

Available online at www.sciencedirect.com

An International Journal **computers & mathematics** with applications

Computers and Mathematics with Applications 56 (2008) 228–232

www.elsevier.com/locate/camwa

Fibonacci mean and golden section mean

Hee Sik Kim^{a,*}, J. Neggers^b

^a Department of Mathematics, Hanyang University, Seoul 133-791, Republic of Korea ^b Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA

Received 28 May 2007; received in revised form 17 November 2007; accepted 4 December 2007

Abstract

In this paper we show that there is a mapping $D: M \to DM$ on means such that if M is a Fibonacci mean so is DM, that if M is the harmonic mean, then DM is the arithmetic mean, and if M is a Fibonacci mean, then $\lim_{n\to\infty} D^n M$ is the golden section mean.

© 2008 Elsevier Ltd. All rights reserved.

Keywords: (Inverse derived) Fibonacci mean; (Inverse) derived mean; Golden section mean

1. Introduction

In this paper we shall discuss a variety of "mean" M(x, y) where $x \ge 0, y \ge 0$ and relations among them. Of particular interest is the family of "Fibonacci means"

$$M(x, y) = \frac{a(x+y) + 2bxy}{2a+b(x+y)}$$

where $M(x, x) = \frac{2ax+2bx^2}{2a+2bx} = x$ provided $2a + 2bx \neq 0$.

Particular cases are $a > 0, b = 0, M(x, y) = \frac{x+y}{2}$, the average (arithmetic mean), $a = 0, b > 0, M(x, y) = \frac{2xy}{x+y}$, the harmonic mean, and if $q = \frac{1+\sqrt{5}}{2}, M_q(x, y) = \frac{q(x+y)+2xy}{2q+(x+y)}$, the golden section mean. Hence the harmonic mean, the arithmetic mean and golden section mean are special cases of the Fibonacci mean.

We shall show below that there is a mapping $D: M \to DM$ on means such that if M is a Fibonacci mean so is DM, that if M is the harmonic mean, then DM is the arithmetic mean, and if M is a Fibonacci mean, then $\lim_{n\to\infty} D^n M$ is the golden section mean. We shall refer to DM as the derived mean of M, e.g., the derived harmonic mean is the arithmetic mean. We refer to [1,2] for general information.

^{*} Corresponding author. Tel.: +82 2 2220 0897; fax: +82 2 2281 0019.

E-mail addresses: heekim@hanyang.ac.kr (H.S. Kim), jneggers@as.ua.edu (J. Neggers).

^{0898-1221/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2007.12.003

2. Derived mean

Definition 2.1. If *M* is a mean, then *DM* is defined by the functional equation:

$$\frac{1}{1+DM(x,y)} = M\left(\frac{1}{1+x}, \frac{1}{1+y}\right).$$
(1)

We say that *DM* is the *derived mean* of *M*.

For example, if $M(x, y) = \sqrt{xy}$ is the geometric mean, then $DM(x, y) = \sqrt{(1+x)(1+y)} - 1$ is the derived geometric mean. Indeed, from the functional equation $\frac{1}{1+DM(x,y)} = \frac{1}{\sqrt{(1+x)(1+y)}}$, the conclusion follows immediately. Note that in this case $DM(x, y) \ge M(x, y)$. Indeed, if $x = m^2 - 1$, $y = n^2 - 1$, then $(\sqrt{xy})^2 = (m^2 - 1)(n^2 - 1) = m^2n^2 + 1 - (m^2 + n^2) \le (\sqrt{m^2n^2} - 1)^2 = m^2n^2 + 1 - 2mn$, since $m^2 + n^2 \ge 2mn$, i.e., $(m - n)^2 \ge 0$.

Definition 2.2. Let M_i be means where i = 1, 2. We define $M_1 \le M_2$ provided $M_1(x, y) \le M_2(x, y)$ for any $x, y \ge 0$.

Proposition 2.3. If $M_1 \ge M_2$, then $DM_1 \le DM_2$.

Proof. If $M_1(x, y) \ge M_2(x, y)$, then $\frac{1}{1+DM_1(x, y)} = M_1(\frac{1}{1+x}, \frac{1}{1+y}) \ge M_2(\frac{1}{1+x}, \frac{1}{1+y}) = \frac{1}{1+DM_2(x, y)}$ so that $1 + DM_1(x, y) \le 1 + DM_2(x, y)$ and $DM_1(x, y) \le DM_2(x, y)$.

Hence if $D^2 M(x, y) = D(DM(x, y)), M(x, y) = \sqrt{xy}$, then $D^2 M(x, y) \le DM(x, y)$ for example, where we find that $D^2 M(x, y) = \frac{2\sqrt{(1+x)(1+y)} - \sqrt{(2+x)(2+y)}}{\sqrt{(2+x)(2+y)} - \sqrt{(1+x)(1+y)}}$, in this case.

