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Disjunctive Languages On A Free Monoid*
H. J. Sayr

Department of Mathematics, University of Western Ontario, London, Ontario, Canada

A language A on a free monoid X* generated by X is called a disjunctive
language if the principal congruence determined by A is the identity. In this
paper we show that if X contains only one letter then the disjunctive languages
are exactly the nonregular languages. We construct some disjunctive languages
on X* with | X| > 2 and show that X* is a disjoint union of infinitely many
disjunctive languages. We also show that the family of disjunctive languages is an
ANTI-AFL.

1. INTRODUCTION

Let X be an alphabet and let X* be the free monoid generated by X. Let
X+ = X*\{4}, where A is the empty word. For any we X* we let lg(w)
represent the length of . In particular, 1g(4) = 0. A language 4 ovre X is a
subset of X*. For any 4 C X*, the relation P, defined on X* by x, y € X*,
x = y(P,) if and only if (uxv € 4 < uyv € 4 for all u, v € X*) is a congruence,
called the principal congruence on X* determined by A. If X is finite, then the
language A C X* is called regular if and only if the index of P, is finite. A
language 4 is said to be disjunctive if P, is the identity. This is equivalent to
saying that 4 is disjunctive if and only if for all x # y e X*, there exists
u, v € X* such that uxv € 4 and uyv ¢ A or vice versa. In Section 2, we charac-
terize the disjunctive languages over a one letter alphabet. We give an example
to show that a disjunctive language need not have infinite gaps. In Section 3
we construct some disjunctive languages over an alphabet with more than one
letter. We also study some of their properties. In particular the set of all primitive
words is a disjunctive language. In Section 4 we construct another class of
disjunctive languages which are not of the type we constructed in Section 3.
Finally, in Section 5 we show that the family of disjunctive languages is an
ANTI-AFL.
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2. DrsyuncTivE LANGUAGES OVER A ONE LETTER ALPHABET

In this section we consider the case when X contains only one letter, i.e.,
X = {a}. Most of the time we will use a* instead of X*,
The following is a characterization of nondisjunctive languages on a*.

ProrosiTioN 1. Let A C a*. Then the following are equivalent

(1) A is not a disjunctive language;
(2) there exists N 2 0, m 2= | such that a¥a" € A if and only if aVa™a" € A
Jor allr = 0;

(3) A s regular.

Proof. (1) implies' (2). Suppose 4 is not a disjunctive language. Then P, is
not the equality. Let B C a* be a congruence class which is not a singleton set
and let N > 0, m > 1 be two integers such that a¥, a¥a™ € B, i.e., a¥ = aVa™
(P). Since P, is a congruence we have a¥a” € A if and only if a¥a™a" € 4 for all
¥y = 0.

(2) implies (3). Suppose there exists N = O and m > 1 such that a¥a”" € 4
if and only if aVa’a™ € A for all # Z= 0. Then the index of P, is at most N +- m.
Hence 4 is regular.

(3) implies (1). Suppose A4 is regular. Then P, is of finite index. This
implies that P, is not the equality. Hence A4 is not a disjunctive language. #

ProPosITION 2. Let A C a*. Then A is a disjunctive language if the conditions
hold

(1) for any m = 1 there exists r > 1 such that @+ e A;
(2) for any m =1 there exists n 2> 1 such that @™ ¢ A;

(3) for any m = 1 and for every n; > 1 there exists s = n, such that either
a{a, @&,...,.a"yN A = & or a*{aq, a,..., a™} C A.

Proof. Suppose A satisfies the conditions. Then by (1) and (2), 4 # o
and 4 # a*. Leta”, a**,r > 0,k > 1 betwo words inat. Ifa" € A4, a™* ¢ 4
or a' ¢ A, a"t* e A, then a" 5= a™t%(P,). Suppose on the contrary {a", a"+%} N
A = @ or {a", @} C 4. By (3) there exists s 2= r such that a*{g, ¢%,..., a**1} N
A= @ or a¥{a, a,..., &} C A. If a*{a, é%,..., "} N 4 = o, let m; be the
smallest positive integer such that @+*++m e 4, We have then a*"+la"a™ ¢ 4
but afra"Ham ¢ A. If a*{a, &2,..., a"1} C A4, let my be the smallest positive
integer such that ast%tltmig 4, Then a*"Ha’a™ € 4 and a*"Ha g™ ¢ 4.
In cither case we have a" == a"t*(P ). Hence 4 is a disjunctive language. #

If a disjunctive language A satisfies the conditions in Proposition 2 then either
A or A = a*\ A4 has arbitrarily large gaps. But there exist disjunctive languages
which are not of this type. The following is an example:
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Let C={n*+2m |0 <m <n}and 4 = {a’|ie C}. It is easy to see that
A is a disjunctive language and 4 does not satisfy (3) of Proposition 2.

