident to each other if e1 ∩ e2 ≠ ∅. A hypergraph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph H of
G is induced by E ⊆ E(G) if E(H) = E and V (H) = V (E). We denote by G[E] the subgraph induced by E.

For a hypergraph G and a subset A ⊆ E(G) of edges, we denote E(G)\A by Awhen G is clear from the context. A separation
of hypergraph G is an ordered pair (A, A) of subsets of E(G). For each A ⊆ E(G), we denote by ∂(A) the vertex set V (A)∩V (A).
The order of separation (A, A) is |∂(A)| = |∂(A)|.

The notions of branchwidth and branch-decomposition were introduced by Robertson and Seymour [23]. A branch-
decomposition of hypergraph G is a pair (φ, T), where T is a tree each internal node of which has degree 3 and φ is a bijection
from the set of leaves of T to E(G). Consider an edge e′ of T and let L1 and L2 denote the sets of leaves of T in the two respective
subtrees of T obtained by removing e′. We say that the separation (φ(L1), φ(L2)) is induced by this edge e′ of T . We define the
width of the branch-decomposition (φ, T) to be the largest order of the separations induced by edges of T . The branchwidth
of G, denoted by bw(G), is the minimum width of all branch-decompositions of G. In the rest of this paper, we identify a
branch-decomposition (φ, T) with the tree T , leaving the bijection implicit and regarding each leaf of T as an edge of G.

A walk in hypergraph G is a vertex-edge alternating sequence v0, e1, v1, . . . , ek, vk such that vi ≠ vi+1 for 0 ≤ i < k,
vi ∈ ei for 1 ≤ i ≤ k and vi ∈ ei+1 for 0 ≤ i < k. The length of a walk is the number of edges in the walk. A walk is a path if
vertices v0, . . . , vk are distinct. We call v0 and vk the end vertices of the path. A cycle is a walk such that k ≥ 3, v0 = vk and
vertices v1, . . . , vk are distinct. We denote by Pk the graph which is a path on k vertices (of length k − 1). We denote by Ck
the graph which is a cycle on k vertices.

For two graphs G and H , the Cartesian product G × H is a graph with V (G × H) = V (G) × V (H) and E(G × H) =

{{(u, v), (w, v)}|v ∈ V (H), {u, w} ∈ E(G)} ∪ {{(v, u), (v,w)}|v ∈ V (G), {u, w} ∈ E(H)}. A k × k′ grid is the Cartesian
product Pk × Pk′ . A k × k′ cylinder is the Cartesian product Ck × Pk′ .

The contraction of an edge e in a hypergraph G is to remove e from G, identify all vertices of e by a new vertex, and make
all edges of G incident to e incident to the new vertex. A hypergraph H is a minor of hypergraph G if H is isomorphic to a
hypergraph obtained from G through a (possibly empty) sequence of edge contractions and edge/vertex deletions (which
take the subgraphs induced by the remaining sets of edges/vertices).

Let Σ be a fixed sphere. A set D of points in Σ is a topological disk of Σ if it is homeomorphic to an open disk
{(x, y) | x2 + y2 < 1} in the plane. For an open disk D, we denote by D the closure of D and by bd(D) = D \ D the
boundary of D.

A planar embedding of a hypergraph G is a mapping ρ : V (G) ∪ E(G) → Σ ∪ 2Σ satisfying the following properties.

• For u ∈ V (G), ρ(u) is a point of Σ , and for distinct u, v ∈ V (G), ρ(u) ≠ ρ(v).
• For each edge e ∈ E(G), ρ(e) is a topological disk of Σ , and for each vertex u ∈ e, ρ(u) is on the boundary of ρ(e).
• For distinct e1, e2 ∈ E(G), ρ(e1) ∩ ρ(e2) = {ρ(u)|u ∈ e1 ∩ e2}.

A hypergraph is planar if it has a planar embedding. A plane hypergraph is a pair (G, ρ), where ρ is a planar embedding
of G. Wemay simply use G to denote the plane hypergraph (G, ρ), leaving the embedding ρ implicit. For a plane hypergraph
G, each connected component ofΣ \ (∪e∈E(G)ρ(e)) is a face of G. We denote by F(G) the set of faces of G. We say that a vertex
v (respectively, edge e) is incident to a face r if ρ(v) ∈ r (respectively, ρ(e) ∩ r ≠ ∅). We denote by V (r) and E(r) the sets
of vertices and edges incident to face r , respectively. We denote by F(e) and F(v) the sets of faces an edge e and a vertex v
incident to, respectively. We do not distinguish a vertex v (respectively, an edge e) from its embedding ρ(v) (respectively,
ρ(e)) when there is no confusion.

A plane hypergraph G is biconnected if, for any vertex x ∈ V (G) and each pair of vertices u, v ∈ V (G) \ {x}, there is a
path of G between u and v that does not pass through x. It suffices to prove Theorem 1.1 for biconnected plane graphs since,
if a plane graph G is not biconnected, the problems of finding branch-decompositions and grid minors of G can be solved
individually for each biconnected component.

Let G be a plane hypergraph. We say that a curve µ on the sphere Σ is G-normal if µ does not intersect with itself
or any edge of G. We may use normal for G-normal, leaving G implicit. The length of a normal curve µ is the number of
connected components of µ \


v∈V (G) ρ(v). A noose of G is a closed normal curve on Σ . Aminimum noose satisfying certain

properties is a noose with the minimum length satisfying the properties. A segment of a noose is open if it is homeomorphic
to {(x, 0)|0 < x < 1} in the plane. For an open segment P , we denote by P the closure of P and the two points of P \ P the
end points of P .

