Fibonacci mean and golden section mean

Hee Sik Kim ${ }^{\text {a,* }}$, J. Neggers ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Hanyang University, Seoul 133-791, Republic of Korea
${ }^{\mathrm{b}}$ Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA

Received 28 May 2007; received in revised form 17 November 2007; accepted 4 December 2007

Abstract

In this paper we show that there is a mapping $D: M \rightarrow D M$ on means such that if M is a Fibonacci mean so is $D M$, that if M is the harmonic mean, then $D M$ is the arithmetic mean, and if M is a Fibonacci mean, then $\lim _{n \rightarrow \infty} D^{n} M$ is the golden section mean.

(C) 2008 Elsevier Ltd. All rights reserved.

Keywords: (Inverse derived) Fibonacci mean; (Inverse) derived mean; Golden section mean

1. Introduction

In this paper we shall discuss a variety of "mean" $M(x, y)$ where $x \geq 0, y \geq 0$ and relations among them. Of particular interest is the family of "Fibonacci means"

$$
M(x, y)=\frac{a(x+y)+2 b x y}{2 a+b(x+y)}
$$

where $M(x, x)=\frac{2 a x+2 b x^{2}}{2 a+2 b x}=x$ provided $2 a+2 b x \neq 0$.
Particular cases are $a>0, b=0, M(x, y)=\frac{x+y}{2}$, the average (arithmetic mean), $a=0, b>0, M(x, y)=\frac{2 x y}{x+y}$, the harmonic mean, and if $q=\frac{1+\sqrt{5}}{2}, M_{q}(x, y)=\frac{q(x+y)+2 x y}{2 q+(x+y)}$, the golden section mean. Hence the harmonic mean, the arithmetic mean and golden section mean are special cases of the Fibonacci mean.

We shall show below that there is a mapping $D: M \rightarrow D M$ on means such that if M is a Fibonacci mean so is $D M$, that if M is the harmonic mean, then $D M$ is the arithmetic mean, and if M is a Fibonacci mean, then $\lim _{n \rightarrow \infty} D^{n} M$ is the golden section mean. We shall refer to $D M$ as the derived mean of M, e.g., the derived harmonic mean is the arithmetic mean. We refer to $[1,2]$ for general information.

[^0]
2. Derived mean

Definition 2.1. If M is a mean, then $D M$ is defined by the functional equation:

$$
\begin{equation*}
\frac{1}{1+D M(x, y)}=M\left(\frac{1}{1+x}, \frac{1}{1+y}\right) . \tag{1}
\end{equation*}
$$

We say that $D M$ is the derived mean of M.
For example, if $M(x, y)=\sqrt{x y}$ is the geometric mean, then $D M(x, y)=\sqrt{(1+x)(1+y)}-1$ is the derived geometric mean. Indeed, from the functional equation $\frac{1}{1+D M(x, y)}=\frac{1}{\sqrt{(1+x)(1+y)}}$, the conclusion follows immediately. Note that in this case $D M(x, y) \geq M(x, y)$. Indeed, if $x=m^{2}-1, y=n^{2}-1$, then $(\sqrt{x y})^{2}=\left(m^{2}-1\right)\left(n^{2}-1\right)=$ $m^{2} n^{2}+1-\left(m^{2}+n^{2}\right) \leq\left(\sqrt{m^{2} n^{2}}-1\right)^{2}=m^{2} n^{2}+1-2 m n$, since $m^{2}+n^{2} \geq 2 m n$, i.e., $(m-n)^{2} \geq 0$.

Definition 2.2. Let M_{i} be means where $i=1$, 2. We define $M_{1} \leq M_{2}$ provided $M_{1}(x, y) \leq M_{2}(x, y)$ for any $x, y \geq 0$.

Proposition 2.3. If $M_{1} \geq M_{2}$, then $D M_{1} \leq D M_{2}$.
Proof. If $M_{1}(x, y) \geq M_{2}(x, y)$, then $\frac{1}{1+D M_{1}(x, y)}=M_{1}\left(\frac{1}{1+x}, \frac{1}{1+y}\right) \geq M_{2}\left(\frac{1}{1+x}, \frac{1}{1+y}\right)=\frac{1}{1+D M_{2}(x, y)}$ so that $1+D M_{1}(x, y) \leq 1+D M_{2}(x, y)$ and $D M_{1}(x, y) \leq D M_{2}(x, y)$.

