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Abstract

Cross-community effects on the behaviour of individuals and communities themselves can be observed in a wide
range of applications. While previous work has tried to explain and analyse such phenomena, there is still a great
potential for increasing the quality and accuracy of this analysis. In this work, we propose a general framework
consisting of several different techniques to analyse and explain cross-community effects and the underlying dynam-
ics. The proposed methodology works with arbitrary community algorithms, incorporates meta-data to improve the
overall quality and expressiveness of the analysis and identifies particular phenomena in an automated manner. We
illustrate the benefits and strengths of our approach by exposing in-depth details of cross-community effects between
two closely related and well established areas of scientific research. This work focuses on techniques for understand-
ing, defining and eventually predicting typical life-cycles and events in the context of cross-community dynamics.
c© 2011 Published by Elsevier Ltd.
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1. Introduction

Claims for scientific progress are often assessed using relatively static citation measures. However, the analysis of
the life-cycle of a community provides much greater explanatory power for the progress and potential of a scientific
field—for the community itself and external evaluators such as tenure committees, funding agencies, venture capital-
ists and industry. While previous work has examined scientific networks through co-citation and textual analysis, there
is relatively little work on analysing dynamics and cross-community effects, particularly where closely related com-
munities are competing for scientific, funding and industrial capital. In previous work (Karnstedt & Hayes, 2009), we
proposed a general road-map for the cross-community analysis of scientific communities. In this work, we elaborate
this idea further and present the results and insights we gained from an empirical study of two scientific disciplines.

(a) Community shift (b) Community merge
(with community shift)

Figure 1: Possible phenomena: community shift and community merge
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Thomas Kuhn (1996) introduced the idea of paradigm shift into the lexicon of scientific discourse as a means of
explaining how new theories overturn existing theories within a scientific field. Kuhn’s analysis tends to focus on
well-known dramatic shifts in science such as the juncture between Newtonian and relativistic physics. In this paper,
we explore whether similar behaviours occur in what might be termed ‘normal science’. A paradigm shift as Kuhn
describes it is something very significant, close to a “revolution in science”. We investigate closely related phenomena,
but of less dramatic importance and with smaller influence on the research field. Thus, in this work we use the term
community shift. A particularly dominant and huge community shift is what we eventually understand as a paradigm
shift. Figure 1a illustrates what we call a community shift. The upper part shows co-citation relations between different
authors at a specific point in time. Over time, a sub-community detaches from its original community (lower part of
the figure). This means that authors from either communities tend not to be cited together any more and over time the
sub-community splits off from the original community. Figure 1b illustrates the opposite of this phenomenon, which
we call a community merge. Over time, the communities approach each other, represented by more and more edges
between members. This can lead to closely related communities or even to a merger into one larger community. For
some communities, we may observer a combination of community shift and merge, indicated by the different colours
of the nodes. Another interesting phenomenon described by Kuhn is a paradigm articulation, which refers to the
maturation process of a community resulting in different groups specialising on sub-topics. Naturally, such an effect
cannot be analysed solely on the basis of the network structure. In this case, the benefits of enriching the topological
analysis by topical analysis become obvious. Consequently, we call such a phenomenon community specialisation.
Similarly, in a community topic change a community may remain structurally stable over time while changing its
topic.

In the course of the existence of a community, several distinctive events may be characterised. Apart from the
obvious ones like its birth, growth, contraction, or death, others more specialised events may be defined. The focus of
this work is on the events which are characteristic for scientific communities in context of their mutual effects, e.g. a
community shift, merge, or topic change. The observation and understanding of such events may lead eventually to
the notion of community life-cycles, which describe classes of observed dynamics of scientific communities.