Q.-P. Gu, H. Tamaki / Theoretical Computer Science 412 (2011) 4100–4109 4103

For vertices u, v ∈ V (G), we define the normal distance ndG(u, v) to be the length of the shortest normal curve
between ρ(u) and ρ(v). We define the normal distance between two vertex-subsets X, Y ⊆ V (G) to be ndG(X, Y) =

minu∈X,v∈Y ndG(u, v). We also write ndG(X, v) for ndG(X, {v}) and ndG(u, Y) for ndG({u}, Y).
Let ν be a noose of G and let R1 and R2 be the two open regions of the sphere separated by ν. Then, ν induces a separation

(A, A) of G, with A = {e ∈ E(G) | ρ(e) ⊆ R1} and A = {e ∈ E(G) | ρ(e) ⊆ R2}. We also say that noose ν induces edge
subset A of G if ν induces a separation (A, A) having A on one side. We call a separation or an edge subset noose-induced if
it is induced by some noose. We say that a noose separates edge sets X and Y if the noose induces a separation (A, A) with
X ⊆ A and Y ⊆ A.

Let G be a plane hypergraph and let A be a noose-induced edge subset of G. We denote by G|A a plane hypergraph defined
by V (G|A) = (V (G) \V (A))∪ ∂(A) and E(G|A) = (E(G) \ E(A))∪{∂(A)}. Note that, in G|A, we replace all the hyperedges of A
by a single hyperedge ∂(A). Let R1 be the region separated by the noose which induces A and containing A. We assume that
the embedding of G|A is naturally derived from that of G by ‘‘painting out’’ R1 by a topologic disk representing the hyperedge
∂(A). For a collection A = {A1, . . . , Ar} of mutually disjoint edge subsets of G, we denote (. . . (G|A1)| . . .)|Ar by G|A.

3. Basic approach

We first give some known results on which our algorithm relies and the basic approach of our algorithm. Let G be a plane
hypergraph, (A, A) a noose-induced separation of G, and TA and TA branch-decompositions of G|A and G|A, respectively. We
define TA + TA to be the tree obtained from TA and TA by first identifying the leaf of TA and the leaf of TA both corresponding
to ∂(A) and joining the two edges incident to these leaves into one edge and removing the identified leaves. The following
lemma is straightforward from the definition of branch-decompositions.

Lemma 3.1. Let G be a plane hypergraph, (A, A) a noose-induced separation of G, and TA and TA branch-decompositions of G|A
and G|A, respectively. Then TA + TA is a branch-decomposition of G with width max{|∂(A)|, kA, kA}, where kA is the width of TA
and kA is the width of TA.

We use this lemma to recursively construct branch-decompositions of a given plane hypergraph. For each recursive step,
we need some known results on the branchwidth of planar hypergraphs.

Let G be a plane hypergraph with each edge of G incident to at most k − 1 vertices and |V (G)| + |E(G)| = n. Let d > 0
be an integer. Assume that there is an edge e0 of G such that, for any vertex v of G, ndG(e0, v) ≤ d. It is proved in [17] that
G has branchwidth at most k − 1 + 2d. It is further shown in [18] that, given such an edge e0, a branch-decomposition of G
with width at most k − 1 + 2d can be constructed in O(n) time.

Lemma 3.2 ([18]). Let k > 0 and d > 0 be integers. Let G be a plane hypergraph with each edge of G incident to at most
k − 1 vertices and |V (G)| + |E(G)| = n. If there is an edge e0 such that, for any vertex v of G, ndG(e0, v) ≤ d, then, given e0, a
branch-decomposition of G with width at most k − 1 + 2d can be constructed in O(n) time.3

The following lemma (see the Appendix for a self-contained proof), which is an application of a result of [17], gives a base
for constructing the cylinder minors.

Lemma 3.3 ([17]). Let G be a plane graph and let k, k′ > 0 be integers. Let X and Y be edge sets of G satisfying the following
conditions.

(1) Each of separations (X, X) and (Y , Y) is noose-induced.
(2) G[Y] is biconnected.
(3) ndG(X, Y) ≥ k′.
(4) There is no noose of G with length < k that separates X and Y .

Then G has a cylinder Ck × Pk′ as a minor, and, given (G|X)|Y , such a minor can be constructed in time linear in |V (X ∩ Y)|.

Let G be a plane hypergraph and e0 an edge of G. For any positive integers h and k, a collection A of noose-induced edge
subsets of G is (k, h)-shallowing for (G, e0), if it satisfies the following conditions.

(1) e0 ∈ A for every A ∈ A.
(2) G|A is biconnected for every A ∈ A.
(3) A ∩ B = ∅ for every pair of distinct elements A, B ∈ A.
(4) |∂(A)| < k for every A ∈ A.
(5) For each vertex v of G|A, ndG(e0, v) ≤ h.

3 Let p > 0 be an integer. If for any vertex v of G there is a vertex u of G such that ndG(u, v) ≤ p, then, given such a vertex u, a branch-decomposition
of Gwith width at most ⌈

k
2 ⌉ + 2p can be found in linear time [27]. In the preliminary version of this paper the algorithm of [27] was used. Because 2p can

be as large as k + 2d, the algorithm of [18] gives a better upper bound on the width of the branch-decomposition found for G than that by the algorithm
of [27]. We use the algorithm of [18] in this version. As a result, the approximation ratios α and β of the algorithms are improved from α > c + 1.5 and
β > 2c + 1.5 to α > c + 1 and β > 2c + 1.

4104 Q.-P. Gu, H. Tamaki / Theoretical Computer Science 412 (2011) 4100–4109

A (k, h)-shallowing collection A of noose-induced edge subsets is used to reduce the problem of decomposing G, via
Lemma 3.1, to subproblems of decomposing G|A for each A ∈ A. Based on this notion of (k, h)-shallowing collection, we
give a recursive procedure used in our algorithm. In this procedure, the input k to the algorithm is global. The precise value
of parameter h used in the algorithm will be specified later. For now, we simply remark that h = O(k). The parameter λ is
either 1

2 or 1.
Procedure Branch-Grid(G|U)
Input: A biconnected plane hypergraph G|U with ∂(U) specified, |∂(U)| < k and every other edge has exactly two vertices.
Output: Either a branch-decomposition of G|U of width at most k − 1 + 2h or a k × ⌈λk⌉ cylinder minor of G.
Steps:

(1) If ndG|U(∂(U), v) ≤ h for each v ∈ V (G|U), then apply Lemma 3.2 to find a branch-decomposition of G|U . Otherwise,
proceed to the next step.

