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Abstract

Let C be a complex affine reduced curve, and denote by H 1(C) its first truncated cohomology group, i.e.
the quotient of all regular differential 1-forms by exact 1-forms. First we introduce a nonnegative invariant
μ′(C,x) that measures the complexity of the singularity of C at the point x, and we establish the following
formula:

dimH 1(C) = dimH1(C) +
∑
x∈C

μ′(C,x)

where H1(C) denotes the first singular homology group of C with complex coefficients. Second we consider
a family of curves given by the fibres of a dominant morphism f :X → C, where X is an irreducible
complex affine surface. We analyze the behaviour of the function y �→ dimH 1(f −1(y)). More precisely
we show that it is constant on a Zariski open set, and that it is lower semi-continuous in general.
© 2005 Published by Elsevier SAS.

Résumé

Soit C une courbe affine complexe réduite. Son premier groupe H 1(C) de cohomologie tronqué est le
quotient des 1-formes différentielles régulières sur C par les 1-formes régulières exactes. A tout point x de
C, nous attachons un invariant positif μ′(C,x) qui mesure la complexité de la singularité (C,x). Puis nous
montrons la formule suivante :

dimH 1(C) = dimH1(C) +
∑
x∈C

μ′(C,x)

où H1(C) désigne le premier groupe d’homologie singulière de C à coefficients complexes. Ensuite
nous considérons une famille de courbes données par les fibres d’un morphisme dominant f :X → C,
où X est une surface affine complexe irréductible. Nous analysons le comportement de la fonction
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y → dimH 1(f −1(y)). Plus précisément, nous montrons qu’elle est constante sur un ouvert de Zariski,
et qu’elle est semi-continue inférieurement en général.
© 2005 Published by Elsevier SAS.
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1. Introduction

Let C be a reduced complex affine curve that may be reducible or singular. For any integer k,
denote by Ωk(C) the space of regular differential k-forms (or Kähler forms) on C. The exterior
derivative d is well-defined on Ωk(C), and yields a complex:

0 → C → Ω0(C) → Ω1(C) → 0.

The first truncated De Rham cohomology group H 1(C) is the quotient Ω1(C)/dΩ0(C). If C

is smooth, then C is a non-compact Riemann surface, for which the De Rham cohomology
groups Hk

DR(C) with complex coefficients are well-defined. Moreover H 1(C) coincides with the
algebraic De Rham cohomology group of C (see [5]) and, by a theorem of Grothendieck (see
[7]), we have the isomorphism:

H 1(C) � H 1
DR(C).

So truncated De Rham cohomology is always defined and coincides with standard De Rham
cohomology if C is smooth. We would like to know to what extend this cohomology reflects the
topological properties of C, especially when C has singularities.

Definition 1.1. Let Ω̂k
C,x be the space of formal differential k-forms on the germ (C,x). The

local De Rham cohomology group of C at x is the quotient:

H 1(C,x) = Ω̂1
C,x/dΩ̂0

C,x.

Its dimension μ′(C,x) is the local Betti number of C at x.

This number characterizes the presence of singularities, in the sense that μ′(C,x) = 0 if and
only if x is a smooth point of C. Moreover it coincides with the Milnor number (see [10]) if C is
locally a complete intersection (see [2]).

Let H1(C) be the first singular homology group of C with complex coefficients. We identify
this group with the first simplicial homology group of C associated to a triangulation of C whose
singular points are vertices. Every regular 1-form on C is closed on every face F of this trian-
gulation, so that its integral along ∂F is always zero. Therefore, integration of differential forms
along cycles is well-defined and provides us with a bilinear pairing 〈, 〉 on H 1(C)×H1(C) given
by:

〈ω,γ 〉 =
∫
γ

ω.

This induces the so-called De Rham morphism β :H 1(C) → H1(C)∗, ω �→ 〈ω, .〉. By Poincaré
Duality and a theorem of Grothendieck (see [7]), this map is an isomorphism when C is smooth.
In the general case, we establish the following formula.
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Theorem 1.2. For any complex affine curve C, we have:

dimH 1(C) = dimH1(C) +
∑
x∈C

μ′(C,x).

The idea of the proof is the following. For any affine curve C, the morphism β is onto (see
[3]) and this yields the exact sequence:

0 → kerβ → H 1(C) → H1(C)∗ → 0.

For any point x in C, every regular 1-form ω can be seen as a formal 1-form on the germ (C,x).
Moreover every exact 1-form on C is exact as a formal 1-form on (C,x). We then have a natural
morphism:

ix :H 1(C) → H 1(C,x).

We prove that the morphism α:

α : kerβ →
⊕
x∈C

H 1(C,x), ω → (
ix(ω)

)
x∈C

is an isomorphism, which gives the result by passing to the dimensions.
So local Betti numbers measure the default to Poincaré Duality in the case of singular curves.

Theorem 1.2 implies in particular that a complex affine curve is isomorphic to a disjoint union of
copies of C if and only if H 1(C) = 0.

Now we are going to study the behaviour of the function h1(y) = dimH 1(f −1(y)), where X

is a complex affine irreducible surface and f :X → C is a dominant morphism. The following
results still hold for any reduced surface X (that is, any equidimensional reduced affine variety
of dimension 2) as soon as the morphism f is dominant on every irreducible component of X.
Recall that P holds for every generic point of C if the set of points y of C where P(y) does not
hold is finite. We have the following first result.

Proposition 1.3. Let X be a complex affine irreducible surface and f :X → C a dominant mor-
phism. Then there exists an integer hf � 0 such that, for every generic point y of C:

dimH 1(f −1(y)
) = hf .

The proof splits in two steps. By a theorem due to Varčenko (see [11]), there exists a Zariski
open set U in C such that f :f −1(U) → U is a locally trivial topological fibration. In particular,
the function y �→ dimH1(f

−1(y)) is constant on U . Then there remains to show that the sum of
the local Betti numbers is constant on a Zariski open set. For simplicity, denote by Sing(f ) the
set of points x of X where X is not smooth or where df (x) = 0.