3. Disjuncrive Lancuages oNn X* wite | X | = 2
i)

Throughout this section we let X be an alphabet with | X | = 2. A word
x e X+ is said to be primitive if x = f» for some f € X+ implies n = 1. We let @
be the set of all primitive words on X*. If fe X"\{a" | ae X} is such that
Ig(f) = p = 3, where p is a prime, then fe Q. Hence Q is infinite. It is known
(see Lyndon and Schiitzenberger, 1962) that for any x e X7, there exists a
unique f€Q and # = 1 such that x = f".

Let O = QU {4} and for ¢ = 2 we let 0% = {f?]|fcO}. Then X* =
Urs O% with Q% N QW = g if i # j. In this section we discuss some special
type of primitive words and show that O is a disjunctive language for all 7 > 1.

Lyndon and Schiitzenberger (1962) have shown that the equation a¥ = dNc?,
where M > 2, N = 2, P > 2 has a solution on a free group only when a, b, and
¢ are each a power of a common element. Since every free monoid can be em-
bedded in a free group, the result is true on a free monoid. The following lemma
is immediate.

Lemva 3. Letf,geQ,f # g Then frg?eQ for alln = 2, p > 2.

This lemma is not true if p = 1. For example, let X = {q, 8}, f = ab,
g = bababb. Then f% = (abab)(bababb) = (ababb)? ¢ Q.

Lemva 4. Let f,g€Q, f# 5, and n = 2. If fo" ¢ O, then fy** < Q for all
k=2

Progf. Suppose fg" = A", heQ, ¥ > 2. Then g % h. By Lemma 3 for all
k=2, ot =hgteQ. #

A subset 4C X% is called a code if 3 %, = ¥, v, ¥,, %,7,€4,
m>=1,n =1, impliesm =nandx;, =v;,7 =1, 2,..., n. A code is therefore a
subset of X which generates a free submonoid of X*.

Levma 5. Let X be an alphabet. Then for any x, y € X+, {x, y} is a code if
and only if xy  yx.

Proof. 'This is a direct consequence of Lemma 3 (Lyndon and Schiitzen~
berger, 1962) and Corollary 3 (Lentin and Schiitzenberger, 1967). #

ProrosiTioN 6. Let f + g, f, g € Q. Then gifmgt €Qforallm>2,i>=1.

Proof. Suppose gifmgt = k", heQ, r = 2. If f % h, then (™ (gif™) =
h7f™ € Q, a contradiction. Hence f = % must hold. It follows that either f = gk,
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ke Xtorg = fg,qge X*. Now if f = gk, then gk # kg and hence by Lemma 5
{g, &} is a code. We have then

gigk -+ ghgt = ghgk -+ gk.

The fact that {g, £} is a code implies that g = k&, a contradiction. On the other
hand, if g = fg, g € X*, then fg 5 ¢f and { f, g} is a code. We have

o)} ff(fgf =ff.

Again this implies that f = g, a contradiction. Therefore gif™g? € O for all m > 2,
izl #

The above result is not true if m = 1. For example, let X = {a, b}. Then
(a®)(ba'a’b)(a’) = (a’ba’)(a’ba’) ¢ Q, where a and ba'a’h are primitive words.

Let 4, BC X* be two nonempty languages such that AN B = @. The
pair (4, B) is said to be a disjunctive pair if for all x, y € X*, x 5 y, there exist
u, v € X* such that either uxv € 4, uyv € B or wyv € A, uxv e B. Note that 4 is a
disjunctive language if and only if (4, X*\4) is a disjunctive pair. If (4, B) is a
disjunctive pair, then both 4 and B are disjunctive languages. Moreover, if
(4, B) is a disjunctive pair and 4; 0 4, B, DO B, 4, N B, = &, then (4,, By)
is also a disjunctive pair.

PropostrioN 7. Let X = {a, b,...} be an alphabet such that a +# b. Then
(O, 09 is a disjunctive pair for all { = 2.

Proof. Given i, x = y, we must prove there exist #, v such that uxv € Q@
and uyv € Q or vice versa. Without loss of generality, assume that x = A and
that x begins with . Then take M = 2 max(lg(x), Ig(¥)), # = aMx, v =
(aMxx)-1. Since aMxx € Q by Lemma 3, uxv = (a*xx)’ € Q'

We prove uyv == aMxy(aMxx)'~! € Q, by atterapting to find § = 2 and = such
that @’ = aMxy(aMxx)~1. We can easily eliminate w € a*. Thus w = aMbw, ,
for some w, . Since w begins with exactly M 4's, we can infer that w =
aMxy(aMax) = (aMxx)'+, for some k = 0. But this is impossible since x 5% y.
So with j = 2, no such w can be found.