As an illustrative example, we analyse the interactions over time of two closely related areas of scientific research
using author-based co-citation network analysis (see, e.g., Gmür, 2003), supplemented by automatic extraction and
investigation of the topics and expertise that form the core of each community. The research fields we chose to examine
are Information Retrieval (IR) and Semantic Web (SW). IR provides techniques that are a standard part of Web and
document search engines with well-defined methodological and evaluation techniques. SW research, on the other
hand, focuses on improving Web search by developing standards and techniques for structuring the data on the Web.
A witty commentary on both suggests that IR is driven by a problem whereas SW is driven by a solution (Baeza-Yates
et al., 2008). Both are well-established communities focused on accurate, scalable search methods on the Web. Yet in
terms of methodology and research culture, both communities are in many ways orthogonal, with large cores of each
discipline indifferent to each other’s work. As such, the two general research fields promise to reveal a wide range of
interesting cross-community effects, influences and interactions. However, our main goal is to develop methods and
techniques to analyse cross-community effects between arbitrary research fields. In summary, our contributions are:

• We propose techniques to enable scalable analysis of cross-community dynamics. The methodology is not
limited to one particular community-detection method and is suited for different relations between individuals.

• We combine topological analysis with topical analysis by incorporating automatically extracted meta-data, both
for enriching the actual analysis as well as enabling new methods of assessing the clustering quality.

• We discuss and evaluate different methods and measurements to automatically determine community overlap,
community relations and specific interesting phenomena.

• We further analyse and discuss life-cycle measurements and their suitability for identification and explanation.

We present a general, flexible and extendible framework for analysing cross-community dynamics and highlight the
suitability of different methods and techniques in this context. Although several recent works deal with the dynamics
of communities, we are not aware of any work that discusses general methods for identification and analysis of
cross-community effects in the context of life-cycles of communities. Our overall goal is to understand, define and
eventually predict typical life-cycles and states of communities in the context of cross-community effects.
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In Section 2, we give a brief summary of the most important related work. Our set of techniques and methods is
described in Section 3, we describe our data in Section 4. We present results gained with these methods in Section 5.
Section 6 concludes and indicates future work. Note that we use the terms communities and clusters interchangeably.

2. Related Work

Recently, the idea of analysing the dynamics of communities, in contrast to static community analysis, has gained
attention. Most dynamic community analysis uses snapshots of the underlying network graph from different points in
time. Communities found in these snapshots are compared over time and the development of communities is deduced
and investigated. Greene et al. (2010b) are very close to our idea of understanding the life-cycles of communities, but
do not investigate a similarly rich set of indicators and automated methods. While Palla et al. (2007) also investigate
the time dependence of communities and community evolution, they focus on overlapping communities. Moreover,
the community dynamics model presented in that work is based solely on structural features and cannot address the
problem of analysis of evolution of scientific discourses because it lacks the content dimension. Therefore, we develop
the previous research towards generating a general understanding of typical community life-cycles, the underlying
mechanisms and reasons for phenomena aligned with Kuhn’s observations. Tantipathananandh et al. (2007) also
deal with the dynamics of communities, but propose an interesting alternative approach based on a graph-colouring
problem. In contrast to our work, they focus on the dynamics of single individuals and how they switch between
communities over time. However, an extension to the micro level of single community members is planned for our
future work.

A crucial problem with the snapshot-based approach is the choice of the underlying time periods, which can
have significant influence on the observed structures and behaviours. See Delvenne et al. (2010) for a discussion of
this problem. A related problem is the question on how to track each community from one snapshot to the next,
which is required to determine the community’s evolution. This becomes even more complicated with the use of
static community detection approaches, where communities for each snapshot are determined independently from
other snapshots. A promising alternative is to use evolutionary clustering (Chi et al., 2007). In this approach, the
community detection at a certain point in time is influenced by the community structure in former times. We designed
our framework to be adaptive and extensible in both directions. While in this work we focus on existing static
community-detection methods, we plan to investigate evolutionary clustering in future work.

3. Methodology

In this section, we motivate and explain the techniques used in our work, which are based on following require-
ments: (1) we expect the dynamics of the data set to be represented by snapshots of several consecutive time-steps;
(2) an algorithm to detect communities in the network in each time step is available; (3) nodes (i.e., authors) have to
be uniquely identified among all time-steps; and (4) for topical analysis, meta-data (i.e., topics) has been assigned to
nodes in the network.