Theorem 1.4. Let X be a complex affine surface that is locally a complete intersection and
f :X → C be a dominant morphism. If f −1(y) ∩ Sing(f ) is finite, then:

dimH 1(f −1(y)
)
� hf .

In particular the function h1 is lower semi-continuous at every point y0 of C such that
f −1(y0) ∩ Sing(f ) is finite, i.e.:

h1(y0) � limy→y h1(y).

0
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Note the analogy with singular homology. If X is the complex space C2, then the Euler char-
acteristic χ(f −1(y)) is an upper semi-continuous function when y runs through the non-critical
values of f . This is a direct consequence of the expression of χ(f −1(y)) in terms of the Milnor
numbers of f −1(y) at infinity (see for instance [4]).

We end up this paper with an example illustrating the necessity for X to a locally complete
intersection.

2. Properties of the normalisation

Let C be a complex affine curve and OC its ring of regular functions. Let C̃ be its affine
normalisation and Π : C̃ → C the normalisation morphism. Choose a triangulation T̃ on C̃ and
let Ṽ be its set of vertices. Since Π is finite, we may refine this triangulation so that the set
V = Π(Ṽ ) contains all the singular points of C, and so that Ṽ = Π−1(V ). By construction, the
image T = Π(T̃ ) defines a triangulation of C. We denote by {γ̃i} the set of edges of T̃ , and set
γi = Π(γ̃i). We consider this triangulation fixed from now on.

For any point x in C, OC,x stands for the ring of germs of regular functions at x. Denote by
OC,V the ring of germs of regular functions at V , i.e. the direct sum:

OC,V =
⊕
x∈V

OC,x.

Let I be the vanishing ideal of the set V in C, and denote by ÔC,V the I -adic completion of
OC,V . Note that we have the isomorphism:

ÔC,V =
⊕
x∈V

ÔC,x.

A formal function on (C,V ) is an element of ÔC,V . In a similar way, denote by Ω1
C,x the space

of germs of regular 1-forms on C at x, and by Ω1
C,V the finite sum:

Ω1
C,V =

⊕
x∈V

Ω1
C,x.

The I -adic completion Ω̂1
C,V of Ω1

C,V is the set of formal 1-forms on (C,V ). Note that we have
the isomorphism:

Ω̂1
C,V =

⊕
x∈V

Ω̂1
C,x.

We can define the sets of formal functions and formal 1-forms on (C̃, Ṽ ) in exactly the same way.
In this section, we are going to describe the relationships between the functions and 1-forms on
C̃ and C.

2.1. Formal functions

Let Π∗ :OC → OC̃ be the morphism induced by the normalisation map. After localization at
V and completion, we obtain the following injective map:

Π̂∗ : ÔC,V → ÔC̃,Ṽ .
V
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Since the germ (C̃, x) is smooth for any point x in C̃, every element R of OC̃,Ṽ has a well-defined
order ordx(R) at x, and thus it defines a divisor:

div(R) =
∑
x∈Ṽ

ordx(R)x.

Proposition 2.1. Let R̃ be a formal function on (C̃, Ṽ ) that vanishes at every point of Ṽ . Then
there exists a regular function S on C̃, vanishing at every point of Ṽ , and a formal function R on
(C,V ) such that R̃ = S + Π̂∗

V (R).

In order to prove this proposition, we need the following lemma.

Lemma 2.2. With the previous notations, there exists a divisor D on (C̃, Ṽ ) such that, for any
formal function R̃ on (C̃, Ṽ ), we have: div(R̃) � D ⇒ R̃ ∈ Π̂∗

V (ÔC,V ).

Proof. Let A be a conductor of the normalisation, i.e. an element of OC that is not a zero-divisor
and such that Π∗(A)OC̃ ⊆ Π∗(OC). After localisation at V and completion, we obtain that:

Π̂∗
V (A)ÔC̃,Ṽ ⊆ Π̂∗

V (ÔC,V ).

Set D = div Π̂∗
V (A) and let R̃ be a formal function on (C̃, Ṽ ) such that div(R̃) � D. Then R̃

is locally divisible by Π̂∗
V (A), and the quotient S = R̃/Π̂∗

V (A) is a formal function on (C̃, Ṽ ).

Therefore R̃ = Π̂∗
V (A)S belongs to Π̂∗

V (ÔC,V ). �
Proof of Proposition 2.1. Let R̃ be a formal function on (C̃, Ṽ ). For any point x in Ṽ , let
zx be a uniformising parameter of C̃ at x defined on all of C̃. Then R̃ has a Taylor expansion∑

k�0 Rk,xz
k
x at x. For any such x, we set:

Rx =
∑
k�n

Rk,xz
k
x.

Let OC̃ be the ring of regular functions on C̃, and denote by Ĩ the ideal generated by I in OC̃ .

Since the radical of Ĩ is the vanishing ideal of Ṽ , ÔC̃,Ṽ is the Ĩ -adic completion of OC̃ . So there
exists a regular function S on C̃, whose Taylor expansion of order n at any point x is equal to
Rx . For n large enough, we have the inequality:

div(R̃ − S) � D.

By Lemma 2.2, there exists a formal function R on (C,V ) such that Π̂∗
V (R) = R̃ − S. �

2.2. Formal 1-forms

Let Π∗ :Ω1(C) → Ω1(C̃) be the morphism induced by normalisation. After localisation at
V and completion, we obtain the following morphism:

Π̂∗
V : Ω̂1

C,V → Ω̂1
C̃,Ṽ

.

In this subsection, we consider Ω1(C̃) as a OC -module via the multiplication rule
(P,ω) �→ Π∗(P )ω. If M is an OC -module and M is an ideal, denote by MM its localisation
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with respect to M, and by M̂M its M-adic completion. We are going to prove the following
proposition.

