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Fibonacci mean and golden section mean
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Abstract

In this paper we show that there is a mapping D : M → DM on means such that if M is a Fibonacci mean so is DM , that if M
is the harmonic mean, then DM is the arithmetic mean, and if M is a Fibonacci mean, then limn→∞ Dn M is the golden section
mean.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we shall discuss a variety of “mean” M(x, y) where x ≥ 0, y ≥ 0 and relations among them. Of
particular interest is the family of “Fibonacci means”

M(x, y) =
a(x + y) + 2bxy

2a + b(x + y)

where M(x, x) =
2ax+2bx2

2a+2bx = x provided 2a + 2bx 6= 0.

Particular cases are a > 0, b = 0, M(x, y) =
x+y

2 , the average (arithmetic mean), a = 0, b > 0, M(x, y) =
2xy
x+y ,

the harmonic mean, and if q =
1+

√
5

2 , Mq(x, y) =
q(x+y)+2xy

2q+(x+y)
, the golden section mean. Hence the harmonic mean,

the arithmetic mean and golden section mean are special cases of the Fibonacci mean.
We shall show below that there is a mapping D : M → DM on means such that if M is a Fibonacci mean

so is DM , that if M is the harmonic mean, then DM is the arithmetic mean, and if M is a Fibonacci mean, then
limn→∞ Dn M is the golden section mean. We shall refer to DM as the derived mean of M , e.g., the derived harmonic
mean is the arithmetic mean. We refer to [1,2] for general information.

∗ Corresponding author. Tel.: +82 2 2220 0897; fax: +82 2 2281 0019.
E-mail addresses: heekim@hanyang.ac.kr (H.S. Kim), jneggers@as.ua.edu (J. Neggers).

0898-1221/$ - see front matter c© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2007.12.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82337567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
mailto:heekim@hanyang.ac.kr
mailto:jneggers@as.ua.edu
http://dx.doi.org/10.1016/j.camwa.2007.12.003


H.S. Kim, J. Neggers / Computers and Mathematics with Applications 56 (2008) 228–232 229

2. Derived mean

Definition 2.1. If M is a mean, then DM is defined by the functional equation:

1
1 + DM(x, y)

= M

(
1

1 + x
,

1
1 + y

)
. (1)

We say that DM is the derived mean of M .

For example, if M(x, y) =
√

xy is the geometric mean, then DM(x, y) =
√

(1 + x)(1 + y) − 1 is the derived
geometric mean. Indeed, from the functional equation 1

1+DM(x,y)
=

1
√

(1+x)(1+y)
, the conclusion follows immediately.

Note that in this case DM(x, y) ≥ M(x, y). Indeed, if x = m2
− 1, y = n2

− 1, then (
√

xy)2
= (m2

− 1)(n2
− 1) =

m2n2
+ 1 − (m2

+ n2) ≤ (
√

m2n2 − 1)2
= m2n2

+ 1 − 2mn, since m2
+ n2

≥ 2mn, i.e., (m − n)2
≥ 0.

Definition 2.2. Let Mi be means where i = 1, 2. We define M1 ≤ M2 provided M1(x, y) ≤ M2(x, y) for any
x, y ≥ 0.

Proposition 2.3. If M1 ≥ M2, then DM1 ≤ DM2.

Proof. If M1(x, y) ≥ M2(x, y), then 1
1+DM1(x,y)

= M1(
1

1+x , 1
1+y ) ≥ M2(

1
1+x , 1

1+y ) =
1

1+DM2(x,y)
so that

1 + DM1(x, y) ≤ 1 + DM2(x, y) and DM1(x, y) ≤ DM2(x, y). �

Hence if D2 M(x, y) = D(DM(x, y)), M(x, y) =
√

xy, then D2 M(x, y) ≤ DM(x, y) for example, where we

find that D2 M(x, y) =
2
√

(1+x)(1+y)−
√

(2+x)(2+y)
√

(2+x)(2+y)−
√

(1+x)(1+y)
, in this case.

Theorem 2.4. The derived harmonic mean is the arithmetic mean.

Proof. If M(x, y) =
2xy
x+y , then 1

1+DM(x,y)
=

2
2+x+y and hence 1 + DM(x, y) = (2 + x + y)/2, so that

DM(x, y) =
x+y

2 . �

We note that if M(x, y) =
a(x+y)+2bxy

2a+b(x+y)
, then DM(x, y) =

(a+b)(x+y)+2axy
2(a+b)+a(x+y)

. Hence if a = 0 then DM(x, y) =

(x + y)/2 as we have already seen. Starting from M0(x, y) =
a0(x+y)+2b0xy

2a0+b0(x+y)
, we let Dk+1 M0 = D(Dk M0) and

Dk M0(x, y) =
ak (x+y)+2bk xy

2ak+bk (x+y)
so that we obtain an iteration system ak+1 = ak + bk and bk+1 = ak . Combining these

results, we have ak+1 = ak + ak−1, bk+1 = ak−1 + ak−2 = bk + bk−1, so that the iterations are of the Fibonacci type,
thus our terminology “Fibonacci means”.