Hence if $D^{2} M(x, y)=D(D M(x, y)), M(x, y)=\sqrt{x y}$, then $D^{2} M(x, y) \leq D M(x, y)$ for example, where we find that $D^{2} M(x, y)=\frac{2 \sqrt{(1+x)(1+y)}-\sqrt{(2+x)(2+y)}}{\sqrt{(2+x)(2+y)}-\sqrt{(1+x)(1+y)}}$, in this case.

Theorem 2.4. The derived harmonic mean is the arithmetic mean.
Proof. If $M(x, y)=\frac{2 x y}{x+y}$, then $\frac{1}{1+D M(x, y)}=\frac{2}{2+x+y}$ and hence $1+D M(x, y)=(2+x+y) / 2$, so that $D M(x, y)=\frac{x+y}{2}$.

We note that if $M(x, y)=\frac{a(x+y)+2 b x y}{2 a+b(x+y)}$, then $D M(x, y)=\frac{(a+b)(x+y)+2 a x y}{2(a+b)+a(x+y)}$. Hence if $a=0$ then $D M(x, y)=$ $(x+y) / 2$ as we have already seen. Starting from $M_{0}(x, y)=\frac{a_{0}(x+y)+2 b_{0} x y}{2 a_{0}+b_{0}(x+y)}$, we let $D^{k+1} M_{0}=D\left(D^{k} M_{0}\right)$ and $D^{k} M_{0}(x, y)=\frac{a_{k}(x+y)+2 b_{k} x y}{2 a_{k}+b_{k}(x+y)}$ so that we obtain an iteration system $a_{k+1}=a_{k}+b_{k}$ and $b_{k+1}=a_{k}$. Combining these results, we have $a_{k+1}=a_{k}+a_{k-1}, b_{k+1}=a_{k-1}+a_{k-2}=b_{k}+b_{k-1}$, so that the iterations are of the Fibonacci type, thus our terminology "Fibonacci means".

3. Inverse derived mean

Definition 3.1. Given a mean $M(x, y)$, the inverse derived mean $D^{-1} M(x, y)$ is given by the formula:

$$
\begin{equation*}
\frac{1}{1+M(x, y)}=D^{-1} M\left(\frac{1}{1+x}, \frac{1}{1+y}\right) . \tag{2}
\end{equation*}
$$

If $M(x, y)=\sqrt{x y}$, then a computation yields $D^{-1} M(x, y)=\frac{\sqrt{x y}}{\sqrt{x y}+\sqrt{(1-x)(1-y)}}$.
Theorem 3.2. Given a mean $M(x, y), M(x, y)=D D^{-1} M(x, y)=D^{-1} D M(x, y)$ for any $x, y \geq 0$.
Proof. By applying (1) and (2) we obtain

$$
\begin{aligned}
\frac{1}{1+D D^{-1} M(x, y)} & =D^{-1} M\left(\frac{1}{1+x}, \frac{1}{1+y}\right) \\
& =\frac{1}{1+M(x, y)}
\end{aligned}
$$

and $D D^{-1} M(x, y)=M(x, y)$. Also $\frac{1}{1+D M(u, v)}=D^{-1} D M\left(\frac{1}{1+u}, \frac{1}{1+v}\right)=M\left(\frac{1}{1+u}, \frac{1}{1+v}\right)$ and thus $D^{-1} D M(x, y)=$ $M(x, y), x=\frac{1-u}{u}, y=\frac{1-v}{v}$, proving the theorem.

By Theorem 3.2 we may continue with negative "powers" $D^{-k} M, k=1,2, \ldots$ so that for $k, l \in Z$, we have a general rule $D^{k} D^{l} M=D^{k+l} M$.