Proposition 2.3. Let ω be a formal 1-form on the germ (C,V ). Then there exist a formal function
R on (C,V ), a regular 1-form ω0 on C and a regular function S in OC̃ , vanishing at all points
of Ṽ , such that ω = dR + ω0 and Π∗(ω0) = dS.

Lemma 2.4. Let R be a noetherian ring, and L :M → N a morphism of finite R-modules. Let ω

be an element of N that belongs to Im L̂M for any maximal ideal M. Then ω belongs to ImL.

Proof. First we show that ω belongs to ImLM for any maximal ideal M. Let {e1, . . . , ek} be
a set of generators of M , i.e. M = R〈e1, . . . , ek〉. After localisation and completion, we get the
equalities:

M̂M = R̂M〈e1, . . . , ek〉 and Im L̂M = R̂M
〈
L(e1), . . . ,L(ek)

〉 = ̂ImLM.

Since N has finite type, the M-adic topology on N is Hausdorff and we find:

ImLM = Im L̂M ∩ N.

So ω belongs to ImLM, and for any maximal ideal M, there exists an element PM of R −M
such that PMω belongs to ImL. Let I be the ideal in R generated by all the PM. We claim that
I = (1), so that ω belongs to ImL. Indeed if I were not equal to (1), it would be contained in a
maximal ideal M0 by Zorn’s Lemma. Since I contains PM0 , PM0 would be contained in M0,
hence a contradiction. �
Lemma 2.5. Let ω̃ be an element of Ω1(C̃) ∩ Im Π̂∗

V . Then ω̃ belongs to ImΠ∗.

Proof. We set M = Ω1(C), N = Ω1(C̃) and L = Π∗. Let M be a maximal ideal and x the
corresponding point in C. If x belongs to V , then ω̃ belongs to Im L̂M by assumption. If not,
then ω̃ still belongs to Im L̂M because x is a smooth point of C, and then L̂M is an isomorphism.
By Lemma 2.4, ω̃ belongs to ImΠ∗. �
Lemma 2.6. Under the previous assumptions, dim kerΠ∗ is finite and the natural map kerΠ∗ →
ker Π̂∗

V is an isomorphism.

Proof. For any x in C, denote by M the vanishing ideal of x and set L = Π∗. For any x outside
V , Π is an isomorphism over an open neighborhood of x. So the map L̂M is an isomorphism for
all x outside V , and the support of kerΠ∗ is contained in V . Since V is a finite set and kerΠ∗
is a finite module, kerΠ∗ is an artinian module and dim kerΠ∗ < ∞. So there exists an order n

such that In kerΠ∗ = 0, and kerΠ∗ is complete for the I -adic topology. Since completion is an
exact functor, we have:

kerΠ∗ � k̂erΠ∗ � ker Π̂∗
V . �

Proof of Proposition 2.3. Let ω be a formal 1-form on the germ (C,V ). Since the germ (C̃, Ṽ )

is a disjoint union of smooth curves, the 1-form Π̂∗
V (ω) is exact on each of these curves. There

exists a formal function R̃ on (C̃, Ṽ ) such that:

Π̂∗ (ω) = dR̃.
V
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By Proposition 2.1, there exist a regular function S on C̃, vanishing at all points of Ṽ , and a
formal function R on (C,V ) such that R̃ = S + Π̂∗

V (R). After derivation, this implies:

Π̂∗
V (ω − dR̃) = dS.

By Lemma 2.5 applied to ω̃ = dS, there exists a regular 1-form ω1 on C such that Π∗(ω1) = dS.
This yields:

Π̂∗
V (ω − dR̃ − ω1) = 0.

By Lemma 2.6, there exists a regular 1-form ω2 in kerΠ∗ such that ω − dR̃ − ω1 = ω2. Then
the 1-form ω0 = ω1 + ω2 is regular on C and satisfies the following relations:

ω = dR̃ + ω0 and Π∗(ω0) = dS. �
3. Proof of Theorem 1.2

Let C be a complex reduced affine curve in Cn, and let β :H 1(C) → H1(C)∗ be the map
defined in the introduction. Since β is onto, it induces the following complex:

0 → kerβ → H 1(C) → H1(C)∗ → 0.

Moreover the inclusion of regular 1-forms into formal 1-forms at x induces a morphism:

α : kerβ →
⊕
x∈C

H 1(C,x).

Since C carries a structure a CW -complex, the vector space H1(C) is finite dimensional, and the
same holds for every H 1(C,x) (see [2]). So for the proof of Theorem 1.2, we only need to show
that α is an isomorphism, and the result will follow by passing to the dimensions.

3.1. Injectivity of α

Without loss of generality, we may assume that the curve C is connected. Let ω be an element
of kerβ . Fix a point x0 in C, and consider the map R defined as follows. For any point x in C,
choose a path γ going from x0 to x, and set:

R(x) =
∫
γ

ω.

Since ω has null integral along any closed path in C, this number is well-defined and independent
of the path γ chosen. Furthermore the function S = R ◦Π is holomorphic on C̃ because it defines
an integral of Π∗(ω) on C̃. By Grothendieck’s Theorem, S is a regular function on C̃, and S takes
the value R(x) on Π−1(x).

Assume now that α(ω) = 0. Then for any point x of C, the class of ω in H 1(C,x) is zero,
and there exists a formal function Rx on the germ (C,x) such that ω = dRx . Let M be the
vanishing ideal of x and denote by L̂M the morphism induced by Π∗ after localisation at M
and completion. The formal function S − L̂M(Rx) on (C̃,Π−1(x)) is constant around every
point of Π−1(x), because S and L̂M(Rx) are both integrals of Π∗(ω). Since S and L̂M(Rx)

are constant on Π−1(x), there exists a constant λ such that:

S − L̂M(Rx) = λ
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on (C̃,Π−1(x)). Up to replacing Rx by Rx − λ, we may assume that λ = 0, and so S belongs to
Im L̂M for any point x in C. By applying Lemma 2.4 to the morphism Π∗ :OC → OC̃ of finite
OC -modules, we get that S belongs to OC . Since S = Rx for any x in C, we get by derivation:

ω = dS = dRx in Ω̂1
C,x.