Theorem 2.4. The derived harmonic mean is the arithmetic mean.

Proof. If $M(x, y) = \frac{2xy}{x+y}$, then $\frac{1}{1+DM(x,y)} = \frac{2}{2+x+y}$ and hence 1 + DM(x, y) = (2 + x + y)/2, so that $DM(x, y) = \frac{x+y}{2}$. \Box

We note that if $M(x, y) = \frac{a(x+y)+2bxy}{2a+b(x+y)}$, then $DM(x, y) = \frac{(a+b)(x+y)+2axy}{2(a+b)+a(x+y)}$. Hence if a = 0 then DM(x, y) = (x + y)/2 as we have already seen. Starting from $M_0(x, y) = \frac{a_0(x+y)+2b_0xy}{2a_0+b_0(x+y)}$, we let $D^{k+1}M_0 = D(D^kM_0)$ and $D^kM_0(x, y) = \frac{a_k(x+y)+2b_kxy}{2a_k+b_k(x+y)}$ so that we obtain an iteration system $a_{k+1} = a_k + b_k$ and $b_{k+1} = a_k$. Combining these results, we have $a_{k+1} = a_k + a_{k-1}$, $b_{k+1} = a_{k-1} + a_{k-2} = b_k + b_{k-1}$, so that the iterations are of the Fibonacci type, thus our terminology "Fibonacci means".

3. Inverse derived mean

Definition 3.1. Given a mean M(x, y), the *inverse derived mean* $D^{-1}M(x, y)$ is given by the formula:

$$\frac{1}{1+M(x,y)} = D^{-1}M\left(\frac{1}{1+x}, \frac{1}{1+y}\right).$$
(2)

If $M(x, y) = \sqrt{xy}$, then a computation yields $D^{-1}M(x, y) = \frac{\sqrt{xy}}{\sqrt{xy} + \sqrt{(1-x)(1-y)}}$.

Theorem 3.2. Given a mean M(x, y), $M(x, y) = DD^{-1}M(x, y) = D^{-1}DM(x, y)$ for any $x, y \ge 0$.

Proof. By applying (1) and (2) we obtain

$$\frac{1}{1+DD^{-1}M(x, y)} = D^{-1}M\left(\frac{1}{1+x}, \frac{1}{1+y}\right)$$
$$= \frac{1}{1+M(x, y)}$$

and $DD^{-1}M(x, y) = M(x, y)$. Also $\frac{1}{1+DM(u,v)} = D^{-1}DM(\frac{1}{1+u}, \frac{1}{1+v}) = M(\frac{1}{1+u}, \frac{1}{1+v})$ and thus $D^{-1}DM(x, y) = M(x, y)$, $x = \frac{1-u}{u}$, $y = \frac{1-v}{v}$, proving the theorem. \Box

By Theorem 3.2 we may continue with negative "powers" $D^{-k}M$, k = 1, 2, ... so that for $k, l \in Z$, we have a general rule $D^k D^l M = D^{k+l} M$.

Theorem 3.3. The inverse derived Fibonacci mean is also a Fibonacci mean.

Proof. If
$$M(x, y) = \frac{a(x+y)+2bxy}{2a+b(x+y)}$$
, then $D^{-1}M(\frac{1}{1+x}, \frac{1}{1+y}) = \frac{2a+b(x+y)}{2a+(a+b)(x+y)+2bxy}$. If we let $u \coloneqq \frac{1}{1+x}$, $v \coloneqq \frac{1}{1+y}$, then
 $D^{-1}M(u, v) = \frac{b(u+v)+2(a-b)uv}{2b+(a-b)(u+v)}$
(3)

and the conclusion follows. \Box

If we start a table with $a_0 = 0$, $b_0 = 1$, $M_0(x, y) = \frac{2xy}{x+y}$, then we generate a table:

k	a_k	b_k
-4	-3	5
-3	2	-3
-2	-1	2
-1	1	-1
0	0	1
1	1	0
2	1	1
3	2	1
4	3 5	2
5	5	3
6	8	5
7	13	8
8	21	13
	21	13

For example, since $a_{-3} = 2$, $b_{-3} = -3$, we have $D^{-3}M_0(x, y) = \frac{a_{-3}(x+y)+2b_{-3}xy}{2a_{-3}+b_{-3}(x+y)} = \frac{2(x+y)-6xy}{4-3(x+y)}$. Similarly, $D^6M_0(x, y) = \frac{8(x+y)+10xy}{16+5(x+y)}$. In fact, if we let $M(x, y) = \frac{a(x+y)+2bxy}{2a+b(x+y)}$, then by (3) we get

$$D^{-1}M(x,y) = \frac{b(x+y) + 2(a-b)xy}{2b + (a-b)(x+y)}.$$
(4)

