Disjunctive Languages On A Free Monoid*

H. J. Shyr
Department of Mathematics, University of Western Ontario, London, Ontario, Canada

Abstract

A language A on a free monoid X^{*} generated by X is called a disjunctive language if the principal congruence determined by A is the identity. In this paper we show that if X contains only one letter then the disjunctive languages are exactly the nonregular languages. We construct some disjunctive languages on X^{*} with $|X| \geqslant 2$ and show that X^{*} is a disjoint union of infinitely many disjunctive languages. We also show that the family of disjunctive languages is an ANTI-AFL.

1. Introduction

Let X be an alphabet and let X^{*} be the free monoid generated by X. Let $X^{+}=X^{*}\left\{\{A\}\right.$, where Λ is the empty word. For any $w \in X^{*}$, we let $\lg (w)$ represent the length of w. In particular, $\lg (A)=0$. A language A ovre X is a subset of X^{*}. For any $A \subset X^{*}$, the relation P_{A} defined on X^{*} by $x, y \in X^{*}$, $x \equiv y\left(P_{A}\right)$ if and only if ($u x v \in A \Leftrightarrow u y v \in A$ for all $u, v \in X^{*}$) is a congruence, called the principal congruence on X^{*} determined by A. If X is finite, then the language $A \subset X^{*}$ is called regular if and only if the index of P_{A} is finite. A language A is said to be disjunctive if P_{A} is the identity. This is equivalent to saying that A is disjunctive if and only if for all $x \neq y \in X^{*}$, there exists $u, v \in X^{*}$ such that $u x v \in A$ and $u y v \notin A$ or vice versa. In Section 2 , we characterize the disjunctive languages over a one letter alphabet. We give an example to show that a disjunctive language need not have infinite gaps. In Section 3 we construct some disjunctive languages over an alphabet with more than one letter. We also study some of their properties. In particular the set of all primitive words is a disjunctive language. In Section 4 we construct another class of disjunctive languages which are not of the type we constructed in Section 3. Finally, in Section 5 we show that the family of disjunctive languages is an ANTI-AFL.

[^0]
2. Disjunctive Languages over a One Letter Alphabet

In this section we consider the case when X contains only one letter, i.e., $X=\{a\}$. Most of the time we will use a^{*} instead of X^{*}.

The following is a characterization of nondisjunctive languages on a^{*}.
Proposition 1. Let $A \subset a^{*}$. Then the following are equivalent
(1) A is not a disjunctive language;
(2) there exists $N \geqslant 0, m \geqslant 1$ such that $a^{N} a^{r} \in A$ if and only if $a^{N} a^{m} a^{r} \in A$ for all $r \geqslant 0$;
(3) A is regular.

Proof. (1) implies (2). Suppose A is not a disjunctive language. Then P_{A} is not the equality. Let $B \subset a^{*}$ be a congruence class which is not a singleton set and let $N \geqslant 0, m \geqslant 1$ be two integers such that $a^{N}, a^{N} a^{m} \in B$, i.e., $a^{N} \equiv a^{N} a^{m}$ $\left(P_{A}\right)$. Since P_{A} is a congruence we have $a^{N} a^{r} \in A$ if and only if $a^{N} a^{m} a^{r} \in A$ for all $r \geqslant 0$.
(2) implies (3). Suppose there exists $N \geqslant 0$ and $m \geqslant 1$ such that $a^{N} a^{r} \in A$ if and only if $a^{N} a^{r} a^{m} \in A$ for all $r \geqslant 0$. Then the index of P_{A} is at most $N+m$. Hence A is regular.
(3) implies (1). Suppose A is regular. Then P_{A} is of finite index. This implies that P_{A} is not the equality. Hence A is not a disjunctive language. \#

Proposition 2. Let $A \subset a^{*}$. Then A is a disjunctive language if the conditions hold
(1) for any $m \geqslant 1$ there exists $r \geqslant 1$ such that $a^{m+r} \in A$;
(2) for any $m \geqslant 1$ there exists $n \geqslant 1$ such that $a^{m+n} \notin A$;
(3) for any $m \geqslant 1$ and for every $n_{1} \geqslant 1$ there exists $s \geqslant n_{1}$ such that either $a^{s}\left\{a, a^{2}, \ldots, a^{m}\right\} \cap A=\varnothing$ or $a^{s}\left\{a, a, \ldots, a^{m}\right\} \subset A$.