Since Ω1
C,x is a finite OC,x -module, the M-adic topology is separated and ω = dS in Ω1

C,x . By

Bourbaki result (Commutative Algebra, Chap. 1-7, Corollary 1, p. 88), ω = dS in Ω1(C) and
the class of ω in H 1(C) is zero.

3.2. Surjectivity of α

By construction, the set V contains all the singular points of C. Since H 1(C,x) = 0 if C is
smooth at x, we have the isomorphism:⊕

x∈C

H 1(C,x) �
⊕
x∈V

H 1(C,x).

So every element ω of this sum can be represented by a formal 1-form on (C,V ), which we also
denote by ω. By Lemma 2.3, there exist a formal function R on (C,V ), a regular 1-form ω0 on
C and a regular function S on C̃, vanishing at all points of Ṽ , such that:

ω = dR + ω0 and Π∗(ω0) = dS.

Let γ be a 1-cycle in C. This cycle can be represented as a formal linear combination of the
edges γi of the triangulation T on C. Since S vanishes at all vertices of T̃ , and these vertices are
endpoints of the γ̃i , we have:∫

γi

ω0 =
∫
γ̃i

Π∗(ω0) =
∫
γ̃i

dS = S
(
γ̃i (1)

) − S
(
γ̃i (0)

) = 0.

By linearity, we get that 〈ω0, γ 〉 = 0 for any cycle γ in C. So ω0 belongs to kerβ and represents
the same class as ω in

⊕
x∈V H 1(C,x). Therefore α(ω0) = ω and α is surjective.

4. Proof of Proposition 1.3

In this section, we are going to prove Proposition 1.3. First by a theorem of Varčenko (see
[11]), there exists a non-empty Zariski open set V such that f :f −1(V ) → V is a locally trivial
topological fibration. In particular, there exists an integer q � 0 such that, for any y in U :

dimH1
(
f −1(y)

) = q.

By Theorem 1.2, we only need to prove that the sum of the local Betti numbers along a fibre
f −1(y) is constant for generic y. More precisely:

Proposition 4.1. Let f :X → C be a dominant morphism, where X is a complex reduced surface.
Then there exists a non-empty Zariski open set U in C and an integer p such that, for any y in
U : ∑

x∈f −1(y)

μ′(f −1(y), x
) = p.
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The rest of the section will be devoted to the proof of Proposition 4.1, which we will split in
several lemmas. Let f :X → C be a dominant map, where X is a complex affine reduced surface.
Let N : X̃ → X be the normalisation map and set f̃ = f ◦ N . Let S be the singular part of X, I

its corresponding ideal in OX and set S̃ = N−1(S). The normalisation morphism N∗ induces an
exact sequence:

0 → M → Ω1
X/Ω0

Xdf → Ω1
X̃
/Ω0

X̃
df̃ .

Lemma 4.2. Under the previous assumptions, there exists a non-zero polynomial P in C[t] such
that M(P(f )) is a finite C[f ](P (f ))-module.

Proof. Since N is an isomorphism between X̃ − S̃ and X − S, M is a finite OX-module with
support in S. So there exists an integer n such that In.M = 0, and M is a finite OX/In-module.
There remains to check that (OX/In)(P (f )) is a finite C[f ](P (f ))-module for a suitable choice of
P �= 0.

By assumption, S has dimension � 1. So there exists a non-empty Zariski open set U of C
such that either S ∩f −1(U) is empty or the restriction f :S ∩f −1(U) → U is a finite morphism.
Let P be a non-zero polynomial of C[t] vanishing on C − U . If S ∩ f −1(U) is empty, then
(OX/In)(P (f )) = 0. If f :S ∩ f −1(U) → U is a finite morphism, then (OX/I)(P (f )) is a finite
C[f ](P (f ))-module. Then it is easy to check via an induction on n that (OX/In)(P (f )) is a finite
C[f ](P (f ))-module, by considering the following exact sequence:

0 → In/In+1 →OX/In+1 → OX/In → 0

and using the fact that In/In+1 is a finite OX/I -module for any n � 0. �
Lemma 4.3. Let Π : f̃ −1(y) → f −1(y) be the normalisation morphism. Then for generic y in
C, M/(f − y) � My where My is the kernel of the morphism Π∗ in the exact sequence:

0 → My → Ω1(f −1(y)
) → Ω1(f̃ −1(y)

)
.

Proof. Since N is a finite morphism, its restriction N : f̃ −1(y) → f −1(y) is finite for any y.
By generic smoothness, the fibre f̃ −1(y) is smooth for generic y because X̃ has at most finitely
many singularities. Moreover, for generic y, the fibre f −1(y) intersects S in finitely many points.
So for generic y, the curve f̃ −1(y) is smooth and the morphism N : f̃ −1(y) → f −1(y) is finite
and birational. As a consequence, this latter is the normalisation map:

Π : f̃ −1(y) → f −1(y).

By generic flatness, there exists a non-zero polynomial P of C[t] such that localisation yields an
exact sequence of flat C[f ](P (f ))-modules:

0 → M(P(f )) → (Ω1
X/Ω0

X df )(P (f )) → (Ω1
X̃
/Ω0

X̃
df̃ )

(P (f̃ ))
.

In particular, after tensoring by C[f ]/(f − y), we get for any y with P(y) �= 0:

0 → M/(f − y) → Ω1
X/Ω0

X df + (f − y)Ω1
X → Ω1

X̃
/Ω0

X̃
df̃ + (f̃ − y)Ω1

X̃
.

Since the ideal (f − y)OX is radical for generic y (see [8]), this yields:

0 → M/(f − y) → Ω1(f −1(y)
) → Ω1(f̃ −1(y)

)
.

So for generic y, we have the isomorphism M/(f − y) � My . �
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Lemma 4.4. There exists an integer p such that dimMy = p for generic y.