Theorem 3.3. The inverse derived Fibonacci mean is also a Fibonacci mean.
Proof. If $M(x, y)=\frac{a(x+y)+2 b x y}{2 a+b(x+y)}$, then $D^{-1} M\left(\frac{1}{1+x}, \frac{1}{1+y}\right)=\frac{2 a+b(x+y)}{2 a+(a+b)(x+y)+2 b x y}$. If we let $u:=\frac{1}{1+x}, v:=\frac{1}{1+y}$, then

$$
\begin{equation*}
D^{-1} M(u, v)=\frac{b(u+v)+2(a-b) u v}{2 b+(a-b)(u+v)} \tag{3}
\end{equation*}
$$

and the conclusion follows.
If we start a table with $a_{0}=0, b_{0}=1, M_{0}(x, y)=\frac{2 x y}{x+y}$, then we generate a table:

k	a_{k}	b_{k}
-4	-3	5
-3	2	-3
-2	-1	2
-1	1	-1
0	0	1
1	1	0
2	1	1
3	2	1
4	3	2
5	5	3
6	8	5
7	13	8
8	21	13

For example, since $a_{-3}=2, b_{-3}=-3$, we have $D^{-3} M_{0}(x, y)=\frac{a_{-3}(x+y)+2 b_{-3} x y}{2 a_{-3}+b_{-3}(x+y)}=\frac{2(x+y)-6 x y}{4-3(x+y)}$. Similarly, $D^{6} M_{0}(x, y)=\frac{8(x+y)+10 x y}{16+5(x+y)}$. In fact, if we let $M(x, y)=\frac{a(x+y)+2 b x y}{2 a+b(x+y)}$, then by (3) we get

$$
\begin{equation*}
D^{-1} M(x, y)=\frac{b(x+y)+2(a-b) x y}{2 b+(a-b)(x+y)} . \tag{4}
\end{equation*}
$$

Subsequently

$$
\begin{equation*}
D^{-2} M(x, y)=\frac{(a-b)(x+y)+2(2 b-a) x y}{2(a-b)+(2 b-a)(x+y)} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
D^{-3} M(x, y)=\frac{(2 b-a)(x+y)+2(2 a-3 b) x y}{2(2 b-a)+(2 a-3 b)(x+y)} \tag{6}
\end{equation*}
$$

If we let $a:=0, b:=1$ in (4)-(6), then we obtain $D^{-1} M(x, y)=\frac{x+y-2 x y}{2-(x+y)}, D^{-2} M(x, y)=\frac{1(x+y)+4 x y}{-2+2(x+y)}$, and $D^{-3} M(x, y)=\frac{2(x+y)+(-6) x y}{4+(-3)(x+y)}=D^{-3} M(x, y)$, as already noted above.

4. Fibonacci mean and golden section mean

The golden section mean $M_{q}(x, y)$ is defined by $M_{q}(x, y)=\frac{q(x+y)+2 x y}{2 q+(x+y)}$ where $q=\frac{1+\sqrt{5}}{2}$, and we define $M_{q^{*}}(x, y)$ by $\frac{q^{*}(x+y)+2 x y}{2 q^{*}+(x+y)}$ where $q^{*}=\frac{1-\sqrt{5}}{2}$, which is called a conjugate golden section mean.

Theorem 4.1. Let $M(x, y)=\frac{a(x+y)+2 b x y}{2 a+b(x+y)}$ be a Fibonacci mean. If $M(x, y)=D M(x, y)$, then either $M(x, y)=$ $M_{q}(x, y)$ or $M(x, y)=M_{q^{*}}(x, y)$.

Proof. If $M(x, y)=D M(x, y)$, then

$$
\frac{a(x+y)+2 b x y}{2 a+b(x+y)}=\frac{(a+b)(x+y)+2 a x y}{2(a+b)+a(x+y)} .
$$

Hence $\left(a^{2}-a b-b^{2}\right)(x-y)^{2}=0$ for any $x, y \geq 0$, and thus $a^{2}-a b-b^{2}=0$ and $a=(b \pm \sqrt{5}|b|) / 2$. If $b>0$, then either $a=b q$ or $a=b q^{*}$. Hence either $M(x, y)=M_{q}(x, y)$ or $M(x, y)=M_{q^{*}}(x, y)$. If $b<0$, then $a=(b \mp \sqrt{5}|b|) / 2$, and hence this is the same as the case for $b>0$.