(2) Try to find a collection A of noose-induced edge subsets of G|U that is (k, h)-shallowing for (G|U, ∂(U)). When
unsuccessful, we are able to apply Lemma 3.3 to find a cylinder minor of G and terminate the algorithm, as we prove
later.
If we find such a collection, proceed to the next step.

(3) For each A ∈ A, call Branch-Grid(G|A) to construct a branch-decomposition TA or a cylinder minor of G|A.
If we find a branch-decomposition TA for every A ∈ A, apply Lemma 3.2 to (G|U)|A to construct a branch-decomposition
T0 of (G|U)|A and use Lemma 3.1 to combine these branch-decompositions TA, A ∈ A, and T0 into a branch-
decomposition T of G|U and return T .

To bound the number of recursive calls in which each fixed vertex is involved in the computation of Step 2, we enforce some
‘‘progress’’ when we recurse on each noose-induced edge subset in A. Let e0 be an edge of G and let d > 0 be arbitrary. We
say that a noose-induced edge subset A of G is d-progressive for (G, e0) if it satisfies the following conditions.

(1) e0 ∈ A.
(2) For any vertex v of G, if ndG(e0, v) ≤ d, then v ∈ V (A).

We say a collection of noose-induced edge subsets is d-progressive for (G, e0) if each of its members is d-progressive for
(G, e0). Informally, if a noose-induced edge subset A of G|U is d-progressive for (G|U, ∂(U)) and Branch-Grid(G|U) makes a
recursive call Branch-Grid(G|A), then each vertex of G|U gets closer to ∂(A) in (G|U)|A than to ∂(U) in G|U by the amount of
at least d, as long as it appears in (G|U)|A. This is how we enforce a progress in the recursion.

4. Algorithm details

We now give the details of our algorithm, including the precise value of parameter hwhich depends on a positive integer
c and a positive constant δ.

For a plane hypergraph G, an edge e0 of G, and a nonnegative integer d, let

reachG(e0, d) =


{v ∈ V (G)|ndG(e0, v) ≤ d}

denote the set of vertices with normal distance d or smaller from edge e0. Let λ =
1
2 or 1.We define d1 = δk, and for positive

integer i ≥ 2, di = di(k) = d1 + (i − 1)(⌈λk⌉ − 1).
Theorem 1.1 relies on the following lemma, which will be proved in Section 5, and guarantees that we can find a

sufficiently shallowing and progressive collection of noose-induced edge subsets during the recursion, as long as bw(G) < k.

Lemma 4.1. Let c ≥ 1 be a fixed integer and δ an arbitrary positive constant. Let G be a biconnected plane graph, k a
positive integer, and U a noose-induced edge subset of G with |∂(U)| < k. Let M denote the number of vertices of G|U in
reachG|U(∂(U), dc+1). If reachG|U(∂(U), dc+1) ≠ V (G|U), we can in O(M1+ 1

c) time either

(1) find a δk-progressive and (k, dc+1)-shallowing collection A of noose-induced edge subsets for (G|U, ∂(U)), or
(2) find a k × ⌈λk⌉ cylinder minor of G|U.

In executing Step 2 of Procedure Branch-Grid, we invoke Lemma 4.1 and obtain a d-progressive and (k, h)-shallowing
collection of noose-induced edge subsets with d = δk and h = dc+1. When the search for such a collection is unsuccessful,
Lemma 4.1 ensures that a k × ⌈λk⌉ cylinder minor of G is found. Theorem 1.1 follows from the following lemma, which in
turn is proved assuming that Lemma 4.1 is true.

Lemma 4.2. Given a biconnected plane graphGand an integer k ≥ 3, suppose Branch-Grid(G|e0) is called,where e0 is an arbitrary
edge of G. The algorithm gives either a branch-decomposition of G with width at most k− 1+ 2dc+1 or a k×⌈λk⌉ cylinder minor
of G. The execution time of this call is O(n1+ 1

c), where n is the number of vertices of G.

Proof. When the algorithm fails in finding a δk-progressive and (k, dc+1)-shallowing collection of noose-induced edge
subsets for (G|U, ∂(U)), at any point in the execution, Lemma 4.1 ensures that a k× ⌈λk⌉ cylinder minor is found. Suppose

Q.-P. Gu, H. Tamaki / Theoretical Computer Science 412 (2011) 4100–4109 4105

that this does not happen and that the initial call returns a branch-decomposition of G. We show by induction on the
recursion structure that each Branch-Grid(G|U) call in the recursion returns a branch-decomposition of G|U with width
at most k − 1 + 2dc+1. For the base case, suppose that Branch-Grid(G|U) does not make any recursive calls. This means
that ndG|U(∂(U), v) ≤ dc+1 for each v of G|U . Moreover, |e| < k for each e ∈ E(G|U), since |e| < k for each e ∈ E(G)
and |∂(U)| < k by the choice of U . Therefore, by Lemma 3.2, this call returns a branch-decomposition of width at most
k − 1 + 2dc+1. For the induction step, suppose that Branch-Grid(G|U) makes a recursive Branch-Grid(G|A) call for each
A ∈ A. Because G|A is biconnected, by the induction hypothesis, each call returns a branch-decomposition of G|A with
width at most k − 1 + 2dc+1. Moreover, again by Lemma 3.2, the branch-decomposition we obtain for (G|U)|A has width
at most k − 1 + 2dc+1, since A is (k, dc+1)-shallowing for (G|U, ∂(U)) and (G|U)|A is biconnected. The combined branch-
decomposition for G|U has width at most k − 1 + 2dc+1 by Lemma 3.1. This completes the induction.

