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Disjunctive Languages On A Free Monoid* 

H. J. SHYR 

Department of 3/Iathematics, University of Western Ontario, London, Ontario, Canada 

A language A on a free monoid N* generated by X is called a disjunctive 
language i f  the principal congruence determined by A is the identity. In this 
paper we show that if X contains only one letter then the disjunctive languages 
are exactly the nonregular languages. We construct some disjunctive languages 
on X* with l X ] /> 2 and show that X* is a disjoint union of infinitely many 
disjunctive languages. We also show that the family of disjunctive languages is an 
ANTI-AFL. 

I .  INTRODUCTION 

Let  X be an alphabet and let X*  be the free monoid generated by AT. Let  
X+ ~_ X*\{A},  where A is the empty  word. For  any w ~ X*, we let lg(w) 
represent the length of w. In  particular, lg(A) = 0. A language A ovre X is a 
subset of X*.  Fo r  any A C X*,  the relation PA defined on X* by x, y ~ X* ,  

x ~ y(P~) if and only if (uxv e A ~ uyv e A for all u, v ~ X*)  is a congruence, 
called the principal congruence on X*  determined by A. If  X is finite, then the 
language A C X *  is called regular if and only if  the index of PA is finite. A 
language A is said to be disjunctive if PA is the identity. This  is equivalent to 
saying that A is disjunctive if and only if for all x =/: y ~ X*,  there exists 
u, v ~ 22* such that uxv ~ A and uyv ~ d or vice versa. In  Section 2, we charac- 
terize the disjunctive languages over a one letter alphabet. We give an example 
to show that  a disjunctive language need not have infinite gaps. In  Section 3 
we construct some disjunctive languages over an alphabet with more than one 
letter. We also study some of their properties. In  particular the set of all primitive 
words is a disjunctive language. In  Section 4 we construct  another class of 
disjunctive languages which are not of the type we constructed in Section 3. 
Finally, in Section 5 we show that the family of disjunctive languages is an 
A N T I - A F L .  

* This research has been supported by Grant A7877 ~f the National Research Council 
of Canada. 
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2. DISJUNCTIVE LANGUAGES OVER A ONE LETTER ALPHABET 

In  this section we consider the case when X contains only one letter, i.e., 
X ~ {a}. Most of the time we will use a* instead of X*, 

The  following is a characterization of nondisjunctive languages on a*. 

PROPOSITION l. Let  A C a*. Then the following are equivalent 

(l) A is not a disjunctive language; 

(2) there exists N ~ O, m ~ 1 such that aNa r ~ A i f  and only i f  aUa*~a r ~ A 

for  all r >~ 0; 

(3) A is regular. 

Proof. (1) implies (2). Suppose A is not a disjunctive language. Then PA is 
not the equality. Let  B C a* be a congruence class which is not a singleton set 
and let N / >  0, m ) 1 be two integers such that a N, aUa m ~ B,  i.e., a N ~ aNa ra 

(P,0. Since PA is a congruence we have aNa ~ ~ A if and only if aYa~arE A for all 
r > ~ 0 .  

(2) implies (3). Suppose there exists N ~ 0 and m ~ 1 such that aXa r ~ A 

if and only if aNa*a ~ E A for all r ~> 0. Then  the index of PA is at most N + m. 
Hence A is regular. 

(3) implies (1). Suppose A is regular. Then  PA is of  finite index. This 
implies that PA is not the equality. Hence A is not a disjunctive language. # 

PROPOSITION 2. Let  A C a*. Then A is a disjunctive language i f  the conditions 

hold 

(I) for  any m >/ 1 there exists r >/ 1 such that a~+~ ~ A;  

(2) for  any m >/ 1 there exists n ~ 1 such that a m+n 6 A;  

(3) for  any m >/ 1 and for  every n 1 >/ 1 there exists s >~ n 1 such that either 
a~{a, a 2 ..... a TM} n A = ~ or a*(a, a ..... a m} C A .  