3.1. Community Detection and Tracking

We identified communities in each period using three popular community-detection algorithms, denoted as In-
fomap (Rosvall & Bergstrom, 2008), Louvain (Blondel et al., 2008) and WT (Wakita & Tsurumi, 2007). Whereas
WT and Louvain are both based on modularity optimisation (Newman, 2010, p. 373), i.e., the topological feature of
clustering, the Infomap reveals the community structure according to the information flow in the network modelled
as a random walk. The topological approach inspects the co-citation structure from a rather static point of view,
whereas Infomap reveals community structure by compressing a description of information flows on the network.
The underlying co-citation network can be interpreted in both ways.

These algorithms were chosen because they are able to operate over weighted networks, they scale up to the
size of the analysed network and for each an implementation is publicly available. Moreover, they produce non-
overlapping communities. Therefore it is possible to easily visualise them. However, the requirements listed before
can be fulfilled by a wide range of community-detection algorithms. Supporting overlapping communities is possible
as well, but would require some modifications of the measures that we will now present.
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We track a community over time by means of the highest overlap measured by the Jaccard coefficient (Palla et al.,
2007; Greene et al., 2010b). The i-th community mined in time t, i.e., ct

i, is matched according to the highest Jaccard
coefficient value among all communities Ct+1 mined in time t + 1:

match(ct
i) = arg max

ct+1
j ∈Ct+1

|ct
i ∩ ct+1

j |

|ct
i ∪ ct+1

j |
(1)

If two communities ct
i and ct

k have the maximal overlap with the same subsequent community ct+1
j , the matching is

again determined by the Jaccard coefficient value. The community that has the higher overlap with ct+1
j is matched,

the other community is then matched to the subsequent community with the second-highest overlap.
We identify other types of interesting relations between communities such as important ancestors or descendants.

These relations can be defined as a modification of the Jaccard coefficient, where the overlap is relative to either the
latter or the former community:

ancestor(ct
i, c

t+1
j ) =

|ct
i ∩ ct+1

j |

|ct+1
j |

(2) descendant(ct
i, c

t+1
j ) =

|ct
i ∩ ct+1

j |
|ct

i |
(3)

3.2. Topic detection

In order to identify community topics and to “name” communities, we mined keywords using NLP techniques (Bor-
dea, 2010) from the abstracts or full-texts for almost 70% of the underlying articles. In addition, author-provided
keywords for 10% of the articles were extracted. All keywords were tokenised, stemmed (Porter, 1980) and ranked
by a TF-IDF measure, but with keywords assigned to authors instead of documents. To determine the keywords for
a given time period, we assigned the keywords from each document published in that time to all its co-authors. As a
result, each author a was described by a bag-of-words vector kt

a for each time period t. In content analysis, the overall
cluster topic is usually characterised by its centroid. The topical centroids are thus derived from the keywords of all
cluster members, according to the standard formula for centroid computation:

centroid(c) =

∑

a∈c
ka

|c|
(4)

Centroids were used for both computation and interpretation purposes. The measures discussed in the next section
are based on (dis)similarity obtained as a standard cosine distance between two centroids. The total number of
keywords, i.e., the dimension of kt

a vectors, usually exceeded several thousands. Therefore, the interpretation of
a cluster topic was derived from only its 20 highest-ranked keywords. However, this led sometimes to very rare
keywords to be ranked highest, while the general yet informative keywords were discarded by the TF-IDF ranking.
Hence, in addition to the 20 highest-ranked keywords, we also considered the 20 most frequent keywords (TF) of the
cluster. We will refer to the union of these two sets of keywords as characterising keywords.