Proof. By Lemma 4.2, M(P(f )) is a finite C[f ](P (f ))-module for a suitable P . If p denotes its
rank, then M/(f − y) has dimension p for generic y. Also for generic y, we have the isomor-
phism M/(f − y) � My by Lemma 4.3. Therefore My has dimension p for generic y. �

For the sake of simplicity, we introduce the following integer:

μ′
1(f

−1(y), x) = dim
Ω1

f −1(y),x

dΩ0
f −1(y),x

+ MyΩ
1
f −1(y),x

.

Lemma 4.5. For any y in C, we have:∑
x∈f −1(y)

μ′(f −1(y), x
) = dimMy +

∑
x∈f −1(y)

μ′
1

(
f −1(y), x

)
.

Proof. By construction and definition of μ′(f −1(y), x) and μ′
1(f

−1(y), x), we clearly have:

∑
x∈f −1(y)

μ′(f −1(y), x
) =

∑
x∈f −1(y)

dim
dΩ0

f −1(y),x
+ MyΩ

1
f −1(y),x

dΩ0
f −1(y),x

+
∑

x∈f −1(y)

μ′
1

(
f −1(y), x

)
.

Since My has a finite support, we have the isomorphism for any y:

My �
⊕

x∈f −1(y)

MyΩ
0
f −1(y),x

.

In particular, we have the equality for any y:

dimMy =
∑

x∈f −1(y)

dimMyΩ
0
f −1(y),x

.

So we only have to show that dimdΩ0
f −1(y),x

+ MyΩ
0
f −1(y),x

/dΩ0
f −1(y),x

= dimMyΩ
0
f −1(y),x

,

and this is equivalent to saying that dΩ0
f −1(y),x

and MyΩ
0
f −1(y),x

are in direct sum. Let ω be an

element of dΩ0
f −1(y),x

∩ MyΩ
0
f −1(y),x

, and let R be a formal 1-form such that ω = dR. Then we
get:

Π∗(ω) = 0 = Π∗(dR) = dΠ∗(R).

So Π∗(R) is locally constant in a neighborhood of Π−1(x), and R is constant in a neighborhood
of x. Therefore dR = 0 and ω = 0. �
Lemma 4.6. Under the previous assumptions, there exists an integer N such that for any generic
y and any point x in f −1(y), we have:

IN .Ω1
f −1(y),x

⊆ dΩ0
f −1(y),x

+ My.Ω
0
f −1(y),x

.
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Proof. Consider the set S̃ in X̃. Since X̃ is normal, there exists a regular function g on X̃ that
vanishes along S̃ and whose multiplicity equals 1. Up to cancelling a few fibres of f̃ , we may
assume that the map (g, f̃ ) is a submersion at any point x of S̃, and that (f − y) is a radical
ideal in OX for any y. According to Lemma 4.3, we may further assume that f̃ −1(y) is the
normalisation of f −1(y) for any y. Since X̃− S̃ and X−S are isomorphic, we have the inclusion
OX̃ ⊆ (OX)(g). Since OX̃ is a finite OX-module, there exists an integer N such that gNOX̃ ⊆
OX . In particular gN belongs to OX .

If x is a smooth point of f −1(y), then the inclusion to prove is obvious because every formal
1-form is exact. Assume that x is not a smooth point, and set Π−1(x) = {x1, . . . , xr}. Let ω be a
formal 1-form in Ω1

f −1(y),x
and set ω̃ = Π∗(ω). Since (g, f̃ ) is a submersion at any point xi , we

have:

ω̃ = ai(f̃ , g) df̃ + bi(f̃ , g) dg

where ai, bi are formal functions in two variables defined at (f̃ (xi), g(xi)). Since by assumption,
ω belongs to IN .Ω1

f −1(y),x
and f −1(y) is reduced for any y, we find:

ω̃ = gN .η + α df̃ + (f̃ − y)θ = ai(f̃ , g) df̃ + bi(f̃ , g) dg

where η,α, θ are formal expressions at x. By wedge product with df̃ , we get:

bi(f̃ , g) df̃ ∧ dg = gN .df̃ ∧ η + (f̃ − y)df̃ ∧ θ.

Since (g, f̃ ) is a submersion at any point xi , bi(f̃ , g) must belong to the ideal (gN , f̃ − y). We
write bi(f̃ , g) as:

bi(f̃ , g) = gNdi(f̃ , g) + (f̃ − y)ci(f̃ , g)

Let Ri be a formal series such that Ri(f̃ ,0) = 0 and ∂Ri/∂g(f̃ , g) = gNdi(f̃ , g). Then we find:

ω̃ = d
(
Ri(f̃ , g)

) −
(

ai + ∂Ri

∂f̃

)
(f̃ , g) df̃ − (f̃ − y)ci(f̃ , g) dg.

Therefore ω̃ = d(Ri(f̃ , g)) in Ω1
f̃ −1(y),xi

for any xi . Since Ri(f̃ , g) is divisible by gN for any i,

and that gNOX̃ ⊆ OX , there exists a formal function R at the point x in X such that:

N∗(R) = (R1, . . . ,Rr)(f̃ , g)

where N is the normalisation morphism of X. Since by assumption, it coincides with the nor-
malisation morphism Π on f −1(y), we have Π∗(R) = (R1, . . . ,Rr)(f̃ , g). So ω̃ = Π∗(ω) =
Π∗(dR), ω − dR belongs to MyΩ

0
f −1(y),x

and the result follows. �
Lemma 4.7. Let y be a complex number such that f −1(y) is reduced. Let J be an ideal of OX

such that J ⊆ IN + (f − y) and V (J ) is finite. Then we have:∑
x∈f −1(y)

μ′
1

(
f −1(y), x

) = dim
Ω1(f −1(y))

dΩ0(f −1(y)) + My + J.Ω1(f −1(y))
.