Proposition 4.2. Let $M(x, y)=\frac{a(x+y)+2 b x y}{2 a+b(x+y)}$ be a Fibonacci mean. If $M(x, y)=D^{2} M(x, y)$, then either $M(x, y)=$ $M_{q}(x, y)$ or $M(x, y)=M_{q^{*}}(x, y)$.
Proof. Similar to Theorem 4.1.
Theorem 4.3. If $M(x, y)=\frac{a(x+y)+2 b x y}{2 a+b(x+y)}$ is a Fibonacci mean, then $\lim _{n \rightarrow \infty} D^{n} M$ is the golden section mean.
Proof. Consider $D^{k} M_{0}(x, y)=\frac{a_{k}(x+y)+2 b_{k} x y}{2 a_{k}+b_{k}(x+y)}$. Then $b_{k}=a_{k-1}$ and $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ are Fibonacci sequences, and hence $a_{k-1}^{2}-a_{k-2} a_{k}=(-1)^{k}$ and $b_{k-1}^{2}-b_{k-2} b_{k}=(-1)^{k}$. From this we obtain

$$
\begin{equation*}
a_{k+2} b_{k}-b_{k+2} a_{k}=(-1)^{k} . \tag{7}
\end{equation*}
$$

Furthermore,

$$
\begin{aligned}
D^{k+2} M_{0}(x, y)-D^{k} M_{0}(x, y) & =\frac{\left(b_{k} a_{k+2}-a_{k} b_{k+2}\right)(x-y)^{2}}{\left(2 a_{k+2}+b_{k+2}(x+y)\right)\left(2 a_{k}+b_{k}(x+y)\right)} \\
& =\frac{(-1)^{k}(x-y)^{2}}{\left(2 a_{k+2}+b_{k+2}(x+y)\right)\left(2 a_{k}+b_{k}(x+y)\right)}
\end{aligned}
$$

so that for k even we have $D^{k+2} M_{0}(x, y) \geq D^{k} M_{0}(x, y)$, i.e., $M_{0} \leq D^{2} M_{0} \leq D^{4} M_{0} \leq D^{6} M_{0}$, and for k odd we have $D^{k+2} M_{0}(x, y) \leq D^{k} M_{0}(x, y)$, so that we have a chain $D M_{0} \geq D M_{0}^{3} \geq D^{5} M_{0} \geq \cdots$. Next, we consider the term $D^{2 n+1} M_{0}(x, y)-D^{2 m} M_{0}(x, y)=\Delta$ with the simplified expression written as

$$
\Delta=\frac{\left(b_{2 m} a_{2 n+1}-a_{2 m} b_{2 n+1}\right)(x-y)^{2}}{\left(2 a_{2 n+1}+b_{2 n+1}(x+y)\right)\left(2 a_{2 m}+b_{2 m}(x+y)\right)} .
$$

Now,

$$
\begin{aligned}
b_{2 m} a_{2 n+1}-a_{2 m} b_{2 n+1} & =a_{2 m-1} a_{2 n+1}-a_{2 m} a_{2 n} \\
& =a_{2 m-1}\left(a_{2 n}+a_{2 n-1}\right)-\left(a_{2 m-1}+a_{2 m-2}\right) a_{2 n} \\
& =a_{2 m-1} a_{2 n-1}-a_{2 m-2} a_{2 n} \\
& =\left(a_{2 m-2}+a_{2 m-3}\right) a_{2 n-1}-a_{2 m-2}\left(a_{2 n-1}+a_{2 n-2}\right) \\
& =a_{2 m-3} a_{2 n-1}-a_{2 m-2} a_{2 n-2},
\end{aligned}
$$

which turns out to be

$$
\begin{cases}a_{2(m-n)-1} a_{1}-a_{2(m-n)} a_{0}=a_{2(m-n)-1} & \text { if } m>n \\ a_{-1} a_{1}-a_{0}^{2}=1 & \text { if } m=n \\ a_{-1} a_{2(n-m)+1}-a_{0} a_{2(n-m)}=a_{2(n-m)+1} & \text { if } m<n\end{cases}
$$

