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Abstract

We compute the hyperfine Iiing in a heavyquarkonium composed of different flans in next-to-leading logarithmic
approximation using the nonrelativistic renormalization group. We predict the mass difference of the vector and pseudoscalar
charm-bottom mesons to bé¢(B;) — M (B.) =65+ 24 (th)fig(aas) MeV.

0 2004 Elsevier B.V. Open access under CC BY license.
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1. Introduction

The recently discovered charm-bottom heavy quarkontempletes the well invéigiated charmonium and
bottomonium families and offers a new perspectiwehie study of the nonrelativistic dynamics of the strong
interactions. The first experimental observatibaloout twenty events interpreted as the decays obthmeson by
CDF Collaboratiorf1] does not match the precision of the spin one charmonium and bottomonium measurements.
The statistics, however, is expected to increase significantly in future experiments at Tevatron and LHC greatly
improving the accuracy of the data. Note that only theysscalar (spin sglet) state has been observed so far
while the vector (spin triplet) mesoB is still to be discovered. This distinguishes quarkonium from thevh
system, where it is the pseudoscajgmeson, which asks for experimental detection.

From the theoretical point of view, the charm-bottom mesons are “in between” the approximately Coulomb
bb mesons and thec mesons. Therefore, a simultaneous analysis of all three quarkonia could shed new light
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on the balance between the perturbative and nonperturbative effects and further check whether a perturbative
analysis provides a reliable starting point for them. Moreover, since the nonperturbative effecisisyatem are
suppressed with respect to the meson, the former could be a cleaner place to determine the charm quark mass
(provided the experimental accurdasygood enough). Another point to be stsed is that, though the leading order
dynamics of the:b state is quite similar to thieh andcé one (up to the value of the reduced mass) the higher order
relativistic and perturbative corrections are different. Thus the comparisgnaridbb (cc) properties could help
to establish fine details of the nonrelativistic dynamics.

The spectrum of the charm-bottom quarkonium has been subject of numerous investigations based on potential
modelg[2,3], lattice simulation$4], and pNRQCO5]. This last analysis computed the ground state energy within
a pure perturbative approach. We comsithat this analysis further indicatésat a perturbative approach can be a
good starting point for studying th®. system.

In the present Letter we focus the hyperfine splitting (HFS)n¢s of the B, i.e., the mass difference between
the singlet and triplet spin statédg(B}) — M (B.). The QCD study of the heavy quarkonium HFS has a long
history[6,7]. For the same-flavor quarkonium the next-to-leading order (NR@y),) correction to the ground state
HFS can be found ifi8] in a closed analytical form. The leading order HFS is proportional to the fourth power
of the strong coupling constaat (v) and thus the low order calculations suffer from strong spurious dependence
on the renormalization scabe, which essentially limits the numeal accuracy of the approximation. Hence,
the proper fixing of the normalization scale becomemdatory for the HFS phenomenology. The dynamics of
the nonrelativistic bound state, however, is characterized by three well separated scales: the hard scale of the
heavy quark mass:, the soft scale of the bound state momentum, and the ultrasoft scale of the bound
state energynv?, wherev « «; is the velocity of the heavy quark inside the approximately Coulomb bound
state. To make the procedure of scale fixing self-consistent one has to resum to all orders the large logarithms
of the scale ratios. For the same-flavor case this problem has been solved [A]Régthin the nonrelativistic
renormalization group (NRG) approach and the next-to-leading logarithmic (NLL) result for HFS has been derived.
The renormalization group improved result shows better stability with respect to the scale variation. Moreover,
the use of the NRG significantly improves the agreement with the experimental value of HFS in charmonium in
comparison to the NLO computation. Below we generalize the analysis to the different-flavor quarkonium case and
apply the result to predict the splittimg (B})—M (B.).