Subsequently

$$D^{-2}M(x,y) = \frac{(a-b)(x+y) + 2(2b-a)xy}{2(a-b) + (2b-a)(x+y)}$$
(5)

and

$$D^{-3}M(x,y) = \frac{(2b-a)(x+y) + 2(2a-3b)xy}{2(2b-a) + (2a-3b)(x+y)}.$$
(6)

If we let a := 0, b := 1 in (4)–(6), then we obtain $D^{-1}M(x, y) = \frac{x+y-2xy}{2-(x+y)}, D^{-2}M(x, y) = \frac{1(x+y)+4xy}{-2+2(x+y)}$, and $D^{-3}M(x, y) = \frac{2(x+y)+(-6)xy}{4+(-3)(x+y)} = D^{-3}M(x, y)$, as already noted above.

4. Fibonacci mean and golden section mean

The golden section mean $M_q(x, y)$ is defined by $M_q(x, y) = \frac{q(x+y)+2xy}{2q+(x+y)}$ where $q = \frac{1+\sqrt{5}}{2}$, and we define $M_{q^*}(x, y)$ by $\frac{q^*(x+y)+2xy}{2q^*+(x+y)}$ where $q^* = \frac{1-\sqrt{5}}{2}$, which is called a *conjugate golden section mean*.

Theorem 4.1. Let $M(x, y) = \frac{a(x+y)+2bxy}{2a+b(x+y)}$ be a Fibonacci mean. If M(x, y) = DM(x, y), then either $M(x, y) = M_q(x, y)$ or $M(x, y) = M_q^*(x, y)$.

Proof. If M(x, y) = DM(x, y), then

$$\frac{a(x+y) + 2bxy}{2a+b(x+y)} = \frac{(a+b)(x+y) + 2axy}{2(a+b) + a(x+y)}$$

Hence $(a^2 - ab - b^2)(x - y)^2 = 0$ for any $x, y \ge 0$, and thus $a^2 - ab - b^2 = 0$ and $a = (b \pm \sqrt{5} |b|)/2$. If b > 0, then either a = bq or $a = bq^*$. Hence either $M(x, y) = M_q(x, y)$ or $M(x, y) = M_{q^*}(x, y)$. If b < 0, then $a = (b \mp \sqrt{5} |b|)/2$, and hence this is the same as the case for b > 0. \Box

Proposition 4.2. Let $M(x, y) = \frac{a(x+y)+2bxy}{2a+b(x+y)}$ be a Fibonacci mean. If $M(x, y) = D^2 M(x, y)$, then either $M(x, y) = M_q(x, y)$ or $M(x, y) = M_{q^*}(x, y)$.

Proof. Similar to Theorem 4.1. \Box

Theorem 4.3. If $M(x, y) = \frac{a(x+y)+2bxy}{2a+b(x+y)}$ is a Fibonacci mean, then $\lim_{n\to\infty} D^n M$ is the golden section mean.

Proof. Consider $D^k M_0(x, y) = \frac{a_k(x+y)+2b_kxy}{2a_k+b_k(x+y)}$. Then $b_k = a_{k-1}$ and $\{a_k\}$ and $\{b_k\}$ are Fibonacci sequences, and hence $a_{k-1}^2 - a_{k-2}a_k = (-1)^k$ and $b_{k-1}^2 - b_{k-2}b_k = (-1)^k$. From this we obtain

$$a_{k+2}b_k - b_{k+2}a_k = (-1)^k. (7)$$

Furthermore,

$$D^{k+2}M_0(x, y) - D^k M_0(x, y) = \frac{(b_k a_{k+2} - a_k b_{k+2})(x - y)^2}{(2a_{k+2} + b_{k+2}(x + y))(2a_k + b_k(x + y))}$$
$$= \frac{(-1)^k (x - y)^2}{(2a_{k+2} + b_{k+2}(x + y))(2a_k + b_k(x + y))}$$

so that for k even we have $D^{k+2}M_0(x, y) \ge D^k M_0(x, y)$, i.e., $M_0 \le D^2 M_0 \le D^4 M_0 \le D^6 M_0$, and for k odd we have $D^{k+2}M_0(x, y) \le D^k M_0(x, y)$, so that we have a chain $DM_0 \ge DM_0^3 \ge D^5 M_0 \ge \cdots$. Next, we consider the term $D^{2n+1}M_0(x, y) - D^{2m}M_0(x, y) = \Delta$ with the simplified expression written as

$$\Delta = \frac{(b_{2m}a_{2n+1} - a_{2m}b_{2n+1})(x-y)^2}{(2a_{2n+1} + b_{2n+1}(x+y))(2a_{2m} + b_{2m}(x+y))}$$