Hence, $\Delta \geq 0$, i.e., $D^{2 n+1} M_{0}(x, y) \geq D^{2 m} M_{0}(x, y)$, for any natural numbers m, n.
For any $x, y \geq 0$ (fixed), we compute

$$
\lim _{m, n \rightarrow \infty}|\Delta| \leq \lim _{m, n \rightarrow \infty}\left|\frac{\left(b_{2 m} a_{2 n+1}-a_{2} m b_{2 n+1}\right)}{b_{2 n+1} b_{2 m}}\right|\left(\frac{x-y}{x+y}\right)^{2} .
$$

Now, since

$$
\lim _{m, n \rightarrow \infty}\left|\frac{b_{2 m} a_{2 n+1}-a_{2 m} b_{2 n+1}}{b_{2 n+1} b_{2 m}}\right|= \begin{cases}\lim _{m, n \rightarrow \infty}\left|\frac{a_{2(m-n)-1}}{a_{2 n} a_{2 m-1}}\right| \leq \lim _{n \rightarrow \infty}\left|\frac{1}{a_{2 n}}\right|=0 & \text { if } m>n \\ \lim _{n \rightarrow \infty}\left|\frac{1}{a_{2 n} a_{2 n-1}}\right| & \text { if } m=n \\ \lim _{m, n \rightarrow \infty}\left|\frac{a_{2(n-m)+1}}{a_{2 n} a_{2 n-1}}\right| \leq \lim _{n \rightarrow \infty}\left|\frac{1}{a_{2 n}}\right|=0 & \text { if } m<n\end{cases}
$$

we obtain $\lim _{m, n \rightarrow \infty}|\Delta|=0$, i.e., $\lim _{k \rightarrow \infty} D^{k} M_{0}=L$ exists. Notice that L is a Fibonacci mean, for which $D L=L$, whence it follows that $L(x, y)=\frac{q(x+y)+2 x y}{2 q+(x+y)}$ as asserted, provided we can show that $D^{2 m} M_{0}(x, y) \leq$ $L(x, y) \leq D^{2 n+1} M_{0}(x, y)$ for all m, n. If $L(x, y)=\frac{r(x+y)+2 x y}{2 r+(x+y)}$, then $L(x, y)=D L(x, y)=\frac{(r+1)(x+y)+2 r x y}{2(r+1)+r(x+y)}$ so that we must have $r^{2}-r-1=0, r=(1+\sqrt{5}) / 2=q$ or $r=(1-\sqrt{5}) / 2=q^{*}$. Now

$$
\begin{aligned}
D^{k} M_{0}(x, y) & =\frac{a_{k}(x+y)+2 b_{k} x y}{2 a_{k}+b_{k}(x+y)} \\
& =\frac{(x+y)+2\left(\frac{a_{k-1}}{a_{k}}\right) x y}{2+\left(\frac{a_{k-1}}{a_{k}}\right)(x+y)} .
\end{aligned}
$$

Next, consider $\lim _{k \rightarrow \infty} \frac{a_{k}}{a_{k-1}}=1+\lim _{k \rightarrow \infty} \frac{a_{k-2}}{a_{k-1}}$, i.e., $\lim _{k \rightarrow \infty} \frac{a_{k}}{a_{k-1}}=Q>1$, means $Q=1+\frac{1}{Q}, Q^{2}-Q-1=0$, $Q=\frac{1+\sqrt{5}}{2}=q$, and thus $\lim _{k \rightarrow \infty} D^{k} M_{0}(x, y)=\frac{q(x+y)+2 x y}{2 q+(x+y)}=L(x, y)$ as asserted. Consequently, the inequalities $D^{2 m} M_{0}(x, y) \leq L(x, y) \leq D^{2 n+1} M_{0}(x, y)$ hold and the conclusion follows.

Acknowledgement

The authors are deeply grateful to the referee for the valuable suggestions.

References

[1] K. Atanassove, et al., New Visual Perspectives on Fibonacci Numbers, World Sci. Pub. Co., NJ, 2002.
[2] R.A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Sci. Pub. Co., NJ, 1997.

[^0]: ${ }^{*}$ Corresponding author. Tel.: +82 22220 0897; fax: +82 222810019.
 E-mail addresses: heekim@hanyang.ac.kr (H.S. Kim), jneggers@as.ua.edu (J. Neggers).