Proof. Suppose A satisfies the conditions. Then  by (1) and (2), A :# 
and .4 ~ a*. Let  a ~, a ~+~, r ~ 0, k ~ 1 be two words in a +. I f  a ~ c A, a *+~ ¢ A 
or a ~ q~ A, a ~+~ ~ A, then a r ~ ar+k(PA). Suppose on the contrary (a", a ~+~} n 
A ----- Z or {a *, a r+k} C A.~By (3) there exists s ~ r such that a~{a, a2,..., a k+t} c~ 
A -~ Z or a~{a, a 2 ..... a ~+1} C A .  I f  a~{a, h ~ ..... a k+l} t~ A = ~ ,  let m 1 be the 
smallest positive integer such that a s+(k+l)+z~t ~ A. We have then aS-*+lara ~ ~ A 

but aS-*+aar+ka ~ ~ A .  I f  a~{a, a 2 ..... a ~+~} C A, let m~ be the smallest positive 
integer such that a ~+~+~+~ ¢ A. Then  a~-*+aa~d n~ ~ _/i and a~-~'+aa*+Z~ama 6 A .  
In  either case we have W" ~ a*+~(Pa). Hence A is a disjunctive language. # 

I f  a disjunctive language A satisfies the conditions in Proposition 2 then either 
.4 or _g ~ a * \ d  has arbitrarily large gaps. But there exist disjunctive languages 
which are not of this type. The following is an example: 
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Let  C = {n 2 + 2m [ 0 ~ m % n} and A = {a i I i ~ C}. It  is easy to see that  

A is a disjunctive language and A does not satisfy (3) of Proposit ion 2. 

3. DISJUNCTIVE LANGUAGES ON X* WITH X >~ 2 

Throughout  this section we let X be an alphabet with X I /> 2. A word 
x ~ X + is said to be primitive if x - - f n  for s o m e f  ~ X ~ implies n ~- 1. We l e t Q  
be the set of all primit ive words on X*. I f f ~  X ' / { a + l  a ~ X} is such that  
I g ( f )  ~ p ~ 3, where p is a prime, then f ~ Q .  Hence Q is infinite. I t  is known 
(see Lyndon  and Schiitzenberger,  1962) that  for any x ~ X +, there exists a 

u n i q u e f ~ Q  and n > / 1  such that  x ~- f'~. 
Let  Q m  ~ Q v { A }  and for i ~> 2 we l e t Q  (i~ = { f i  ! f ~ Q } .  Then  X *  = 

Ui~=l Qli) with Q(~) n QCJ) = ;~ if i @ j .  In  this section we discuss some special 
type of primit ive words and show that Q(i) is a disjunctive language for all i >~ 1° 

Lyndon  and Sehtitzenberger (1962) have shown that the equation a i = bNc e, 
where M >~ 2, N > / 2 ,  P .~ 2 has a solution on a free group only when a, b, and 
c are each a power of a common element. Since every free monoid can be em- 
bedded  in a free group, the result is true on a free monoid. The  following lemma 
is immediate.  

LEMMA 3. Let f ,  g ~ Q, f ~ g. Then f "g~ c Q for all n ~ 2, p >/2.  

This  /emma is not  true if p = 1. For  example, let X =- {a, b}, f =- ab, 
g := bababb. Then  f2g = (abab)(bababb) - -  (ababb)26 Q. 

LEMMA 4. Let f ,  g ~ Q, f ~ g, and n >~ 2. I f  fg ~ (~ Q, then fgn+k c~ Q for all 
k > ~ 2 .  

Proof. Suppose fg'~ = h r, h ~ O, r ) 2. Then  g 4: h. By Lemma 3 for all 
h ~ > 2 ,  f g ~ + ~ = h ~ g  k e Q .  # 

A subset A C X + is called a code if xlx z .'. x~, = YlYo. " " y ~ ,  x i , y j  e A ,  
m >/ 1, n >/- I,  implies m -~ n and x i -= Y i ,  i = 1, 2,..., n. A code is therefore a 
subset of X + which generates a free submonoid of X*.  

LEMMA 5. Let X be an alphabet. Then for any x, y ~ X +, {x, y} is a code i f  
and only i f  xy  ~ yx.  

Proof. This  is a direct consequence of Lemma 3 (Lyndon and Schii tzen- 
berger, 1962) and Corollary 3 (Lent in  and Schiitzenberger,  1967). # 

PROPOSITION 6. Let f 4= g, f ,  g ~ Q. Then gif~gi ~ Q for all m ~ 2, i ~ 1. 

Proof. Suppose g~~g~ = h r, h E Q, r ~ 2. I f  f ~ h, then (gif~)(g*f TM) = 
h*f ~ ~ Q, a contradiction. Hence f = h must  hold. I t  follows that eitl~er f = gk, 
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k ~ X + or g ~ fq, q ~ X +. Now i f f  = gk, then gk ~ kg and hence by Lemma 5 
{g, k} is a code. We have then 

gigh .'. ghg ~ ~- ghgk ... gh. 