3.3. Community Life-Cycle Measures

The purpose of community life-cycle measures is to measure and explain the state and the evolution of the com-
munity along several in-depth dimensions. From the structural perspective, communities are described by size S,
normalized group betweenness B (Everett & Borgatti, 1999), author entropy A, and relative density ρ. All these
measures have been successfully used before in the literature and promised to be particularly informative. Author
entropyA has been defined and explained by Hayes et al. (2007):

A(ct+1) = −
1

log |Ct+1
o |

∑

co∈Ct+1
o

|ct ∩ co|
|ct ∩ At+1|

log
|ct ∩ co|
|ct ∩ At+1|

, (5)

where At+1 is the set of all authors in time t + 1 and Ct+1
o is the set of communities in time t + 1 containing authors of

ct. A measures how much the authors of ct are dispersed among other communities in a subsequent time-step. If the
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authors are equally dispersed among subsequent communities, A will approach 1, whereas if all the authors remain
in the same community,A will approach 0. Relative density ρ is defined as the ratio between intra-community degree
and its total degree:

ρ(c) =

∑

e∈Eci

w(e)

∑

e∈Eca

w(e)
, (6)

where Eci is the set of all internal edges of cluster c, Eca is the set of all edges incident to community c and w is a
function assigning a weight to each edge. ρ is a local measure of community quality. As a community is usually
understood as a subgraph with more intra- then inter-cluster edges, we chose this measure to investigate the level to
which the community is structurally shaped. In case of self-referential communities, i.e., those ones without any edge
to any other community, ρ will be 1, whereas a very open and ill-shaped community will have values near to 0.

For topic analysis, we use topic stability T and cluster content ratioH . Hayes et al. (2007) introduced T as topic
drift andH as cluster quality. T is the cosine distance between centroids of the same cluster in two subsequent time
periods. H is the ratio of intra- to inter-cluster similarity:

H(c) =
I
E
=

1
|c|

∑

a∈c
cos(a, centroid(c))

cos(centroid(c), centroid(A))
, (7)

where I is the average similarity between the cluster’s authors and its centroid and E is the similarity between the
cluster’s centroid and the centroid of the entire network (A is the set of all authors).

Interestingly, the cluster content ratio H can be used to assess the quality of a clustering. Drawing on the obser-
vations of assortative mixing in citation networks (Newman, 2010, p. 220), i.e. papers in such networks tend to cite
papers in the same field, we expect the clusters to be topically coherent, which can be assessed by H . The average
value of H can thus be used to indicate whether the community-detection algorithm can uncover communities asso-
ciated to coherent and distinct topics. Similarly, modularity Q was employed to measure the quality of communities
from the structural point of view. Figure 2 compares the values per year of theH (topic cohesion) and Q (community
cohesion) for each algorithm. Surprisingly, the two algorithms based on modularity maximisation uncovered com-
munities with lower modularity than Infomap. On the other hand, Louvain shows the highest average cluster content
ratio of 〈〈Ho〉〉

.
= 2 (but with a variance of σ2

Ho
= 4.33). Both Louvain and Infomap communities generally had a

high cluster content ratio with 〈〈H〉〉 > 1 for every year, which suggests that these communities were associated with
coherent topics. The high overall average cluster content ratio of Louvain communities shows that the members of
these communities were twice as similar to each other in terms of content as to the rest of the network. Since the
performance of WT is dominated by the other two algorithms, we do not discuss communities detected by it in the
results section.
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Figure 2: Modularity and average cluster content ratio per year. Subscripts L,WT, and I denote Louvain, WT, and Infomap algorithms, respectively.
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3.4. Community Topic Evolution Measures
Events in a community life-cycle that are characterised by changes in both its structure and topic are particularly

interesting as their analysis promises to shed some light on the emergence of new research fields or the mutual impact
of communities. Therefore it is necessary to take into account the content dimension. In order to reveal these events
and measure the significance of the underlaying dynamics, we combined the ancestor (Eq. 2), descendant (Eq. 3)
and author entropy A (Eq. 5) measures with a measure of topic change dissim (Eq. 8, 9, and 10), where dissim is
a complement to cosine distance. As a range of each measure remains within [0, 1], it is possible to threshold less
significant cases.