We now analyze the running time. We say that a vertex v of G is involved in the call Branch-Grid(G|U), if v is in
reachG|U(∂(U), dc+1). We first observe that a vertex is involved in two Branch-Grid(G|U) and Branch-Grid(G|U ′) calls only
if these two calls are in the ancestor–descendant relationship in the tree of recursive calls, since otherwise U and U ′ are
disjoint.

Let b be an arbitrary positive integer and suppose that there is a chain of b + 1 calls Branch-Grid(G|U0), Branch-
Grid(G|U1), . . . , Branch-Grid(G|Ub), where Branch-Grid(G|Ui) for each 0 ≤ i < b directly calls Branch-Grid(G|Ui+1).
Suppose, furthermore, that a vertex v ofG is involved in all of these calls. Since the collections of noose-induced edge subsets
in the algorithm are δk-progressive, nd(..(G|U0)..|Ui)|Ui+1(∂(Ui+1), v) ≤ nd(..(G|U0)..|Ui)(∂(Ui), v) − δk, for 0 ≤ i < b, and since
ndG|U0(∂(U0), v) ≤ dc+1, b ≤

dc+1
δk = O(1). Therefore, each vertex of G may be involved in O(1) calls. Since the running

time of call Branch-Grid(G|Ui), excluding what is spent in the recursive calls, is dominated by the O(M1+ 1
c) time spent in the

application of Lemma 4.1, whereM is the number of vertices of G involved in this call, it follows that the total running time
is O(n1+ 1

c), where n is the number of vertices of G. �

5. Proof of the main lemma

In this section, we prove Lemma 4.1 to complete the proof of Theorem 1.1. We first describe the main ideas. Let G and U
be as in Lemma 4.1. For each subgraph X of G|U that is at distance h away from ∂(U) (a precise definition is given later), we
try to find a separation of order smaller than k that separates X from ∂(U), using the linear-time algorithm for the vertex-
disjoint paths for planar graphs [16]. If we fail to find such a separation for any X , then, by Lemma 3.3, we obtain a cylinder
minor of G that certifies bw(G) ≥ k. If we do obtain separation (AX , AX) of order smaller than k for each X that separates X
from ∂(U), then we hope that these edge subsets AX constitute a (k, h)-shallowing collection for (G|U, ∂(U)). There are two
issues to be resolved in this approach.

(1) These subsets may not be disjoint from each other as required by the definition of (k, h)-shallowing collections.
(2) Even though the algorithm for the vertex-disjoint paths runs in linear time, the computation must be repeated for each

X and may result in a quadratic running time.

The first issue is resolved by Lemma 5.2. The second issue is resolved by a layered tree approach described below combined
with Lemma 5.1 that helps in localizing the graph on which the vertex-disjoint path algorithm is executed. Lemma 5.1 is a
modified version of Lemma 3.6 in [17]. We include a self-contained proof for this lemma here.

Lemma 5.1 ([17]). Let G be a plane hypergraph and h a positive integer. Let X ⊆ E(G) and e0 ∈ X. For i = 0, 1 let ci be a cycle
or an edge of G such that c0 and c1 are edge-disjoint, and one of the regions separated by ci contains c1−i as well as all edges of X
(see Fig. 1). Suppose further that, for i = 0, 1 and for each v ∈ V (ci), ndG(e0, v) = h.

Let (A, A) be a noose-induced separation that satisfies the following conditions.

(1) E(c0) ⊆ A and X ⊆ A.
(2) |∂(A)| is the smallest subject to condition (1).
(3) A is minimal subject to conditions (1) and (2).

Then, either E(c1) ⊆ A or A ∩ E(c1) = ∅.

Proof. We prove the lemma for the case that both c0 and c1 are cycles of G. The proofs for the other cases are similar and
simpler. Let ν be a noose that induces separation (A, A). Suppose for contradiction that E(c1) ⊈ A and A ∩ E(c1) ≠ ∅. Then,
ν must intersect at least two distinct vertices of c1. For each i = 0, 1, we call the region separated by ci that does not contain
X the interior region of ci. Let ν ′ be a maximal open segment of ν that does not intersect any vertices of c1 or the interior
region of c1. Let the endpoints of ν ′ be v1 and v2, v1, v2 ∈ V (c1) (see Fig. 1).

For each vertex v ∈ V (c0), there is a vertex uv ∈ e0 such that ndG(uv, v) = h because ndG(e0, v) = h. Let µv be a normal
curve of length h between v and uv . We assumewithout loss of generality that, for any pair of distinct vertices v, w ∈ V (c0),
µv and µw do not intersect each other. For each v ∈ V (c0), let pv denote the point at which µv and ν intersects; we choose
the one closest to v if there aremultiple intersections. Note that, because of the distance conditions, pv lies on the segment ν ′

of ν. For i = 1, 2, let wi ∈ V (c0) be the vertex such that pwi is the closest to vi on ν ′ (see Fig. 1). We claim that w1 and w2 are
adjacent on c0. For, otherwise, there are two vertices u1, u2 ∈ V (c0) such that u1, w1, u2, w2 appear in this order on c0, while

4106 Q.-P. Gu, H. Tamaki / Theoretical Computer Science 412 (2011) 4100–4109

Fig. 1. Explanations on the proof of Lemma 5.1.

pu1 and pu2 appear between pw1 and pw2 on ν ′, and hence µui and µwj must cross for at least one pair (i, j) ∈ {1, 2} × {1, 2},
contradicting our assumption. For i = 1, 2, let µ′

wi
be the segment of µwi between wi and pwi and let ν ′′

i be the segment of
ν ′ between vi and pwi (see Fig. 1). Since ndG(e0, wi) = ndG(e0, vi) = h, the length of the normal curve ν ′′

i cannot be smaller
than that of µ′

wi
. Let ν̂ be a noose obtained by concatenating µ′

w1
, the segment of ν ′ between pw1 and pw2 , µ

′
w2

and finally a
normal curve of length 1 along an edge of c0 that closes the loop. Fromwhat we have proved on the lengths of µ′

w1
and µ′

w2
,

we conclude that the length of ν̂ is no greater than that of ν. But then the separation induced by ν̂ contradicts theminimality
condition (2) or (3) of A. �

Lemma 5.2. Let G be a biconnected plane hypergraph, e0 ∈ E(G), k > 0 an integer, and 0 < d < d′ integers such that each edge
in G[V (G) \ reachG(e0, d)] has exactly two vertices. Let X ⊆ E(G) be a biconnected component of G[V (G) \ reachG(e0, d)] and
Xi ⊆ E(G), for 1 ≤ i ≤ r, biconnected components of G[V (G) \ reachG(e0, d′)] that are contained in X. Suppose that, for each
1 ≤ i ≤ r, there is a separation (Ai, Ai) of G with |∂(Ai)| < k such that X ⊆ Ai and Xi ⊆ Ai. Then, there is a mutually disjoint
collection A of edge subsets of G such that

(1) |∂(A)| < k for each A ∈ A,
(2) G|A is biconnected for each A ∈ A, and
(3) for each 1 ≤ i ≤ r, there is some A ∈ A such that Xi ⊆ A and X ⊆ A.

Moreover, we can construct such a collection A in O(r|X \


1≤i≤r Xi|) time.

Proof. We first choose separation (Ai, Ai) for each 1 ≤ i ≤ r so that it satisfies the following conditions.

(1) Xi ⊆ A and X ⊆ A.
(2) |∂(Ai)| is the smallest subject to condition (1).
(3) Ai is minimal subject to conditions (1) and (2).

We first claim that, for 1 ≤ i, j ≤ r and i ≠ j, either Xj ⊆ Ai or Xj ∩ Ai = ∅. To apply Lemma 5.1, we observe the following.
Since G[Xi] is biconnected for each i, either G[Xi] has a cycle ci bounding its outer face or is a single edge, which we also
denote by ci. Observe also that ndG(e0, v) = d′

+ 1 for every v ∈ ci for every 1 ≤ i ≤ r; certainly ndG(e0, v) ≥ d′
+ 1 from

the definition of Xi and ndG(e0, v) ≤ d′
+ 1, since v must be incident to a face which in turn is incident to a vertex v′ with

ndG(e0, v′) ≤ d′. Therefore, we can apply Lemma 5.1 to verify the claim.
Let I be a minimal subset of {1, . . . , r} such that, for every 1 ≤ i ≤ r , there is some j ∈ I with Xi ⊆ Aj. I is well defined,

because Xi ⊆ Ai for each i. Then, for any pair i, j ∈ I of distinct indices, Xi ⊈ Aj holds, and hence, by the claim above,
Xi ∩ Aj = ∅ holds. Based on this, we prove below that Ai ∩ Aj = ∅ for each distinct i, j ∈ I and G|Ai is biconnected for each
i ∈ I . Then we are done, since A = {Ai | i ∈ I} satisfies the condition of the lemma.

Fix i, j ∈ I . For notational convenience, and without loss of generality, we assume that i = 1 and j = 2. Let ν1 and ν2 be
nooses that induce separations (A1, A1) and (A2, A2), respectively. Suppose for contradiction that A1 ∩A2 ≠ ∅. Since 1, 2 ∈ I ,
neither A1 nor A2 is a subset of the other. Therefore, ν1 and ν2 must intersect. We count one maximal segment of ν2 that
is contained in the region separated by ν1 and containing c1 as one intersection between ν1 and ν2. We assume that the
number of intersections between ν1 and ν2 is the smallest over all the possible choices of ν1 and ν2 that induce the desired
separations. From the above claim and the choice of I , A1 ∩ X2 = ∅ and A2 ∩ X1 = ∅.

Let σ2 be amaximal segment of ν2 that is contained in the region separated by ν1 and containing c1. Let σ1 be the segment
of ν1 that shares endpoints with σ2 and, together with σ2, forms a noose that separates c2 from c1. Let σ ′

1 = ν1 \ σ1. If the
length of σ2 is at most that of σ ′

1, then we may replace ν1 by the noose consisting of σ1 and σ2, which either contradicts
the minimality of A1 or the minimality of the number of intersections between ν1 and ν2. Therefore, we must have that
the length of σ2 is strictly larger than that of σ ′

1. Let ν ′

2 be the curve obtained from ν2 by replacing the segment σ2 by σ ′

1.

Q.-P. Gu, H. Tamaki / Theoretical Computer Science 412 (2011) 4100–4109 4107

This curve ν ′

2 may be self-intersecting. However, some closed subcurve of ν ′

2 does bound a region containing X2, as the region
separated by ν1 and containing X1 does not contain any edge of X2. This subcurve is a noose of G and induces a separation
that contradicts the minimality of A2. Therefore A1 ∩ A2 = ∅.

Let u, v, x be arbitrary distinct vertices of V (Ai). Then u, v, x are also vertices of V (X). Since G[X] is biconnected, there
is a path p between u and v in G[X] that does not pass through x. Let p′ be the path obtained by replacing each subpath q
(possibly none) of p, where every edge of q is in Ai and the end vertices of q are in ∂(Ai), by the edge ∂(Ai). Then p′ is a path
between u and v in G|Ai that does not pass through x. That is, G|Ai is biconnected.

The mutual disjoint collection A can be computed as follows. We replace ∂(X) and ∂(Xi) in (G|X)|Xi with star graphs
SX and Si, respectively, where V (SX) = {vX } ∪ {v|v ∈ ∂(X)}, vX is a new vertex, and E(SX) = {{vX , v}|v ∈ ∂(X)};
V (Si) = {vi} ∪ {v|v ∈ ∂(Xi)}, vi is a new vertex, and E(Si) = {{vi, v}|v ∈ ∂(Xi)}. Then we compute a set of maximum
number of vertex-disjoint paths p1, . . . , pr between vX and vi. By Menger’s theorem, r is equal to the size of the minimum
vertex-cut separating vX and vi. From this, there is a noose of length r that intersects exactly one vertex other than vX or
vi of each path pj (1 ≤ j ≤ r). To find the desired separation, we put a pebble on a vertex of each path pj (1 ≤ j ≤ r),
initially on the vertex adjacent to vi. We say that two paths pj1 and pj2 are adjacent if there is a vertex of pj1 and a vertex of
pj2 incident to a same face. For each pair of adjacent paths, we check if the pebbles on the paths are incident to a same face.
If not, wemove pebbles towards to vX to make the two pebbles incident to a same face. The process must terminate with all
pebbles on a noose in (G|X)|Xi that induces the separation (Ai, Ai) such that ∂(Ai) is a minimum vertex-cut set separating
∂(X) and ∂(Xi), and Ai is minimal. The total number of moves for pebbles is bounded by the total number of vertices in paths
p1, . . . , pj.