The  fact that {g, k} is a code implies that g -~ k, a contradiction. On the other 

hand, i f g  = f q ,  q ~X+, then fq  4= q f a n d  { f ,  q} is a code. We have 

(fq)~ f .,. f ( f q ) i  = f ... f ,  

Again this implies t b a t f  ~- q, a contradiction. Thereforeg~f~g i ~ Q for all m ~> 2, 
i>~l. # 

The  above result is not true if m ~ 1. Fo r  example, let X ~ {a, b}. Then  
(ai)(baiaib)(a i) = (aibai)(aiba i) (s Q, where a and baia~b are primitive words. 

Let  d ,  B C X *  be two nonempty  languages such that  A c~ B = ;~. The  
pair  (A, B) is said to be a disjunctive pair if for all x, y ~ X*, x 4= y, there exist 
u, v ~ X*  such that either uxv ~ A,  uyv ~ B or uyv ~ A,  uxv E B. Note that  A is a 
disjunctive language if  and only if (A, X * \ A )  is a disjunctive pair. I f  (A, B) is a 
disjunctive pair, then both A and B are disjunctive languages. Moreover,  if 
(A, B) is a disjunctive pair  and d 1 D A, B 1 D B, A~ n B 1 ~ ~ ,  then ( d  a , B1) 
is also a disjunctive pair. 

PROPOSITION 7. Let X ~ {a, b,...} be an alphabet such that a ~: b. Then 
(Q, Q(i~) is a disjunctive pair for all i >~ 2. 

Proof. Given i, x v 6 y,  we must  prove there exist u, v such that uxv ~ Q(i) 
and uyv ~ Q or vice versa. Without  loss of generality, assume that x 4= A and 
that  x begins with b. Then  take M = 2max(lg(x) ,  lg(y)) ,  u ~ aMx, V = 
(aa4xx) i-1. Since aMxx C Q by Lemma 3, uxv -= (aMxx) i ~ Q(i~. 

We prove uyv = aMxy(aMxx) I-1 ~ Q, by at tempting to f i n d j  ~ 2 and w such 
that wJ = aMxy(aMxx) i-a. We can eas i ly  eliminate w ~ a*. Thus  w ~ aMbwl, 
for some w 1 . Since w begins with exactly M a's,  we can infer that w = 
aMxy(aMxx) J' --~ (aMxx) t~+a, for some h ~> 0. But this is impossible since x 4 = y.  
So with j ~ 2, no such w can be found. 

Remark. I t  is immediate that (Qm, Q~o) is also a disjunctive pair for all i ~> 2, 
where Qa) = Q kd {A}. 

We have the following as a corollary, 

PROPOSITION 8. Let X be an alphabet such that J X ] >~ 2. Then each Q(O, 
i ~- 1, 2,... is a disjunctive language. Hence X *  is a disjoint union of infinitely many 
disjunctive languages. Moreover, i f  A DQ, B D Q  ~i) for some i >/2  and 
A n B = ;g, then (£1, B) is a disjunctive pair and hence both A and B are dis- 
junctive languages. 
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4. ANOTHER DISJUNCTIVE LANGUAGE ON X *  WITH I X I  ~ 2 

In  this section we let X ----- {a, b}. We construct disjunctive languages on 32" 
with I X I = 2 which are different from those of Q(i) in the previous section. 
In  fact the same construction works for the case i X !  ~> 3. 

Firs t  we define an integer function f ( n )  which we need in the construction. 

f 0 )  = 1, 

f ( n )  =- f ( n - - 1 )  -}- n, if n #  1. 

We note that f (n )  - - f ( n  - -  1) ~ n for n >~ 2. 
We let ~ be the lex icographic  order on X % n  ~> 1. Then  (X +,~<) is a 

part ial ly ordered semigroup. 
Let  # r e ( S )  be the ruth element in the sequence S C X ~. For  example, 

X ~ ~ {aaa < aab < aba < ."  < bba < bbb} and # 3 ( X  8) = {aba}. 

aaa aab aba abb baa bah bba bbb 

Let  

and for h - :  1, 2 ..... we let 

and 

C -  6 {bX1"} 

oa 

B =  ~ B k .  