In case of a community shift, we are interested in a newly emerged community that is topically significantly
different from its ancestor. On the contrary, a community shift/merge can be defined as a community merging with a
topically different one. The merge can be expressed as a descendant relationship, especially if descendant(ct

i, c
t+1
j )→

1. Thus, the formulae used for community shift PS and community shift/merge PS/M for i � j are:

PS(ct
i, c

t+1
j ) = dissim(ct

i, c
t+1
j ) × ancestor(ct

i, c
t+1
j ) (8)

PS/M(ct
i, c

t+1
j ) = dissim(ct

i, c
t+1
j ) × descendant(ct

i, c
t+1
j ) (9)

PS andPS/M express the relation between two communities regarding structural similarity and topical difference. The
more ct

i (ct+1
j ) is formed by members of ct+1

j (ct
i) and the more both communities differ in topic, the higher are these

values. We expect a significant difference between the sizes of communities ct
i and ct+1

i , i.e., in a community shift ct+1
j

is usually smaller then its ancestor ct
i, and in a community shift/merge ct

i is usually smaller then its descendant ct+1
j .

Thus, we use a threshold of 0.5, which means that for the maximum value of dissim(ct
i, c

t+1
j ) = 1 the phenomena are

only detected with at least 50% membership overlap.
The community topic change measure PC is used to detect cases where a community changes its topic while

preserving its structure:
PC(ct

i) = dissim(ct
i, c

t+1
i ) × (1 −A(ct+1

i )), (10)

where A is the author entropy as defined in Eq. 5. PC measures the change of the topic of the cluster ci between
subsequent time-steps. It discriminates cases where the cluster has rather weak structure, since then the entropy will
be high. As we observed an entropy greater than zero in most cases, we chose a threshold of 0.3. The average entropy
and its variance for Louvain clusterings were 〈〈AL〉〉

.
= 0.4, σ2

AL

.
= 0.1. For Infomap clusterings these values were

〈〈AI〉〉
.
= 0.44, σ2

AI

.
= 0.14. To further filter out cases of very small communities, with all the above measures we

consider only communities with a minimal overlap of 5 authors.
An event detected by any of the community topic evolution measures is classed as having inter-discipline dynamics

if both SW- and IR-related communities are involved. We mined the most frequent keywords from publications in
both research fields in order to assign each analysed community to either SW or IR.

4. Data Set

In order to build networks of actors from the SW and IR fields, we first picked a set of major conferences from
each field, see Table 2a. If we want to identify young and evolving communities, conferences are better suited than
journals, particularly in computer science. In addition, we considered all co-located workshops and all work from Tim
Berners-Lee, as the generally understood founder of SW. We selected all publications available for these venues (from
year 2000 onwards) from DBLP1 as seeds. Then, we used crawlers to fetch citation information from appropriate
Web sources. But, to gather clean data, we used only citing works that we found again in the DBLP data. The total
number of included articles is 39314. For the topical analysis, we were able to scrape 22975 abstracts and 3740 full
texts. From these we mined 263742 keywords, extended by 18313 author-provided keywords.

Using the crawled citation information, we built a co-citation network of these authors. A sequence of time-slices
of the network was obtained by a sliding time-window. In co-citation analysis, time-slices are often overlapping (Up-
ham & Small, 2010; Small, 2006) in order to smooth volatility of the dynamic network. Thus the window size

1http://www.informatik.uni-trier.de/~ley/db/index.html
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Table 1: Details of the used data set

(a) Used conferences

field abbreviation conference name
SW ISWC International Semantic Web Conference
SW ESWC Extended (former “European”) Semantic Web Conference
SW ASWC Asian Semantic Web Conference
IR SIGIR Special Interest Group on Information Retrieval conference
IR ECIR European Conference on Information Retrieval
IR CIKM International Conference on Information and Knowledge Management
IR TREC Text Retrieval Conference

(b) Statistics

time slot authors edges
2000–2002 1459 66039
2001–2003 1906 87520
2002–2004 2211 107499
2003–2005 2468 120471
2004–2006 2776 141093
2005–2007 3062 134132
2006–2008 3002 102928
2007–2009 2190 44461
2008–2009 1113 13340