Remark. It is immediate that (%, O%) is also a disjunctive pair for all7 > 2,
where Q1 = Q U {A}.
We have the following as a corollary,

ProrosiTioN 8. Let X be an alphabet such that | X | > 2. Then each Q%9
1 =1, 2,... is a disjunctive language. Hence X* is a disjoint union of infinitely many
disjunctive languages. Moreover, if ADQ, BDOW for some i>2 and
ANB = &, then (4, B) is a disjunctive pair and hence both A and B are dis-
Junctive languages.
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4. Axoraer DisjoNcTive Lancuace oN X* with | X | =2

In this section we let X = {a, b}. We construct disjunctive languages on X*
with | X | = 2 which are different from those of O” in the previous section.
In fact the same construction works for the case | X | = 3.

First we define an integer function f(n) which we need in the construction.

F) =1
Jn) =f(n —1) + &, if n#1.

We note that f(n) — f(n — 1) = nforn = 2.

We let < be the lexicographic order on X*, # = 1. Then (X*, <) is a
partially ordered semigroup.

Let #m(S) be the mth element in the sequence SC X". For example,
X? = {aaa < aab < aba << -+ < bba < bbb} and #3(X?) = {aba}.

aaa aab aba abb baa bab bba bbb

Let
C — U {pX 7))

n=1

and for k = 1, 2,..., we let

Bk - U {#n(aXf(10n+10k)_rk)},
n—1

and
B =) B,.
k=1

Remark. It is easily seen that for all x € X* there exist #, v € X* such that
uxve B, since if HFm(X") ={x}, n =1, 1 < m << 2% then for all » =1,
Hm( X7 = {a'x}.

From the construction of C and B we see that

(2) for any m > 1 and % > 1, there exists an integer j == k such that

(Ui  BXHy N C = @ and bX+m+1C C;

(3) in the set B, ¢ X" contains at most one element, » = 1.
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ProposiTioN 9. Let X = {a, b}. Then the language 4 = B U C is a dis-
Junctive language on X*.

Proof. Since CC A4 and BN C = ¢, it follows from (2) that for any
x, vy e X* with Ig(x) # Ig(»), ¥ == ¥(P,4). It remains to be shown that x == y(P,)
for all x, ye X* with lg(x) = Ig(¥). But this is immediate from (3) and the
remark following the definition of B. #

5. Tue FamiLy or Disjunctive Lancuaces 1s ANTI-AFL

Abstract families of languages (AFL) have been studied intensively by
Ginsburg, Greibach, Harrison, Spanier, and others The families of regular
languages, context-free languages, context-sensitive languages and type-0
languages are examples of AFL. An example of an anti-AFL, where a family of
languages % is called anti-AFL if it is not closed under any of the operations
defined in (4) below, is the family of OL-languages (see Salomaa, 1973,
Theorem 13.1). In this section we show that the family of disjunctive languages
is another ant/-AFL.

In this section we let X be an infinite alphabet and for every i, X is a finite
alphabet such that X, C X.

A mapping & from X,* into X,* is a homomorphism if h(xy) = h(x) h(y) for
all x, ye X% If A(x) = A implies x = 4, then 4 is said to be A-free. The
mapping &1 from subsets of X,* into subsets of X;* defined by A YY) =
{xe X;* | M(x)e Y} for all Y C X,* is called an inverse homomorphism.

An abstract family of languages (abbreviated AFL) (see Ginsburg and
Greibach, 1969) is a pair (X, £), or £ when X is understood, where

(1) X is an infinite alphabet;
(2) for each 4 in & there is a finite set X; C X such that 4 C X;*;
(3) A4 # o for some 4;

(4) 2 is closed under the operations of union, concatenation, -, /-free
homomorphism, inverse homomorphism and intersection with regular
languages.

We now show the following

ProrosiTioN 10.  The family of disjunctive languages & is anti-AFL.

Proof. (i) Let X; ={a}C X and let 4 +* @ be a disjunctive language
on X,*. Then 4 = X;*\4 is also a disjunctive language on X,*. But
AU A = X,* is not a disjunctive language. Hence & is not closed under
union.
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(i) Let X; = {a}C X and 4 = {a’™ | n > 1} where f(n) is the integer
function defined in the previous section. Then A4 is disjunctive by Proposition 2
and so 4, = 4 is a disjunctive language and 4,4, = a* = A;+, which is not
a disjunctive language. Hence 2 is not closed under concatenation and .

(i) 2 is not closed under intersection with regular languages, since the
empty set is regular but is not a disjunctive language.

(iv) Let X, = {a} and X, = {q, b}, where a 5= b. Let & be the homo-
morphism from X;* into X,* defined by A(a”) = (ab)*, n > 1. Then & maps
the disjunctive Janguage D = {@" [#n = prime} C X;* to B = k(D) =
{(ab)* | # = prime} C X,* which is not in &, since ab?a = ab?a(Py). Hence &
is not closed under A-free homomorphism. Now if we let g: X,* — X * such
that g(a) = g(b) = a. Then Y = {¢" | n = prime} is a disjunctive language
in Xj* but C =g YY) ={xeX,* lg(x) = prime} is not a disjunctive
language, since a = b(P). Hence & is not closed under inverse homomorphism.
This completes the proof of the proposition. #
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