3. Inverse derived mean

Definition 3.1. Given a mean M(x, y), the inverse derived mean D−1 M(x, y) is given by the formula:

1
1 + M(x, y)

= D−1 M

(
1

1 + x
,

1
1 + y

)
. (2)

If M(x, y) =
√

xy, then a computation yields D−1 M(x, y) =

√
xy

√
xy+

√
(1−x)(1−y)

.

Theorem 3.2. Given a mean M(x, y), M(x, y) = DD−1 M(x, y) = D−1 DM(x, y) for any x, y ≥ 0.

Proof. By applying (1) and (2) we obtain

1

1 + DD−1 M(x, y)
= D−1 M

(
1

1 + x
,

1
1 + y

)
=

1
1 + M(x, y)

and DD−1 M(x, y) = M(x, y). Also 1
1+DM(u,v)

= D−1 DM( 1
1+u , 1

1+v
) = M( 1

1+u , 1
1+v

) and thus D−1 DM(x, y) =

M(x, y), x =
1−u

u , y =
1−v
v

, proving the theorem. �
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By Theorem 3.2 we may continue with negative “powers” D−k M, k = 1, 2, . . . so that for k, l ∈ Z , we have a
general rule Dk Dl M = Dk+l M .

Theorem 3.3. The inverse derived Fibonacci mean is also a Fibonacci mean.

Proof. If M(x, y) =
a(x+y)+2bxy

2a+b(x+y)
, then D−1 M( 1

1+x , 1
1+y ) =

2a+b(x+y)
2a+(a+b)(x+y)+2bxy . If we let u :=

1
1+x , v :=

1
1+y , then

D−1 M(u, v) =
b(u + v) + 2(a − b)uv

2b + (a − b)(u + v)
(3)

and the conclusion follows. �

If we start a table with a0 = 0, b0 = 1, M0(x, y) =
2xy
x+y , then we generate a table:

k ak bk

−4 −3 5
−3 2 −3
−2 −1 2
−1 1 −1

0 0 1
1 1 0
2 1 1
3 2 1
4 3 2
5 5 3
6 8 5
7 13 8
8 21 13

For example, since a−3 = 2, b−3 = −3, we have D−3 M0(x, y) =
a−3(x+y)+2b−3xy

2a−3+b−3(x+y)
=

2(x+y)−6xy
4−3(x+y)

. Similarly,

D6 M0(x, y) =
8(x+y)+10xy

16+5(x+y)
. In fact, if we let M(x, y) =

a(x+y)+2bxy
2a+b(x+y)

, then by (3) we get

D−1 M(x, y) =
b(x + y) + 2(a − b)xy

2b + (a − b)(x + y)
. (4)

Subsequently

D−2 M(x, y) =
(a − b)(x + y) + 2(2b − a)xy

2(a − b) + (2b − a)(x + y)
(5)

and

D−3 M(x, y) =
(2b − a)(x + y) + 2(2a − 3b)xy

2(2b − a) + (2a − 3b)(x + y)
. (6)

If we let a := 0, b := 1 in (4)–(6), then we obtain D−1 M(x, y) =
x+y−2xy
2−(x+y)

, D−2 M(x, y) =
1(x+y)+4xy
−2+2(x+y)

, and

D−3 M(x, y) =
2(x+y)+(−6)xy

4+(−3)(x+y)
= D−3 M(x, y), as already noted above.

4. Fibonacci mean and golden section mean

The golden section mean Mq(x, y) is defined by Mq(x, y) =
q(x+y)+2xy

2q+(x+y)
where q =

1+
√

5
2 , and we define

Mq∗(x, y) by q∗(x+y)+2xy
2q∗+(x+y)

where q∗
=

1−
√

5
2 , which is called a conjugate golden section mean.

Theorem 4.1. Let M(x, y) =
a(x+y)+2bxy

2a+b(x+y)
be a Fibonacci mean. If M(x, y) = DM(x, y), then either M(x, y) =

Mq(x, y) or M(x, y) = Mq∗(x, y).
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Proof. If M(x, y) = DM(x, y), then

a(x + y) + 2bxy

2a + b(x + y)
=

(a + b)(x + y) + 2axy

2(a + b) + a(x + y)
.

Hence (a2
− ab − b2)(x − y)2

= 0 for any x, y ≥ 0, and thus a2
− ab − b2

= 0 and a = (b ±
√

5 | b|)/2. If
b > 0, then either a = bq or a = bq∗. Hence either M(x, y) = Mq(x, y) or M(x, y) = Mq∗(x, y). If b < 0, then
a = (b ∓

√
5 | b|)/2, and hence this is the same as the case for b > 0. �

Proposition 4.2. Let M(x, y) =
a(x+y)+2bxy

2a+b(x+y)
be a Fibonacci mean. If M(x, y) = D2 M(x, y), then either M(x, y) =

Mq(x, y) or M(x, y) = Mq∗(x, y).