2009 83 159
average 2027 81764.2

controls the resolution of the analysis, while overlap length determines the stability of the communities across time.
We experimented with window sizes 1, 2, and 3 years with 0, 1, and 2 years overlap, respectively. We observed
that non-overlapping slices do not result in stable community structure. Further, while the smaller overlapping win-
dows yielded stable structure of communities, many cross-community events were observable only in the three-year
windows overlapping by two years. Thus, we decided to use these for further analysis, as they promise to represent
a good trade-off between clustering stability and resolution. The question of the best window sizes and overlap is
a non-trivial one and is the subject of recent research (Delvenne et al., 2010; Sulo et al., 2010). A more rigorous
investigation for our data is out of the scope of this work, but on our future agenda. Table 2b shows the number of
nodes (authors) and edges in the resulting graphs. The weight of an edge refers to the number of co-citations in each
time period. A co-citation between an author A1 of document D1 and another author A2 of document D2 occurs if we
find a third document D3 citing D1 and D2, where D1 and D2 are published in the inspected time period. We used the
networks weighted in that way as input for the Louvain algorithm, because it does not support floating-point weights.
As a normalised weighting scheme usually produces better results, we used CoCit scores (Gmür, 2003) as input for
Infomap.

5. Results

The aim of the results presented in this section is to assess the suitability of the introduced methodology to
detect and explain cross-community phenomena like community shift or topic change. We present a selection of the
most interesting cases identified by community topic evolution measures and use the life-cycle measures to explain
them. For the sake of brevity, we present only a summary of the key topics of the community instead of a tagcloud.
Likewise we refer to the time-slots only by the beginning of the interval, e.g. just 2000, instead of 2000-2002. Note
that the life-cycle measures A and T are always computed with respect to the previous time step, e.g., A in time
t measures the level of dispersion of authors forming the community in time t − 1. For the sake of brevity, only
the most informative values of the measures are presented and we point the reader to the supplementary information
containing a comprehensive list of the values and a comparative analysis discussing their relevance to each class of
the cross-community phenomena.2

5.1. Community Shift

The emergence of Louvain community 26 in 2006 has been identified as an inter-discipline community shift
with PS

.
= 0.62. As Figure 3 illustrates, it was formed by community 6 “web information retrieval” (by 80%) and

by community 5 “semantic web” (20%). Right after its emergence, the characterising keywords suggest the focus
on interdisciplinary topics like “navigation”, “personalization” and “semantic web”. Under a massive influence of
community 15 “semantic web and IR” in 2007, community 26 changed its topic (PC

.
= 0.71) towards “semantic

2http://belak.net/doc/2010/procedia-si.pdf
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Figure 3: Main ancestors of community 26: 5 “semantic web”, 6 “web IR”, 15 “semantic web and IR”

web and business processes”, as illustrated in Figure 4 (figures based on output from TextLuas software package
for visualisation of dynamic clusters of terms and objects (Greene et al., 2010a)). This influence is noticeable in
Figure 5b, where the community is positioned nearer to community 15, in contrast to its original position in the
bottom-right corner of Figure 5a. The change of topic towards more SW-related themes in 2007 is expressed by low
topic stability T .= 0.29 in 2007, while we investigated a rise to T .= 0.65 in 2008. This shows the topical stabilisation.

Figure 4: Evolution of topics of community 26. Note the sudden change of topics from navigation-related topics towards semantic web, which
corresponds with the influence of community 15.

This pattern repeated in other shifts as well. First, emerging communities show a low topic stability, which
means they significantly changed with respect to the previous time-step. As the communities are growing, their topics
stabilise as well. Thus, community size and topic stability are useful for identifying shifts. Communities that first
seem to be topically weak grow and grasp their own topical identity later on.

Shifts may also be interpreted as a community specialisation, when new communities with more specialised topics
emerge, while the original community becomes eventually smaller. This is the case of Infomap community 9, which
started with core concepts around SW. As several specialised communities split off in subsequent time steps, it con-
cretised its topic towards “semantic web services”. While the topic stability T had been very high since the beginning
(see Figure 6), the size S of the community plummeted since 2003, while the cluster content ratio H started to rise
at the same time. Between 2001 and 2004, we identified two community shifts towards more specific SW-related
topics. S, T and H provide valuable insights into these shifts, as they support the hypothesis of specialisation: the
topically stable community (high T ) started to contract (diminishing S), while several distinct communities shifted,
which was accompanied by rising content cluster ratio H . Other measures like relative density ρ, betweenness B or
author entropyA did not seem to provide any further insights in this case.