Proof. Suppose A satisfies the conditions. Then by (1) and (2), $A \neq \varnothing$ and $A \neq a^{*}$. Let $a^{r}, a^{r+k}, r \geqslant 0, k \geqslant 1$ be two words in a^{+}. If $a^{r} \in A, a^{r+k} \notin A$ or $a^{r} \notin A, a^{r+k} \in A$, then $a^{r} \not \equiv a^{r+k}\left(P_{A}\right)$. Suppose on the contrary $\left\{a^{r}, a^{r+k}\right\} \cap$ $A=\varnothing$ or $\left\{a^{r}, a^{r+k}\right\} \subset A$. By (3) there exists $s \geqslant r$ such that $a^{s}\left\{a, a^{2}, \ldots, a^{k+1}\right\} \cap$ $A=\varnothing \varnothing$ or $a^{s}\left\{a, a^{2}, \ldots, a^{k+1}\right\} \subset A$. If $a^{s}\left\{a, \dot{a}^{2}, \ldots, a^{k+1}\right\} \cap A=\varnothing$, let m_{1} be the smallest positive integer such that $\boldsymbol{a}^{s+(k+1)+m_{1}} \in A$. We have then $a^{s-r+1} a^{r} a^{m_{1}} \notin A$ but $a^{s-r+1} a^{r+k} a^{m_{1}} \in A$. If $a^{s}\left\{a, a^{2}, \ldots, a^{k+1}\right\} \subset A$, let m_{1} be the smallest positive integer such that $a^{s+k+1+m_{1}} \notin A$. Then $a^{s-r+1} a^{r} a^{m_{1}} \in A$ and $a^{s-r+1} a^{r+k} a^{m_{1}} \notin A$. In either case we have $a^{r} \not \equiv a^{r+k}\left(P_{A}\right)$. Hence A is a disjunctive language. \#

If a disjunctive language A satisfies the conditions in Proposition 2 then either A or $\tilde{A}=a^{*} \backslash A$ has arbitrarily large gaps. But there exist disjunctive languages which are not of this type. The following is an example:

Let $C=\left\{n^{2}+2 m \mid 0 \leqslant m<n\right\}$ and $A=\left\{a^{i} \mid i \in C\right\}$. It is easy to see that A is a disjunctive language and A does not satisfy (3) of Proposition 2.

3. Disjunctive Languages on X^{*} with $|X| \geqslant 2$

Throughout this section we let X be an alphabet with $|X| \geqslant 2$. A word $x \in X^{+}$is said to be primitive if $x=f^{n}$ for some $f \in X^{+}$implies $n=1$. We let Q be the set of all primitive words on X^{*}. If $f \in X^{+} \backslash\left\{a^{+} \mid a \in X\right\}$ is such that $\lg (f)=p \geqslant 3$, where p is a prime, then $f \in Q$. Hence Q is infinite. It is known (see Lyndon and Schützenberger, 1962) that for any $x \in X^{+}$, there exists a unique $f \in Q$ and $n \geqslant 1$ such that $x=f^{n}$.

Let $Q^{(1)}=Q \cup\{A\}$ and for $i \geqslant 2$ we let $Q^{(i)}=\left\{f^{i} \mid f \in Q\right\}$. Then $X^{*}=$ $\bigcup_{i=1}^{\infty} Q^{(i)}$ with $Q^{(i)} \cap Q^{(j)}=\varnothing$ if $i \neq j$. In this section we discuss some special type of primitive words and show that $Q^{(i)}$ is a disjunctive language for all $i \geqslant 1$.

Lyndon and Schützenberger (1962) have shown that the equation $a^{M}=b^{N} c^{P}$, where $M \geqslant 2, N \geqslant 2, P \geqslant 2$ has a solution on a free group only when a, b, and c are each a power of a common element. Since every free monoid can be embedded in a free group, the result is true on a free monoid. The following lemma is immediate.

Lemma 3. Let $f, g \in Q, f \neq g$. Then $f^{n} g^{p} \in Q$ for all $n \geqslant 2, p \geqslant 2$.
This lemma is not true if $p=1$. For example, let $X=\{a, b\}, f=a b$, $g=b a b a b b$. Then $f^{2} g=(a b a b)(b a b a b b)=(a b a b b)^{2} \notin Q$.

Lemma 4. Let $f, g \in Q, f \neq g$, and $n \geqslant 2$. If $f^{n} \notin Q$, then $f g^{n+\sqrt{n}} \in Q$ for all $k \geqslant 2$.