Lemma 5.1 implies that, for any vertex v ∈ ∂(Ai), Ai ∈ A, ndG(e0, v) ≤ d′. This helps us to bound the running time
for computing Ai. Let B = {Xi|1 ≤ i ≤ r} and let H be the hypergraph obtained from hypergraph (G|X)|B with ∂(X) and
∂(Xi) replaced by the corresponding star graphs. From Lemma 5.1, a minimum noose in H separating ∂(X) and ∂(Xi) is also
a minimum noose in G separating X and Xi. Hypergraph H is planar and |V (H)| ≤ M , whereM is the number of vertices of G
in reachG(e0, d′). It is shown in [16] that the maximum vertex-disjoint paths problem on H can be converted in linear time
to the maximum edge-disjoint paths problem on a planar graph M(H), called the medial graph [26], derived from H . Since
|V (M(H))| = O(|V (H)|) [26] and the maximum edge-disjoint paths problem in planar graphs can be solved in linear time
[8,29], the maximum vertex-disjoint paths problem and thus the separation (Ai, Ai) can be computed in O(M) time. Because
this computation may be repeated r times, the time for computing A is O(r|X \


1≤i≤r Xi|). �

Let G and e0 be as above. The layer tree for (G, e0), denoted by LT(G, e0), is defined as follows. Recall that d1 = δk, and for
positive integer i ≥ 2, di = di(k) = d1 + (i − 1)(⌈λk⌉ − 1).

(1) The root of the tree is V (G).
(2) Each biconnected component of G[V (G) \ reachG(e0, d1)] is in level 1 of the tree and is a child node of the root.
(3) For each i, 2 ≤ i ≤ c , each biconnected component X of G[V (G) \ reachG(e0, di)] is in level i of the tree and is a child

node of the connected component of G[V (G) \ reachG(e0, di−1)] that contains X .

Let X be a non-root node of LT(G, e0) and Y a child node of X . Since ndG(X, Y) ≥ di − di−1 + 1 ≥ ⌈λk⌉ and G[Y] is
biconnected, we can apply Lemma 3.3 to obtain a noose-induced edge subset Awith ∂(A) < k separating X and Y , assuming
that bw(G) < k. Our strategy is to find at least one such noose along the path from each leaf in level c + 1 to the root.

Letm denote the number of leaves in level c + 1 of LT(G, e0). We classify nodes of LT(G, e0) as crowded or uncrowded by
induction on its tree structure. We classify each leaf in level c + 1 as crowded. We classify a node in other levels as crowded
if it has more than m

1
c crowded child nodes. Otherwise it is uncrowded. We call a parent–child pair (X, Y) processable if X

is uncrowded, Y is crowded, and no ancestor of X is crowded.

Lemma 5.3. In LT(G, e0), for every leaf Z in level c +1, the path from the root to Z contains exactly one processable parent–child
pair.

Proof. Observe that each node in the first level is uncrowded, since otherwise it would have more than m descendants in
level c + 1. The lemma immediately follows from this observation and the definition of processable pairs. �

To ‘‘process’’ a parent–child pair (X, Y), that is, to find a minimum noose separating X and Y , we solve the maximum
vertex-disjoint paths problem for planar hypergraphs as we described in the proof of Lemma 5.2. To localize the problem,
we define a hypergraphH(X, Y) for each parent–child pairX, Y in LT(G, e0) as follows. Let i be the level of nodeX in LT(G, e0).
Then,H(X, Y) = (G|X)|B, whereB is the collection of biconnected components of X \ reachG(e0, di+1). Let ν be aminimum
noose in G separating X and a Y ∈ B in G, and suppose that |ν| < k. By Lemma 5.1, ν is also a minimum noose separating
the edge ∂(X) and the edge ∂(Y) in H(X, Y). Thus, running the algorithm for the maximum vertex-disjoint paths problem
in H(X, Y) is sufficient for deciding whether there is a noose of G of length smaller than k separating X and Y and, if there
is, finding such a noose.

Lemma 5.4. Let G be a biconnected plane graph and U a noose-induced edge subset of G. Let M denote the number of vertices
of G|U in reachG|U(∂(U), dc+1). Then, in O(M1+ 1

c) time, we can either find a collection A of noose-induced edge subsets of G
satisfying the following conditions or a k × ⌈λk⌉ cylinder minor of G.

4108 Q.-P. Gu, H. Tamaki / Theoretical Computer Science 412 (2011) 4100–4109

(1) reachG|U(∂(U), d1) ⊆ A for each A ∈ A.
(2) G|A is biconnected for each A ∈ A.
(3) For any A, B ∈ A, either A ⊆ B, B ⊆ A, or A ∩ B = ∅.
(4) |∂(A)| < k for each A ∈ A.
(5) For each biconnected component Z of V (G|U) \ reachG|U(∂(U), dc+1), there is A ∈ A with Z ⊆ A.