Remark. I t  is easily seen that for all x ~ X* there exist u, v ~ X + such that  
u x v ~ B ,  since if # m ( X  ~) ={x} ,  n ~> 1, 1 ~ m  ~<2% then for all r >~ l,  
#m(X~+') = { a ~ x } .  

From the construction of C and B we see that 

(1) B C 3 C =  2~; 

(2) for any m >~ 1 and h ~> 1, there exists an integer j ~> k such that 
f ib  

(Ui=i bXJ+i) c5 C = ~ ; and bX ~+'+i C C; 

(3) in the set B,  a X  ~ contains at most one element, r ~ 1. 
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PROPOSITION 9. Let X = {a, b}. Then the language A ~- B k3 C is a dis- 
junctive language on X*. 

Pro@ Since C C A  and B r 3 C ~  ~ ,  it follows from (2) that for any 
x, y ~ X* with lg(x) va lg(y), x ~ y(P~). It  remains to be shown that x ~ Y(PA) 
for all x, y ~ X* with lg(x) = lg(y). But this is immediate from (3) and the 
remark following the definition of B. # 

5. THE FAMILY OF DISJUNCTIVE LANGUAGES IS A N T I - A F L  

Abstract families of languages (AFL) have been studied intensively by 
Ginsburg, Greibach, Harrison, Spanier, and others The families of regular 
languages, context-free languages, context-sensitive languages and type-0 
languages are examples of AFL. An example of an anti-AFL, where a family of 
languages 5¢ is called anti-AFL if it is not closed under any of the operations 
defined in (4) below, is the family of OL-languages (see Salomaa, 1973, 
Theorem 13.1). In this section we show that the famiIy of disjunctive languages 
is another anti-AFL. 

In this section we let X be an infinite alphabet and for every i, X i is a finite 
alphabet such that X~ C X. 

A mapping h from XI* into X~* is a homomorphism if h(xy) ~ h(x) h(y) for 
all x, y ~ X~*. I f  h(x) ~- A implies x = A, then h is said to be A-free. The 
mapping h -1 from subsets of X2* into subsets of X~* defined by h-l(Y) = 
{x ~ Xl* l h(x ) ~ Y} for all Y C  X~* is called an inverse homomorphism. 

An abstract family of languages (abbreviated AFL) (see Ginsburg and 
Greibach, 1969) is a pair (X, ~290), or ~ when X is understood, where 

(1) X is an infinite alphabet; 

(2) for each A in ~o there is a finite set X 1 C X such that A C XI*; 

(3) A =/= ~ for some A; 

(4) ~o is closed under the operations of union, concatenation, @, A-free 
homomorphism, inverse homomorphism and intersection with regular 
languages. 

We now show the following 

PROPOSITION lO. The family of disjunctive languages ~ is anti-AFL. 

Proof. (i) Let X 1 = { a } C X  and let A =/= ~ be a disjunctive language 
on XI*. Then A = XI*\A is also a disjunctive language on XI*. But 
A u _ d - - X ~ *  is not a disjunctive language. Hence ~ is not closed under 
union. 
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(ii) Let  X 1 = {a} C X and A = {a s(a) I n > 1} where f ( n )  is the integer 
function defined in the previous section. Then  A is disjunctive by Proposit ion 2 

and so A 1 --=I ~ is a disjunctive language and A 1 A  1 ~ a* - -  A1 +, which is not 
a disjunctive language. Hence ~ is not closed under  concatenation and @. 

(iii) ~ is not closed under  intersection with regular languages, since the 
empty set is regular but  is not a disjunctive language. 

(iv) Let  X 1 = { a }  and X 2 = { a , b } ,  where a 4  =b. Let  h be the homo- 
morphism from 321" into X2* defined by h(a ~) ~- (ab) n, n >~ 1. Then  h maps 
the disjunctive language D = {a ~ I n = prime} C XI* to B = h(D) - -  

{(ab) ~ ] n =: prime} C X2* which is not in ~ ,  since abaa ~ abSa(PB). Hence 
is not closed under  A-free homomorphism.  Now if we let g: X~* --~ XI* such 
that  g(a)== g ( b ) =  a. Then  Y = {an j n  = prime} is a disjunctive language 
in XI* but  C = g - l ( y ) _ =  { x ~ X ~ * l l g ( x ) ~  prime} is not a disjunctive 
language, since a ~ b(Pc). Hence ~@ is not closed under inverse homomorphism. 
This  completes the proof  of the proposition. # 
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