Proof. Suppose $f g^{n}=h^{r}, h \in Q, r \geqslant 2$. Then $g \neq h$. By Lemma 3 for all $k \geqslant 2, f g^{n+k}=h^{r} g^{k} \in Q . \quad \#$

A subset $A \subset X^{+}$is called a code if $x_{1} x_{2} \cdots x_{m}=y_{1} y_{2} \cdots y_{n}, x_{i}, y_{j} \in A$, $m \geqslant 1, n \geqslant 1$, implies $m=n$ and $x_{i}=y_{i}, i=1,2, \ldots, n$. A code is therefore a subset of X^{+}which generates a free submonoid of X^{*}.

Lemma 5. Let X be an alphabet. Then for any $x, y \in X^{+},\{x, y\}$ is a code if and only if $x y \neq y x$.

Proof. This is a direct consequence of Lemma 3 (Lyndon and Schützenberger, 1962) and Corollary 3 (Lentin and Schützenberger, 1967). \#

Proposition 6. Let $f \neq g, f, g \in Q$. Then $g^{i} f g_{g} \in \in$ for all $m \geqslant 2, i \geqslant 1$.
Proof. Suppose $g^{i f} f^{m} g^{i}=h^{r}, h \in Q, r \geqslant 2$. If $f \neq h$, then $\left(g i f^{m}\right)\left(g^{i} f^{m}\right)=$ $h^{r} f^{m} \in Q$, a contradiction. Hence $f=h$ must hold. It follows that either $f=g k$,
$k \in X^{+}$or $g=f q, q \in X^{+}$. Now if $f=g k$, then $g k \neq k g$ and hence by Lemma 5 $\{g, k\}$ is a code. We have then

$$
g^{i} g k \cdots g k g^{i}=g k g k \cdots g k
$$

The fact that $\{g, k\}$ is a code implies that $g=k$, a contradiction. On the other hand, if $g=f q, q \in X^{+}$, then $f q \neq q f$ and $\{f, q\}$ is a code. We have

$$
(f q)^{i} f \cdots f(f q)^{i}=f \cdots f
$$

Again this implies that $f=q$, a contradiction. Therefore $g^{i} f^{m} g^{i} \in Q$ for all $m \geqslant 2$, $i \geqslant 1$. \#

The above result is not true if $m=1$. For example, let $X=\{a, b\}$. Then $\left(a^{i}\right)\left(b a^{i} a^{i} b\right)\left(a^{i}\right)=\left(a^{i} b a^{i}\right)\left(a^{i} b a^{i}\right) \notin Q$, where a and $b a^{i} a^{i} b$ are primitive words.

Let $A, B \subset X^{*}$ be two nonempty languages such that $A \cap B=\varnothing$. The pair (A, B) is said to be a disjunctive pair if for all $x, y \in X^{*}, x \neq y$, there exist $u, v \in X^{*}$ such that either $u x v \in A, u y v \in B$ or $u y v \in A, u x v \in B$. Note that A is a disjunctive language if and only if $\left(A, X^{*} \backslash A\right)$ is a disjunctive pair. If (A, B) is a disjunctive pair, then both A and B are disjunctive languages. Moreover, if (A, B) is a disjunctive pair and $A_{1} \supset A, B_{1} \supset B, A_{1} \cap B_{1}=\varnothing$, then $\left(A_{1}, B_{1}\right)$ is also a disjunctive pair.

Proposition 7. Let $X=\{a, b, \ldots\}$ be an alphabet such that $a \neq b$. Then $\left(Q, Q^{(i)}\right)$ is a disjunctive pair for all $i \geqslant 2$.

Proof. Given $i, x \neq y$, we must prove there exist u, v such that $u x v \in Q^{(i)}$ and $u y v \in Q$ or vice versa. Without loss of generality, assume that $x \neq \Lambda$ and that x begins with b. Then take $M=2 \max (\lg (x), \lg (y)), u=a^{M} x, v=$ $\left(a^{M} x x\right)^{i-1}$. Since $a^{M} x x \in Q$ by Lemma 3, $u x v=\left(a^{M} x x\right)^{i} \in Q^{(i)}$.

We prove $u y v=a^{M} x y\left(a^{M} x x\right)^{i-1} \in Q$, by attempting to find $j \geqq 2$ and w such that $w^{j}=a^{M} x y\left(a^{M} x x\right)^{i-1}$. We can easily eliminate $w \in a^{*}$. Thus $w=a^{M} b w_{1}$, for some w_{1}. Since w begins with exactly $M a$'s, we can infer that $w=$ $a^{M} x y\left(a^{M} x x\right)^{h}=\left(a^{M} x x\right)^{h+1}$, for some $h \geqq 0$. But this is impossible since $x \neq y$. So with $j \geqq 2$, no such w can be found.