Proof. Since J ⊆ IN + (f − y), Lemma 4.6 asserts that for any point x of f −1(y):

Ω1
f −1(y),x

dΩ0
−1 + My.Ω

0
−1 + J.Ω1

−1

=
Ω1

f −1(y),x

dΩ0
−1 + My.Ω

0
−1

.

f (y),x f (y),x f (y),x f (y),x f (y),x
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By definition of the μ′
1(f

−1(y), x), it suffices to show that the natural map:

L :
Ω1(f −1(y))

dΩ0(f −1(y)) + My + J.Ω1(f −1(y))

→
⊕

x∈f −1(y)

Ω1
f −1(y),x

dΩ0
f −1(y),x

+ My.Ω
0
f −1(y),x

+ J.Ω1
f −1(y),x

induced by the inclusion is an isomorphism.
First let us show that L is onto. Let ω be an element of the sum on the right and set

{x1, . . . , xr} = V (J )∩f −1(y). Since V (J ) is finite, there exist some regular 1-forms ω1, . . . ,ωr

such that ω − ωi belongs to J.Ω1
X,xi

for any i. Since V (J ) is finite, there exist some regular

functions f1, . . . , fr on X such that fi − 1 belongs to J.Ω0
X,xi

and fi belongs to J.Ω0
X,xj

for
j �= i. Consider the following regular 1-form:

Ω =
r∑

i=1

fiωi.

By construction, Ω −ωi belongs to J.Ω1
X,xi

for any i, and L(Ω) = ω, which proves surjectivity.
Let us show now that L is injective. Let Ω be an element on the left such that L(Ω) = 0.

Then there exists a formal function R = (R1, . . . ,Rr) on the germ (f −1(y), {x1, . . . , xr}) such
that Ω = dR. Since V (J ) is finite, there exist some regular functions S1, . . . , Sr such that Ri −Si

belongs to J 2.Ω0
X,xi

for any i. Since V (J ) is finite, there exist also some regular functions gi such

that gi − 1 belongs to J 2.Ω0
X,xi

and gi belongs to J 2.Ω0
X,xj

for j �= i. Consider the following
regular function:

S =
r∑

i=1

Sigi .

By construction, we easily check that dS ≡ dSi ≡ dRi[J.Ω0
X,xi

] for any i. Therefore Ω = dR =
dS and its class is zero, which proves injectivity. �
Lemma 4.8. Assume that the surface X is embedded in Cn, with coordinates (x1, . . . , xn). Then
there exist some non-zero polynomials P1(y, x1), . . . ,Pn(y, xn) such that for generic y, the ideal
J = (P1, . . . ,Pn) enjoys the conditions of Lemma 4.7.

Proof. Since S has dimension � 1, there exist some non-zero polynomials Qi(y, xi) such that
Qi(f, xi) = 0 on S for any i = 1, . . . , n. Let N be the integer given by Lemma 4.6 and set
Pi(y, xi) = Qi(y, xi)

N . By construction the ideal J = (P1, . . . ,Pn) has a finite support for
generic y (in fact for any y such that Qi(y, .) is not identically zero). Moreover J ⊆ IN +(f −y)

for generic y and the conditions of Lemma 4.7 are satisfied. �
Proof of Proposition 1.3. Let P1, . . . ,Pn be the polynomials given by Lemma 4.8. For generic
y, the ideal J = (P1, . . . ,Pn) has finite codimension in C[x1, . . . , xn], and C[x1, . . . , xn]/J ad-
mits a basis {e1, . . . , es} consisting of the monomials of degree < ni in xi for any i, where ni

is the degree of Pi in the variable xi . This is easy to see by a Euclidean division with respect to
every Pi . We denote by E1 the vector subspace of C[x1, . . . , xn] spanned by e1, . . . , es , by E2
the vector subspace spanned by the eiej and by E3 the vector space spanned by the ei dxj .
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Let J ′ be the ideal defining the surface X in Cn, and let f1, . . . , fr be a system of generators
of J ′. Let m1, . . . ,mp be a system of generators of the module M(P(f )). Every regular 1-form ω

on X can be represented by a polynomial 1-form Ω on Cn. Then ω belongs to dΩ0(f −1(y)) +
My + J.Ω1(f −1(y)) if and only if Ω can be written as:

Ω = dR +
r∑

i=1

fiηi +
r∑

i=1

ai dfi + a df + (f − y)η +
p∑

k=1

αkM
k + θ

where R belongs to E2, η,η1, . . . , ηr to E3, a, a1, . . . , ar to E1, α1, . . . , αp to C and θ to
J.Ω1(Cn). This can be done by performing a Euclidean division by the Pi on all the terms
of this sum, except for R where we perform a division with respect to the PiPj . Consider the
linear map:

F :E2 × Er+1
3 × Er+1

1 × Cp → E′, (R,η, η1, . . . , ηr , a, a1, . . . , ar , α1, . . . , αp) → ω

where ω is the reduction modulo J of the 1-form:

Ω = dR +
r∑

i=1

fiηi +
r∑

i=1

ai dfi + a df + (f − y)η +
p∑

k=1

αkM
k.

Note that for generic y, L is a linear map between spaces of finite dimension. In the monomials
bases given below, it is represented by a matrix A(y) whose entries belong to C(y), because
reduction modulo J is performed via a Euclidean division with respect to the Pi , which are
polynomials with coefficients in C[y]. Then the rank of this matrix is given by the size of its
biggest non-zero minors, which belong to C(y). So there exists an integer l such that for generic
y, A(y) has rank l. By Lemma 4.7, we find for generic y:∑

x∈f −1(y)

μ′
1

(
f −1(y), x

) = dimΩ1(Cn)/J − l.

Therefore by Lemmas 4.4 and 4.5, we get that, for generic y:∑
x∈f −1(y)

μ′(f −1(y), x) = p + dimΩ1(Cn)/J − l. �

5. Relative cohomology

Let X be a complex irreducible affine surface, and f :X → C a dominant morphism. Denote
by Ωk(X) the space of regular k-forms on X. The first group of truncated relative cohomology
of f is the quotient:

H 1(f ) = Ω1(X)

dΩ0(X) + Ω0(X)df
.