Now,

$$b_{2m}a_{2n+1} - a_{2m}b_{2n+1} = a_{2m-1}a_{2n+1} - a_{2m}a_{2n}$$

= $a_{2m-1}(a_{2n} + a_{2n-1}) - (a_{2m-1} + a_{2m-2})a_{2n}$
= $a_{2m-1}a_{2n-1} - a_{2m-2}a_{2n}$
= $(a_{2m-2} + a_{2m-3})a_{2n-1} - a_{2m-2}(a_{2n-1} + a_{2n-2})$
= $a_{2m-3}a_{2n-1} - a_{2m-2}a_{2n-2}$,

which turns out to be

$$\begin{cases} a_{2(m-n)-1}a_1 - a_{2(m-n)}a_0 = a_{2(m-n)-1} & \text{if } m > n \\ a_{-1}a_1 - a_0^2 = 1 & \text{if } m = n \\ a_{-1}a_{2(n-m)+1} - a_0a_{2(n-m)} = a_{2(n-m)+1} & \text{if } m < n. \end{cases}$$

Hence, $\Delta \ge 0$, i.e., $D^{2n+1}M_0(x, y) \ge D^{2m}M_0(x, y)$, for any natural numbers m, n. For any $x, y \ge 0$ (fixed), we compute

$$\lim_{m,n\to\infty} |\Delta| \le \lim_{m,n\to\infty} \left| \frac{(b_{2m}a_{2n+1} - a_2mb_{2n+1})}{b_{2n+1}b_{2m}} \right| \left(\frac{x-y}{x+y}\right)^2.$$

Now, since

$$\lim_{m,n\to\infty} \left| \frac{b_{2m}a_{2n+1} - a_{2m}b_{2n+1}}{b_{2n+1}b_{2m}} \right| = \begin{cases} \lim_{m,n\to\infty} \left| \frac{a_{2(m-n)-1}}{a_{2n}a_{2m-1}} \right| \le \lim_{n\to\infty} \left| \frac{1}{a_{2n}} \right| = 0 & \text{if } m > n \\ \lim_{n\to\infty} \left| \frac{1}{a_{2n}a_{2n-1}} \right| & \text{if } m = n \\ \lim_{m,n\to\infty} \left| \frac{a_{2(n-m)+1}}{a_{2n}a_{2n-1}} \right| \le \lim_{n\to\infty} \left| \frac{1}{a_{2n}} \right| = 0 & \text{if } m < n \end{cases}$$

we obtain $\lim_{m,n\to\infty} |\Delta| = 0$, i.e., $\lim_{k\to\infty} D^k M_0 = L$ exists. Notice that L is a Fibonacci mean, for which DL = L, whence it follows that $L(x, y) = \frac{q(x+y)+2xy}{2q+(x+y)}$ as asserted, provided we can show that $D^{2m} M_0(x, y) \leq L(x, y) \leq D^{2n+1} M_0(x, y)$ for all m, n. If $L(x, y) = \frac{r(x+y)+2xy}{2r+(x+y)}$, then $L(x, y) = DL(x, y) = \frac{(r+1)(x+y)+2rxy}{2(r+1)+r(x+y)}$ so that we must have $r^2 - r - 1 = 0$, $r = (1 + \sqrt{5})/2 = q$ or $r = (1 - \sqrt{5})/2 = q^*$. Now

$$D^{k}M_{0}(x, y) = \frac{a_{k}(x + y) + 2b_{k}xy}{2a_{k} + b_{k}(x + y)}$$
$$= \frac{(x + y) + 2(\frac{a_{k-1}}{a_{k}})xy}{2 + (\frac{a_{k-1}}{a_{k}})(x + y)}.$$

Next, consider $\lim_{k\to\infty} \frac{a_k}{a_{k-1}} = 1 + \lim_{k\to\infty} \frac{a_{k-2}}{a_{k-1}}$, i.e., $\lim_{k\to\infty} \frac{a_k}{a_{k-1}} = Q > 1$, means $Q = 1 + \frac{1}{Q}$, $Q^2 - Q - 1 = 0$, $Q = \frac{1+\sqrt{5}}{2} = q$, and thus $\lim_{k\to\infty} D^k M_0(x, y) = \frac{q(x+y)+2xy}{2q+(x+y)} = L(x, y)$ as asserted. Consequently, the inequalities $D^{2m} M_0(x, y) \le L(x, y) \le D^{2n+1} M_0(x, y)$ hold and the conclusion follows. \Box

Acknowledgement

The authors are deeply grateful to the referee for the valuable suggestions.

References

- [1] K. Atanassove, et al., New Visual Perspectives on Fibonacci Numbers, World Sci. Pub. Co., NJ, 2002.
- [2] R.A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Sci. Pub. Co., NJ, 1997.