Remark. It is immediate that $\left(Q^{(1)}, Q^{(i)}\right)$ is also a disjunctive pair for all $i \geqslant 2$, where $Q^{(1)}=Q \cup\{\Lambda\}$.

We have the following as a corollary,

Proposition 8. Let X be an alphabet such that $|X| \geqslant 2$. Then each $Q^{(i)}$, $i=1,2, \ldots$ is a disjunctive language. Hence X^{*} is a disjoint union of infinitely many disjunctive languages. Moreover, if $A \supset Q, B \supset Q^{(i)}$ for some $i \geqslant 2$ and $A \cap B=\varnothing$, then (A, B) is a disjunctive pair and hence both A and B are disjunctive languages.

4. Another Disjunctive Language on X^{*} with $|X| \geqslant 2$

In this section we let $X=\{a, b\}$. We construct disjunctive languages on X^{*} with $|X|=2$ which are different from those of $Q^{(i)}$ in the previous section. In fact the same construction works for the case $|X| \geqslant 3$.

First we define an integer function $f(n)$ which we need in the construction.

$$
\begin{aligned}
& f(1)=1 \\
& f(n)=f(n-1)+n, \quad \text { if } \quad n \neq 1
\end{aligned}
$$

We note that $f(n)-f(n-1)=n$ for $n \geqslant 2$.
We let \leqslant be the lexicographic order on $X^{n}, n \geqslant 1$. Then $\left(X^{+}, \leqslant\right)$is a partially ordered semigroup.

Let $\# m(S)$ be the m th element in the sequence $S \subset X^{n}$. For example, $X^{3}=\{a a a<a a b<a b a<\cdots<b b a<b b b\}$ and $\# 3\left(X^{3}\right)=\{a b a\}$.

Let

$$
C=\bigcup_{n=1}^{\infty}\left\{b X^{f(n)}\right\}
$$

and for $k=1,2, \ldots$, we let

$$
B_{k}=\bigcup_{n=1}^{\infty}\left\{\# n\left(a X^{f(10 n+10 k)+k}\right)\right\}
$$

and

$$
B=\bigcup_{k=1}^{\infty} B_{k}
$$

Remark. It is easily seen that for all $x \in X^{*}$ there exist $u, v \in X^{+}$such that $u x v \in B$, since if $\# m\left(X^{n}\right)=\{x\}, n \geqslant 1,1 \leqslant m \leqslant 2^{n}$, then for all $r \geqslant 1$, $\# m\left(X^{n+r}\right)=\left\{a^{r} x\right\}$.

From the construction of C and B we see that
(1) $B \cap C=\varnothing$;
(2) for any $m \geqslant 1$ and $k \geqslant 1$, there exists an integer $j \geqslant k$ such that $\left(\bigcup_{i=1}^{m} b X^{j+i}\right) \cap C=\varnothing$; and $b X^{j+m+1} \subset C$;
(3) in the set $B, a X^{r}$ contains at most one element, $r \geqslant 1$.

Proposition 9. Let $X=\{a, b\}$. Then the language $A=B \cup C$ is a disjunctive language on X^{*}.

Proof. Since $C \subset A$ and $B \cap C=\varnothing$, it follows from (2) that for any $x, y \in X^{*}$ with $\lg (x) \neq \lg (y), x \neq y\left(P_{A}\right)$. It remains to be shown that $x \not \equiv y\left(P_{A}\right)$ for all $x, y \in X^{*}$ with $\lg (x)=\lg (y)$. But this is immediate from (3) and the remark following the definition of B. \#

5. The Family of Disjunctive Languages is ANTI-AFL

Abstract families of languages (AFL) have been studied intensively by Ginsburg, Greibach, Harrison, Spanier, and others The families of regular languages, context-free languages, context-sensitive languages and type-0 languages are examples of AFL. An example of an anti-AFL, where a family of languages \mathscr{L} is called anti-AFL if it is not closed under any of the operations defined in (4) below, is the family of OL-languages (see Salomaa, 1973, Theorem 13.1). In this section we show that the family of disjunctive languages is another anti-AFL.

In this section we let X be an infinite alphabet and for every i, X_{i} is a finite alphabet such that $X_{i} \subset X$.

A mapping h from $X_{1} *$ into $X_{2}{ }^{*}$ is a homomorphism if $h(x y)=h(x) h(y)$ for all $x, y \in X_{1}{ }^{*}$. If $h(x)=\Lambda$ implies $x=A$, then h is said to be Λ-free. The mapping h^{-1} from subsets of $X_{2}{ }^{*}$ into subsets of $X_{1}{ }^{*}$ defined by $h^{-1}(Y)=$ $\left\{x \in X_{1}^{*} \mid h(x) \in Y\right\}$ for all $Y \subset X_{2}^{*}$ is called an inverse homomorphism.