Note that H 1(f ) is a C[f ]-module via the multiplication (P (f ),ω) �→ P(f )ω. In the case
of analytic germs f , relative cohomology groups have been extensively used to describe the
topological and cohomological properties of f ; for more details, see for instance [9]. In the
algebraic setting, the relative cohomology of polynomial mappings has been intensively studied,
especially via the use of the Gauss–Manin connexion (see for instance [1]).We are going to study
some properties of truncated relative cohomology and use them to prove Theorem 1.4.
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5.1. Rank of H 1(f )

Our purpose in this subsection is to compute the rank of H 1(f ) as a C[f ]-module. We begin
with the following lemma.

Lemma 5.1. Let X be a complex affine surface and f :X → C a dominant morphism. If (f −
y) is a radical ideal in OX , then H 1(f )/(f − y) � H 1(f −1(y)). In particular, this holds for
generic y.

Proof. By definition, we have a first isomorphism:

H 1(f )/(f − y) � Ω1(X)

dΩ0(X) + Ω0(X)df + (f − y)Ω1(X)

� Ω1(X)/Ω0(X)df + (f − y)Ω1(X)

dΩ0(X) + Ω0(X)df + (f − y)Ω1(X)/Ω0(X)df + (f − y)Ω1(X)
.

Since (f − y) is a radical ideal in OX , the restriction morphism induces an isomorphism:

Ω1(X)/Ω0(X)df + (f − y)Ω1(X) � Ω1(f −1(y)
)
.

From that we deduce H 1(f )/(f − y) � Ω1(f −1(y))/dΩ0(f −1(y)) = H 1(f −1(y)). �
Proposition 5.2. The rank of H 1(f ) is equal to hf .

Proof. First we prove by contradiction that rk(H 1(f )) � hf . Let ω1, . . . ,ωr+1 be some C[f ]-
linearly independent elements of H 1(f ), where r = hf . By definition of r and Lemma 5.1,
H 1(f )/(f − y) has dimension r for generic y. So for generic y, there exist some constants λ

y
i ,

not all zero, such that:

λ
y

1ω1 + · · · + λ
y

r+1ωr+1 ≡ 0
[
(f − y)

]
.

Then there exists an element ηy of Ω1(X) such that:

λ
y

1ω1 + · · · + λ
y

r+1ωr+1 = (f − y)ηy.

The collection {ηy} is uncountable because it is indexed on a non-empty Zariski open set. Since
Ω1(X) has countable dimension, {ηy} is not linearly free, and there exists some distinct points
{y1, . . . , ym} together with non-zero constants {δ1, . . . , δm} such that:

δ1ηy1 + · · · + δmηym = 0.

By replacing each ηy with its expression, we find:

r+1∑
j=1

(
m∑

i=1

δiλ
yi

j

f − yi

)
ωj = 0.

Since δi �= 0 for any i, and that the λ
yi

j are not all zero for any j , the coefficients of this sum
are not all zero. Therefore ω1, . . . ,ωr+1 are C[f ]-linearly dependent, hence a contradiction. In
particular the rank of H 1(f ) is finite.

Second we prove that rk(H 1(f )) � hf . Let ω1, . . . ,ωs be a maximal collection of C[f ]-
linearly independent elements of H 1(f ). Let {gi}i∈N be a countable set of generators of Ω1(X)
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as a C-vector space. For any i, there exist some polynomials Pi, ai,1, . . . , ai,r with Pi �= 0 such
that:

Pi(f )gi = ai,1(f )ω1 + · · · + ai,s(f )ωs

in H 1(f ). We fix the Pi and consider the set Z of all roots of all Pi . This set is at most countable
by construction. Since any non-empty Zariski open set of C is uncountable, there exists a com-
plex number y that does not belong to Z and such that (f − y) is radical. By reduction modulo
(f − y), we get that:

Pi(y)gi ≡ ai,1(y)ω1 + · · · + ai,r (y)ωr

[
(f − y)

]
.

Since every Pi(y) is non-zero, every gi is spanned by the classes of ω1, . . . ,ωs in H 1(f )/(f −
y). Since the gi form a system of generators of H 1(f ), H 1(f )/(f −y) is spanned by the classes
of ω1, . . . ,ωs . In particular hf � s = rk(H 1(f )). �
5.2. The property P

In this subsection, we are going to prove the inequality given in Theorem 1.4 by using a special
property of the relative cohomology group H 1(f ). This property will enable us to control the
dimension of H 1(f −1(t)) by means of the rank of H 1(f ).

Definition 5.3. A C[f ]-module M satisfies the property P(y) if for any integer r and any element
ω of M , we have: (f − y)rω = 0 ⇒ ω ∈ (f − y)M .

Lemma 5.4. Let M be a C[f ]-module satisfying P(y). Then dimM/(f − y) � rkM .

Proof. Let e1, . . . , es be some elements of M whose classes in M/(f − y) are free. In order
to establish the lemma, we prove by contradiction that e1, . . . , es are free in M . Assume there
exist some polynomials P1(f ), . . . ,Ps(f ) not all zero such that P1(f )e1 + · · · + Ps(f )es = 0 in
M . Let m be the minimum of the orders of the Pi at y. Every Pi(f ) can be written as Pi(f ) =
(f − y)mTi(f ) where at least one of the Ti(y) is nonzero. So we get:

(f − y)m
{
T1(f )e1 + · · · + Ts(f )es

} = 0.

By the property P(y), this implies:

T1(f )e1 + · · · + Ts(f )es ≡ T1(y)e1 + · · · + Ts(y)es ≡ 0
[
(f − y)

]
.

Since the ei are free modulo (f − y), every Ti(y) is zero, hence a contradiction. �
Our purpose in this subsection is to prove:

Proposition 5.5. Let X be a complex irreducible affine surface, and f :X → C a dominant
morphism. Assume that X is locally a complete intersection. If f −1(y) ∩ Sing(f ) is finite, then
H 1(f ) satisfies the property P(y).