Proof. We process each processable pair in the layer tree LT(G|U, ∂(U)). Let v be an arbitrary vertex of G|U and let i be such
that di < ndG|U(∂(U), v) ≤ di+1. LetW (respectively, Z) be the only node of LT(G|U, ∂(U)) at level i−1 (respectively, level i)
such that v ∈ V (W) (respectively, v ∈ V (Z)). Then, v is a vertex ofH(X, Y) for a parent–child pair X, Y in LT(G|U, ∂(U)) only
if X = W or X = Z . Therefore, there are at most 2m

1
c processable pairs (X, Y) for which v is in H(X, Y), wherem ≤ M is the

number of leaves in level c+1 of LT(G|U, ∂(U)). The time for processing pair (X, Y) is dominated by the timeO(MX,Y), where
MX,Y is the number of vertices of H(X, Y), for computing the maximum vertex-disjoint paths as described in the proof of
Lemma 5.2. We conclude that the total time for processing all processable pairs is

∑
(X,Y):processable O(MX,Y) = O(M1+ 1

c).
If for any pair the minimum noose found has length k or larger, then by Lemma 3.3 we find a k×⌈λk⌉ cylinder minor. If this
does not happen, then there is a noose of length smaller than k that separates X and Y for each processable pair (X, Y). From
Lemmas 5.2 and 5.3, and the definition of the layer tree LT(G|U, ∂(U)), we can find a desired collection of noose-induced
edge subsets. �

We are now ready to prove Lemma 4.1 (the main lemma).

Proof. Given G and U , assume that bw(G) < k and let A denote the collection of noose-induced edge subsets of G obtained
by Lemma 5.4.

We show thatA is (k, dc+1)-shallowing and (δk)-progressive for (G|U, ∂(U)). Let v be an arbitrary vertex ofG|U . Suppose
that v is in (G|U)|A. The construction ofA ensures that the shortest normal curve from ∂(U) to v in G|U remains in (G|U)|A,
and therefore we have nd(G|U)|A(∂(U), v) ≤ ndG|U(∂(U), v) ≤ dc+1. From this and Lemma 5.4, A is (k, dc+1)-shallowing for
(G|U, ∂(U)).

Let A ∈ A be arbitrary and let v be an arbitrary vertex of G|U . If ndG|U(∂(U), v) ≤ δk then v ∉ V (A). Suppose that v is a
vertex of V (A). Let u be a vertex of ∂(U) such that ndG(∂(U), v) = ndG(u, v) and let w be the vertex of ∂(A) on the shortest
normal curve from u to v in G|U . Then, from ndG|U(u, w) ≥ δk,

nd(G|U)|A(∂(A), v) ≤ nd(G|U)|A(w, v)

= nd(G|U)(u, v) − nd(G|U)(u, w)

≤ ndG|U(∂(U), v) − δk.

This shows that A is δk-progressive for (G|U, ∂(U)). �

6. Concluding remarks

We have given O(n1+ϵ)-time constant-factor approximation algorithms for the optimal branch-decompositions and
largest grid minors of planar graphs. It is interesting to develop linear-time constant-factor approximation algorithms
for these problems. Another interesting open problem is that, given a graph G and an integer k, it is not known whether
gm(G) ≥ k can be decided in polynomial time even for planar G. An optimal branch-decomposition of a planar graph can be
computed in O(n3) time [15,26]. It is worth developing o(n3)-time exact algorithms for the optimal branch decompositions
of planar graphs. It is also interesting to develop efficient (1 + ϵ)-approximation algorithms for the optimal branch-
decompositions and largest grid minors of planar graphs.

Appendix

We give a proof for Lemma 3.3. Readers may refer to [17] for more details.

Lemma 3.3 ([17]). Let G be a plane graph and let k, k′ > 0 be integers. Let X and Y be edge sets of G satisfying the following
conditions.

(1) Each of separations (X, X) and (Y , Y) is noose-induced.
(2) G[Y] is biconnected.
(3) ndG(X, Y) ≥ k′.
(4) There is no noose of G with length < k that separates X and Y .

Then G has a cylinder Ck × Pk′ as a minor, and, given (G|X)|Y , such a minor can be constructed in time linear in |V (X ∩ Y)|.

Q.-P. Gu, H. Tamaki / Theoretical Computer Science 412 (2011) 4100–4109 4109

Proof. Let ν be the noose which induces the edge subset Y and Y (ν) ⊆ Y such that each edge of Y (ν) is incident with a face
intersected by ν. Because G[Y] is biconnected, Y (ν) forms a cycle. Let H be the plane graph obtained from the plane graph
Gwith sets X and Y \ Y (ν) removed. Let f1 and f2 be the faces in H for which the corresponding disks in G contain X and Y ,
respectively. Then, from the third condition of the lemma, for any u ∈ V (f1) and v ∈ V (f2), the normal distance between u
and v in H is at least k′

− 1 (i.e., ndH(u, v) ≥ k′
− 1). Let F(H) be the set of faces of H , R0 = {f1} and V0 = V (f1). For i ≥ 1,

define a set Ri ⊆ F(H) of faces and a set Vi ⊆ V (G) of vertices inductively as follows.

(1) Ri is the set of faces incident with a vertex in Vi−1 but not belonging to Rj for any j < i.
(2) Vi is the set of vertices incident with a face in Ri but not belonging to Vj for any j < i.

Let ρ be the embedding of H . For i ≥ 0, let H[Vi] be the plane graph induced by Vi from H (the embedding ρi for H[Vi] is
obtained from ρ forH by restricting it to the vertices and edges ofH[Vi]). Note that each connected component ofH[


j>i Vj]

must lie, under embedding ρ, in a single face of H[Vi].
We identify k′ vertex-disjoint cycles c0, . . . , ck′−1 of H in the reverse order as follows. First, we let ck′−1 be the cycle

bounding face f2. Because of the fourth condition of the lemma, every vertex of V (ck′−1)must belong to Vi for some i ≥ k′
−1.