An abstract family of languages (abbreviated AFL) (see Ginsburg and Greibach, 1969) is a pair (X, \mathscr{L}), or \mathscr{L} when X is understood, where
(1) X is an infinite alphabet;
(2) for each A in \mathscr{L} there is a finite set $X_{1} \subset X$ such that $A \subset X_{1}{ }^{*}$;
(3) $A \neq \varnothing$ for some A;
(4) \mathscr{L} is closed under the operations of union, concatenation,,$+ \Lambda$-free homomorphism, inverse homomorphism and intersection with regular languages.

We now show the following
Proposition 10. The family of disjunctive languages \mathscr{O} is anti-AFL.
Proof. (i) Let $X_{1}=\{a\} \subset X$ and let $A \neq \varnothing$ be a disjunctive language on $X_{1}{ }^{*}$. Then $\tilde{A}=X_{1}{ }^{*} \backslash A$ is also a disjunctive language on $X_{1}{ }^{*}$. But $A \cup \tilde{A}=X_{1}{ }^{*}$ is not a disjunctive language. Hence \mathscr{D} is not closed under union.
(ii) Let $X_{1}=\{a\} \subset X$ and $A=\left\{a^{f(n)} \mid n>1\right\}$ where $f(n)$ is the integer function defined in the previous section. Then A is disjunctive by Proposition 2 and so $A_{1}=\tilde{A}$ is a disjunctive language and $A_{1} A_{1}=a^{*}=A_{1}{ }^{+}$, which is not a disjunctive language. Hence \mathscr{D} is not closed under concatenation and + .
(iii) \mathscr{D} is not closed under intersection with regular languages, since the empty set is regular but is not a disjunctive language.
(iv) Let $X_{1}=\{a\}$ and $X_{2}=\{a, b\}$, where $a \neq b$. Let h be the homomorphism from $X_{1}{ }^{*}$ into $X_{2}{ }^{*}$ defined by $h\left(a^{n}\right)=(a b)^{n}, n \geqslant 1$. Then h maps the disjunctive language $D=\left\{a^{n} \mid n=\right.$ prime $\} \subset X_{1}{ }^{*}$ to $B=h(D)=$ $\left\{(a b)^{n} \mid n=\right.$ prime $\} \subset X_{2}{ }^{*}$ which is not in \mathscr{D}, since $a b^{2} a \equiv a b^{3} a\left(P_{B}\right)$. Hence \mathscr{D} is not closed under Λ-free homomorphism. Now if we let $g: X_{2}^{*} \rightarrow X_{1}{ }^{*}$ such that $g(a)=g(b)=a$. Then $Y=\left\{a^{n} \mid n=\right.$ prime $\}$ is a disjunctive language in $X_{1}{ }^{*}$ but $C=g^{-1}(Y)=\left\{x \in X_{2}{ }^{*} \mid \lg (x)=\right.$ prime $\}$ is not a disjunctive language, since $a \equiv b\left(P_{C}\right)$. Hence \mathscr{D} is not closed under inverse homomorphism. This completes the proof of the proposition. \#

Acknowledgment

The author would like to thank the referee for comments and suggesting a shorter proof of Proposition 7.

Recerved: February 27, 1976; revised: June 11, 1976

References

Ginsburg, S., and Greibach, S. (1969), Abstract families of languages, in "Studies in Abstract Families of Languages," Vol. 87 pp. 1-32, Memoirs of the American Mathematical Society.
Lentin, A., and Schützenberger, M. P. (1967), A combinatorial problem in theory of free monoids, in "Combinatorial Mathematics and its Applications," pp. 128-144, Proceedings of the Conference Held at the University of North Carolina.
Lyndon, R. C., and Schützenberger, M. P. (1962), On the equation $a^{M}=b^{N} c^{p}$ in a free group, Michigan Math. J. 9, 289-298.
Rabin, M. O., and Scott, D. (1959), Finite automata and their decision problems, IBM J. Res. Develop. 3 (2), 114-125.

Rozenberg, G., And Doucet, P. G. (1971), On OL-languages, Inform. Contr. 19, 302-318. Salomaa, A. (1973), "Formal Languages," Academic Press, New York.

[^0]: * This research has been supported by Grant A7877 of the National Research Council of Canada.