One of the communities shifted from community 9 was community 99 “semantic desktop and personalization”,
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(a) 2006–2008 (b) 2007–2009
Figure 5: Snapshots of the network depicting communities 6 “information retrieval” (pink), 5 “semantic web” (red), 15 “semantic web and
information retrieval” (violet) and their descendant community 26 (green). Nodes represent authors, whose logarithmically scaled site betweenness
is denoted by the node size. The position of the nodes is determined by a force-based layout (Fruchterman & Reingold, 1991). Note that occasional
node overlaps are an artifact of rendering and each author occurs in each snapshot exactly once.

which emerged (PS
.
= 0.54) in 2003. The low topic stability T and relative density ρ and high author entropy A at

the beginning suggest that the cluster was not very well defined during the first two time steps (see Figure 6). But,
in 2005 this changed significantly. Since then, community 99 showed high topic stability and relative density. We
assume that this is not a coincidence, because in 2006 the main EU project on social-semantic desktop NEPOMUK3

started. This is a similar pattern to the one observed in Louvain community 26 discussed above.
The community shift measurePS proved to be a useful measure to reveal phenomena like shifts and specialisation.

For their explanation and interpretation, particularly topic stability T , cluster content ratioH , size S, author entropy
A, and relative density ρ were helpful, in contrast to group betweenness B.
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Figure 6: Life-cycle measures of Infomap communities 9 and 99

5.2. Community Shift/Merge

We assume this type of inter-community dynamics to be rather rare, as we identified only one shift/merge with
absolute overlap of 11 authors and PS/M

.
= 0.7 between Infomap communities 86 and 0. Both communities were

concerned with IR-related topics in general, while each had its specific theme: 86 being focused on “development”,
“engine” and “system”, whereas 0 being focused on “question answering”. The merge was almost total as 90.9%
authors from community 86 moved to 0 in 2003. Relative density ρ .= 0.47 and cluster qualityH .= 1.91 suggest that
community 86 was topically coherent, but structurally rather weak. In spite of the strong topic, the community 86
thus dissolved to its related community 0.

The rareness of identified shift/merge phenomena suggests that a special community split measure should be
investigated. The introduced community shift/merge measure may impose a too strong requirement, as it requires
the whole topically distinct community to merge with another one. Likely, rather small groups separate from larger
communities and merge with topically distinct ones.
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(a) 2004–2006 (b) 2007–2009
Figure 7: Snapshots of the network illustrating community 5 “semantic web” (red—left side), “information retrieval” communities 0, 4, 6 and 9
(grey, beige, pink and red—right side, respectively) and their intermediary community 15 (violet).

5.3. Community Topic Change

Louvain community 15 was detected by both community shift PS and community topic change PC measures.
This community first emerged as a descendant of community 4 “information retrieval” with a specific topic “cross-
language IR”, which has been detected as a shift (PS

.
= 0.55). In 2003, this community was under a massive influence

of community 5 “semantic web”, with 53.1% of its members coming from that community. In the same year, the
change of community topic (PC

.
= 0.31) occurred and the community began to focus mainly on SW—until 2005,

when it was characterised by IR-related keywords as well. As Figure 7a depicts, it consisted of two parts in the
beginning, which then merged and the whole community moved right between the SW and IR communities (see
Figure 7b). Since 2004, there was not any IR-related keyword among the characterising keywords of community 5.
Therefore, whereas community 5 kept its focus on the core SW-related topics, it largely participated in the formation
of a new interdisciplinary community. This community, despite of still being focused mainly on SW-related themes,
has functioned since then as a mutual intermediary between SW and IR communities. This hypothesis is supported by
the above average betweenness B in 2007, especially in contrast with the below average value in 2004 (see Table 2).
Note that even though the betweenness of community 0 in 2007 was even higher (B .= 0.28), this community was
concentrated on core IR topics, and thus may not be perceived as an intermediary community between IR and SW
disciplines. This again highlights the benefits of including content in the analysis. Further analysis of the ancestors
of community 15 led to the conclusion that, despite its relations to IR-related communities 4, 0, 6 and 9, it had been
mainly formed by the semantic web community 5—especially in 2003 (by 53.1%), 2004 (by 38.3%) and 2005 (by
27.5%). Therefore, efforts to establish this interdisciplinary collaboration originated mainly in the SW discipline.