Proof. Similar to Theorem 4.1. �

Theorem 4.3. If M(x, y) =
a(x+y)+2bxy

2a+b(x+y)
is a Fibonacci mean, then limn→∞ Dn M is the golden section mean.

Proof. Consider Dk M0(x, y) =
ak (x+y)+2bk xy

2ak+bk (x+y)
. Then bk = ak−1 and {ak} and {bk} are Fibonacci sequences, and

hence a2
k−1 − ak−2ak = (−1)k and b2

k−1 − bk−2bk = (−1)k . From this we obtain

ak+2bk − bk+2ak = (−1)k . (7)

Furthermore,

Dk+2 M0(x, y) − Dk M0(x, y) =
(bkak+2 − akbk+2)(x − y)2

(2ak+2 + bk+2(x + y))(2ak + bk(x + y))

=
(−1)k(x − y)2

(2ak+2 + bk+2(x + y))(2ak + bk(x + y))

so that for k even we have Dk+2 M0(x, y) ≥ Dk M0(x, y), i.e., M0 ≤ D2 M0 ≤ D4 M0 ≤ D6 M0, and for k odd we
have Dk+2 M0(x, y) ≤ Dk M0(x, y), so that we have a chain DM0 ≥ DM3

0 ≥ D5 M0 ≥ · · ·. Next, we consider the
term D2n+1 M0(x, y) − D2m M0(x, y) = 4 with the simplified expression written as

4 =
(b2ma2n+1 − a2mb2n+1)(x − y)2

(2a2n+1 + b2n+1(x + y))(2a2m + b2m(x + y))
.

Now,

b2ma2n+1 − a2mb2n+1 = a2m−1a2n+1 − a2ma2n

= a2m−1(a2n + a2n−1) − (a2m−1 + a2m−2)a2n

= a2m−1a2n−1 − a2m−2a2n

= (a2m−2 + a2m−3)a2n−1 − a2m−2(a2n−1 + a2n−2)

= a2m−3a2n−1 − a2m−2a2n−2,

which turns out to be
a2(m−n)−1a1 − a2(m−n)a0 = a2(m−n)−1 if m > n
a−1a1 − a2

0 = 1 if m = n
a−1a2(n−m)+1 − a0a2(n−m) = a2(n−m)+1 if m < n.

Hence, 4 ≥ 0, i.e., D2n+1 M0(x, y) ≥ D2m M0(x, y), for any natural numbers m, n.
For any x, y ≥ 0 (fixed), we compute

lim
m,n→∞

| 4 | ≤ lim
m,n→∞

∣∣∣∣ (b2ma2n+1 − a2mb2n+1)

b2n+1b2m

∣∣∣∣ ( x − y

x + y

)2

.
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Now, since

lim
m,n→∞

∣∣∣∣b2ma2n+1 − a2mb2n+1

b2n+1b2m

∣∣∣∣ =



lim
m,n→∞

∣∣∣∣a2(m−n)−1

a2na2m−1

∣∣∣∣ ≤ lim
n→∞

∣∣∣∣ 1
a2n

∣∣∣∣ = 0 if m > n

lim
n→∞

∣∣∣∣ 1
a2na2n−1

∣∣∣∣ if m = n

lim
m,n→∞

∣∣∣∣a2(n−m)+1

a2na2n−1

∣∣∣∣ ≤ lim
n→∞

∣∣∣∣ 1
a2n

∣∣∣∣ = 0 if m < n

we obtain limm,n→∞ | 4 | = 0, i.e., limk→∞ Dk M0 = L exists. Notice that L is a Fibonacci mean, for which
DL = L , whence it follows that L(x, y) =

q(x+y)+2xy
2q+(x+y)

as asserted, provided we can show that D2m M0(x, y) ≤

L(x, y) ≤ D2n+1 M0(x, y) for all m, n. If L(x, y) =
r(x+y)+2xy

2r+(x+y)
, then L(x, y) = DL(x, y) =

(r+1)(x+y)+2r xy
2(r+1)+r(x+y)

so that

we must have r2
− r − 1 = 0, r = (1 +

√
5)/2 = q or r = (1 −

√
5)/2 = q∗. Now

Dk M0(x, y) =
ak(x + y) + 2bk xy

2ak + bk(x + y)

=
(x + y) + 2(

ak−1
ak

)xy

2 + (
ak−1

ak
)(x + y)

.

Next, consider limk→∞
ak

ak−1
= 1 + limk→∞

ak−2
ak−1

, i.e., limk→∞
ak

ak−1
= Q > 1, means Q = 1 +

1
Q , Q2

− Q − 1 = 0,

Q =
1+

√
5

2 = q , and thus limk→∞ Dk M0(x, y) =
q(x+y)+2xy

2q+(x+y)
= L(x, y) as asserted. Consequently, the inequalities

D2m M0(x, y) ≤ L(x, y) ≤ D2n+1 M0(x, y) hold and the conclusion follows. �
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