Therefore, theremust be a face ofH[Vk′−2] that containsρ(ck′−1).We let ck′−2 be the cycle bounding this face.More generally,
for 0 ≤ i ≤ k′

− 2, we define ci to be the cycle bounding the face of H[Vi] that contains ρ(ci+1).
We claim that there are k vertex-disjoint paths between V (c0) and V (ck′−1). Suppose otherwise. Then, by Menger’s

theorem, there must be a separation (A, A) of G with order smaller than k such that V (c0) ⊆ V (A) and V (ck′−1) ⊆ V (A). If
we choose this separation so that ∂(A) is minimal, then it is induced by some noose in G. By the construction of the cycles,
it follows that X ⊆ V (A) and Y ⊆ V (X), a contradiction. �

References

[1] S. Arnborg, D. Cornell, A. Proskurowski, Complexity of finding embedding in a k-tree, SIAM J. Discrete Math. 8 (1987) 277–284.
[2] S. Arnborg, J. Lagergren, D. Seese, Easy problems for tree-decomposable graphs, J. Algorithms 12 (1991) 308–340.
[3] E. Amir, Approximation algorithms for treewidth, Algorithmica 56 (2010) 448–479.
[4] H.L. Bodlaender, A. Grigoriev, A.M.C.A. Koster, Treewidth lower bounds with brambles, Algorithmica 51 (1) (2008) 81–98.
[5] H.L. Bodlaender, A tourist guide through treewidth, Acta Cybernet. 11 (1993) 1–21.
[6] H.L. Bodlaender, A linear time algorithm for finding tree-decomposition of small treewidth, SIAM J. Comput. 25 (1996) 1305–1317.
[7] H.L. Bodlaender, D. Thilikos, Constructive linear time algorithm for branchwidth, in: Proc. of the 24th International Colloquium on Automata,

Languages, and Programming, 1997, pp. 627–637.
[8] L. Coupry, A simple linear time algorithm for the edge-disjoint (s, t)-paths problem in undirected planar graphs, Inform. Process. Lett. 64 (1997)

83–86.
[9] F. Dorn, F.V. Fomin, D.M. Thilikos, Catalan Structures and Dynamic Programming inH-minor-free graphs, in: Proc. of the 2008 Symposium on Discrete

Algorithms, SODA 2008, 2008, pp. 631–640.
[10] E.D. Demaine, M.T. Hajiaghayi, Graphs excluding a fixed minor have grids as large as treewidth, with combinatorial and algorithmic applications

through bidimensionality, in: Proc. of the 2005 Symposium on Discrete Algorithms, SODA 2005, 2005, pp. 682–689.
[11] E.D. Demaine, M.T. Hajiaghayi, Bidimensionality, map graphs, and grid minors, arXiv:Computer Science, DM/052070, v1, 2005.
[12] E.D. Demaine, M.T. Hajiaghayi, K. Kawarabayashi, Algorithmic graph minor theory: decomposition, approximation, and coloring, in: Proc. of the 2005

IEEE Symposium on Foundation of Computer Science, FOCS 2005, 2005, pp. 637–646.
[13] U. Feige, M.T. Hajiaghayi, J.R. Lee, Improved approximation algorithms forminimumweight vertex separators, SIAM J. Comput. 38 (2) (2008) 629–657.
[14] A. Grigoriev, Tree-width and large grid minors in planar graphs, (2008) (submitted for publication).
[15] Q.P. Gu, H. Tamaki, Optimal branch decomposition of planar graphs in O(n3) time, ACM Trans. Algorithms 4 (3) (2008) 1–13. article No. 30.
[16] Q.P. Gu, H. Tamaki, Efficient reduction of vertex-disjoint Menger problem to edge-disjoint Menger problem in undirected planar graphs, Technical

Report, SFU-CMPT-TR 2009-11, May 2009.
[17] Q.P. Gu, H. Tamaki, Improved bound on the planar branchwidth with respect to the largest grid minor size, Technical Report, SFU-CMPT-TR 2009-17,

July 2009.
[18] Q.P. Gu, H. Tamaki, A radius-based linear-time-constructive upper bound on the branchwidth of planar hypergraphs, Technical Report, SFU-CMPT-TR

2009-21, Nov. 2009.
[19] Q.P. Gu, H. Tamaki, Constant-factor approximations of branch-decomposition and largest grid minor of planar graphs in O(n1+ϵ) time, in: Proc. of the

2009 International Symposium on Algorithms and Computation, ISAAC 2009, 2009, pp. 984–993.
[20] T. Kloks, J. Kratochvíl, H. Müller, Computing the branchwidth of interval graphs, Discrete Appl. Math. 145 (2) (2005) 266–275.
[21] N. Robertson, P.D. Seymour, Graph minors I. Excluding a forest, J. Combin. Theory Ser. B 35 (1983) 39–61.
[22] N. Robertson, P.D. Seymour, Graph minors II. Algorithmic aspects of tree-width, J. Algorithms 7 (1986) 309–322.
[23] N. Robertson, P.D. Seymour, Graph minors X. Obstructions to tree decomposition, J. Combin. Theory Ser. B 52 (1991) 153–190.
[24] N. Robertson, P.D. Seymour, Graph minors XIII. The disjoint paths problem, J. Combin. Theory Ser. B 63 (1995) 65–110.
[25] N. Robertson, P.D. Seymour, R. Thomas, Quickly excluding a planar graph, J. Combin. Theory Ser. B 62 (1994) 323–348.
[26] P.D. Seymour, R. Thomas, Call routing and the ratcatcher, Combinatorica 14 (2) (1994) 217–241.
[27] H. Tamaki, A linear time heuristic for the branch-decomposition of planar graphs, in: Proc. of ESA2003, 2003, pp. 765–775.
[28] R. Thomas, Tree decompositions of graphs, p. 3, 2009. www.math.gatech.edu/thomas/SLIDE/slide.ps.
[29] K. Weihe, Edge-disjoint (s, t)-paths in undirected planar graphs in linear time, J. Algorithms 23 (1997) 121–138.

http://www.math.gatech.edu/thomas/SLIDE/slide.ps

	Constant-factor approximations of branch-decomposition and largest grid minor of planar graphs in O (n1+ ε) time
	Introduction
	Preliminaries
	Basic approach
	Algorithm details
	Proof of the main lemma
	Concluding remarks
	Appendix
	References