Though the community topic change measure PC helped to identify interesting and relevant events, these changes
were only one aspect of the involved cross-community dynamics. Further interpretation using other measures was
inevitable. This was particularly the case for Louvain community 15, which was detected by more than just one
community topic evolution measure. But, the intermediary character of this community was revealed by deeper
analysis backed by visualisation and life-cycle measures. Group betweenness B and ancestor measures were very
helpful to gain a deeper understanding of changes of the community topic. Other life-cycle measures like T , ρ,A, or
H were not very informative in this context.

6. Conclusion and Future Work

We presented a general methodology for analysing community dynamics, uniquely combining topological and
topical analysis and supported by special visualisation techniques. In this light, we focused on cross-community
effects and tried to explore typical life-cycles of scientific communities. Exemplary, the methodology was applied to
the co-citation network of scientists from two related research fields, IR and SW. Three community topic evolution

3http://nepomuk.semanticdesktop.org
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Table 2: Sizes S and group betweenness, resp. its average, of community 15, resp. all clusters in 2004 and 2007

(a) 2004–2006

cluster S B, resp. 〈〈B〉〉 σ2
B

c15 444 0.0387 –
all clusters 2776 0.0421 0.0045

(b) 2007–2009

cluster S B, resp. 〈〈B〉〉 σ2
B

c15 445 0.2629 –
all clusters 2190 0.0378 0.0063

measures tailored for identifying phenomena like community shift, merge/shift and change of topic were proposed and
successfully assessed. We further proposed life-cycle measures characterising the states and evolution of communities.
We identified several directions for future work, which we briefly summarise in the following.

Often, very strong shifts with PS → 1 were associated with newly emerged communities, which disappeared in
the next time step. To track the evolution of those communities, a larger data set that is not constrained to the a-priori
chosen research fields is needed. Further, due to the reasons discussed before, the community shift/merge measure
PS/M has to be revised and extended by measures for actual community split. The community matching process may
be improved by additionally employing the topical similarity. This would, however, conflict with the current measure
for community topic change, as changes of community topic would be discarded early in the process of community
matching. We observed that Louvain is particularly suited for coarse-grained quick insights, whereas Infomap is suited
for fine-grained deeper analysis. This also suggests to investigate more community-detection algorithms, particularly
ones producing overlapping communities, and evolutionary clustering methods.

The many cases we found for some of the investigated phenomena suggest that they are part of a usual community
life-cycle. The evolution of scientific communities seems to be shaped by common mechanisms that can be identified
by (a combination) of some of the proposed life-cycle measurements. Community size and cluster content ratio are
particularly indicative for community shifts and community specialisation. Relative density, author entropy and topic
stability are good candidates for automated analysis of the stabilisation process of new communities. Group between-
ness and ancestor relation, together with topical analysis, have shown to be informative for detecting intermediary
communities. We understand an appropriate combination of topological and topical analysis as inevitably for the
accurate detection, understanding and prediction of community life-cycles.

Since the ancestor and descendant relations are defined on any two sets of nodes, and keyword vectors used
for obtaining the similarity of clusters can be generalized to vectors of features, one goal for future is to generalize
and apply the proposed methodology to other conceivable social communities, e.g. in discussion fora or blogosphere.
With increasing availability of data describing usage of scholarly literature, we further intend to explore the possi-
bilities of integration of usage-based measures into our framework (Bollen et al., 2009). As the presented analysis
focused solely on the cross-community phenomena on the macro level, we consider an analysis and modelling of the
micro level dynamics of authors and their mutual influence (Friedkin, 1998), e.g. identifying “discourse leaders” or
recommending co-authorship, as a natural step in the future research.
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