Since X is locally a complete intersection, the finiteness of f −1(y) ∩ Sing(f ) implies that
(f − y) is a radical ideal in OX . By Lemma 5.1, we have H 1(f )/(f − y) � H 1(f −1(y)). So
Theorem 1.4 will follow from Lemma 5.4 and Proposition 5.5. We begin with a few lemmas.
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Lemma 5.6. Let X be a complex affine surface that is locally a complete intersection. Let ω be
a regular 1-form on X and A a regular function on X such that (f − y)ω = Adf . If f −1(y) ∩
Sing(f ) is finite, there exists a regular function B on X such that ω = B df .

Proof. Let ω be a regular 1-form on X and A a regular function on X such that (f −y)ω = Adf .
Then A vanishes on the set f −1(y) − Sing(f ). Since f −1(y) is equidimensional of dimension 1
and f −1(y) ∩ Sing(f ) is finite, A vanishes on f −1(y). Since f −1(y) ∩ Sing(f ) is finite and X

is locally a complete intersection, f −1(y) defines locally a complete intersection. Hence it is a
complete intersection on X, and (f − y) divides A. If A = (f − y)B , then (f − y)(ω −B df ) =
0. Since X is locally a complete intersection, the module Ω1(X) is torsion-free (see [6]) and
ω = B df . �
Lemma 5.7. Let X be a complex irreducible affine surface and f :X → C a dominant morphism.
Let C1, . . . ,Cr be the connected components of f −1(t) and n an integer � 0. Then there exist
some regular functions Si,n on X such that Si,n = 1 on Ci , Si,n = 0 on Cj for j �= i and dSi,n

belongs to (f − t)n+1Ω1(X).

Proof. For simplicity, assume that t = 0. There exists a regular function Ti on X such that
Ti = 1 on Ci and Ti = 0 on Cj for j �= i. Then Ti(1 − Ti) vanishes on f −1(0) and by Hilbert’s
Nullstellensatz, there exists an integer m such that T m

i (1 − Ti)
m belongs to f n+1OX . We set:

Pi(x) =
x∫

0

tm(1 − t)m dt and Ri,n = Pi(Ti).

By construction the 1-form dRi,n = T m
i (1 − Ti)

m dTi is divisible by f n+1. Since Pi(0) = 0 and
Ti vanishes on Cj for j �= i, Ri,n vanishes on Cj if j �= 0. Since Pi(1) �= 0, Ri,n = Pi(1) �= 0 on
Ci . Then choose Si,n = Ri,n/Pi(1). �
Lemma 5.8. Let X be a complex irreducible affine surface and f :X → C a dominant morphism.
Let R be a regular function on X such that dR = Adf + (f − t)η, where A,η are regular on X.
Then R is locally constant on f −1(t).

Proof. Since dR = Adf + (f − t)η, the restriction of dR to f −1(t) is zero. So R is singular at
any smooth point of f −1(t), and R is constant on every connected component of the smooth part
of f −1(t). By continuity and density, R is constant on every connected component of f −1(t),
hence it is locally constant on f −1(t). �
Proof of Proposition 5.5. Let X be a complex irreducible affine surface that is locally a complete
intersection. Let f :X → C be a dominant morphism and assume that f −1(t)∩Sing(f ) is finite.
We may assume that t = 0. Let us prove by induction on n � 0 that, if f nω = 0 in H 1(f ), then
ω belongs to (f )H 1(f ). This is trivial for n = 0. Assume that the assertion holds to the order n.
Let ω be a regular 1-form on X such that f n+1ω = 0 in H 1(f ). Then there exist some regular
functions R,A such that f n+1ω = dR + Adf on Ω1(X). By Lemma 5.8, R is locally constant
on f −1(0). Let C1, . . . ,Cr be the connected components of f −1(0). If R takes the value λi on
Ci , then the function:

R′ = R −
∑

λiSi,n+1
i
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vanishes on f −1(0). By construction, there exists a regular 1-form η such that:

f n+1ω = dR′ + Adf + f n+2η.

Since f −1(0) ∩ Sing(f ) is finite and X is locally a complete intersection, (f ) is a radical ideal
and R′ is divisible by f . If R′ = f S with S regular, we obtain:

f (f nω − dS − f n+1η) = (A + S)df.

By Lemma 5.6, there exists a regular function B such that:

f n(ω − f η) = dS + B df.

By induction (ω − f η) belongs to (f )H 1(f ), as well as ω, and we are done. �
6. An example

We end this paper with an example of a surface that is not locally a complete intersection. For
that surface there exists a map for which the conclusion of Theorem 1.4 fails. Let (u, v,w1,w2)

be a system of coordinates in C4, and consider the affine set X of C4 defined by the equations:

u2w1 − v2 = 0, u3w2 − v3 = 0, w3
1 − w2

2 = 0.

Note that X can be reinterpreted as:

X = Spec
(
C[x, xy, y2, y3]).

So X is an irreducible surface. Moreover 0 is the only singular point of X, but X is not locally
a complete intersection. Indeed if it were so, then X would be a normal surface because it is
non-singular in codimension 1. Consider the function h = w2/w1 = v/u on X. It is well-defined
and regular outside the origin, hence h is regular because X is normal. Moreover we have the
following relations:

v = hu, w1 = h2, w2 = h3.

So every regular function on X can be expressed as a polynomial in (u,h), and X is isomorphic
to C2. But this is impossible because X is singular at the origin. Consider now the map f :X → C
defined by:

f (u, v,w1,w2) = u.

For y �= 0, the fibre f −1(y) is isomorphic to a line, hence H 1(f −1(y)) = 0. The fibre f −1(0)

is isomorphic to a cusp, hence contractible, and f −1(0) ∩ Sing(f ) is reduced to the origin.
Moreover its Milnor number coincides with its local Betti number and is equal to 2. With the
notations of the previous sections, hf = 0 and dimH 1(f −1(0)) = 2, so that dimH 1(f −1(0)) �
hf .
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