2. Renormalization group running of the spin-dependent potential

To derive the NRG equations necessary for the NLL analysis of the HFS, we rely on the method based on the
formulation of the nonrelativistic effective theofd0] known as potential NRQCD (pNRQC[)1]. The method
was developed in Ref12] where, in particular, the leading logarithmic (LL) result for HFS has been obtained (see
also Ref[13]). In pNRQCD the HFS is generated by the spin-flip potential in the effective Hamiltonian, which in
momentum space has the form

ACfrm 01+02
8Hspin= D5 $2,  §=
spin 52,5 3mima 2

: 1)

whereg; ande, are the spin operators of the quark and antiquark with masse®idmy, Cr = (N2 —1)/(2N,),

and Dgzz)s is the Wilson coefficient, which incorporates théeets of the modes that have been integrated out. In
effective theory calculations such couplings become singular as a result of the scale separation. The renormalization
of these singularities allows one to derive the equatiorte®@NRG, which describe the running of the effective-
theory couplings, i.e., their dependence on the effective-theory cutoffs. The solution of these equations sums up the
logarithms of the scale ratios.
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In general, one should consider the soft, potential and ultrasoft runmbézbfcorrespondlng to the ultraviolet
divergences of the soft, potential, and ultrasoft regid@g. We denote the correspondlng cutoffsigsv, and
Vs, respectivelyy,; andv, are correlated as was first realized in Hé&b]. A natural relation between them is
Vys = vf,/(Zm,), wherem, =mimy/(m1+ my2) is the reduced mass. The dependence,ditst emerges in the LL
approximation after integrating out the hard modes. Itpl®ars after subsequent integrating out the soft modes
giving rise to a dependence dn the three-dimensional momentum transfer between the quark and antiquark.
Thus the soft running effectively stops at= k. The dependence or), emerges for the first time in the NLL
approximation and cancels out in the time-independeht&tinger perturbation theory for heavy quarkonium
observables. Thus, in pNRQCD one consid@@ as a function ok andv,. For the calculation of the spectrum
it is convenient to expand thisdependent potentlal around= v

2 2 k d 2
D_(gz)’s(k’ vp) = D_(gz)’s(vs’ Vp) + ln(\}_s)‘}sd_l)sD‘(SZ)’s(Us’ vp) + e (2
The characteristic momentum for the Coulomb systewmais, and forv, ~ aym, the average of Igk/vy) over

bound state wave function does not produce a large logarithm while the derivativesinesults in extra factor

of a;. Thus, for the calculation of the HFS in NLL approximation one can take the first term on the right-hand side
of Eq. (2)in the NLL approximation, the second term in the LL approximation and neglect the higher derivative
terms.

Once expanded, the potential is a functiorvpfandv, (we should not forget that there is also a dependence
onm;, the masses of the heavy quarks, apdthe matching scale of the order of the heavy quark masses). Let
us start with the discussion of the soft running. To the NLL approximation it is determined by the following NRG
equation

d
v——DG =ascr(my)crm2)ys, (3
dvg S5
wherecy is the effective Fermi coupling,

2
ye =y s+y<2> A 4)

is the soft anomalous dimension angl = o (vy) is renormalized in theMS scheme. The running of the
coefficientcr is known in NLL approximatior16]. It reads

e[y e (v Vi) esm) —as() (v vt
cp(mi) =277 [l+ ym <C1+2Inm2 + o 260 282 +oe (5)

wherez = (o, (vs) /ats (V)P0 vy, ~ m; is the hard matching scaley = 2(C4 + Cr) and the one- and two-loop
anomalous dimensions refib]
68 52

w=2Csr, = ECA 5 CaTrn. (6)

HereCs = N, Tr = 1/2, n; is the number of massless quark flavors, gné the (i 4+ 1)-loop coefficient of the
QCD g function
11 4 34 20

ﬂo: ?CA_éTFnh ,3 —ECA_ECATFVU ACrTrFn. (7)

The value of one-loop anomalous dimension

Bo 7
Vf(l):_7+ZCA (8)

i
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can be extracted from the result of REf2]. The result for the two-loop coefficient

y2 = zim[cﬁ(S — 361%) + 88Can Tr + 4n Tp(27CF — 400, Tr) ], 9)

is new. It was obtained by an explicit calculation of thableading singularities ohé two-loop soft diagrams
using the approach ¢17-19] In this approach, dimensional regularization with= 4 — 2¢ is used to handle the
divergences, and the formal expressions derived from the Feynman rules of the effective theory are understood in
the sense of the threshold expandib4]. Thus the practical calculation reduces to the evaluation of the coefficients
of the quadratic and linear soft polesdnOur approach possesses two crucial virtues: the absence of additional
regulator scales and the automatic matching of the contributions from different scales. For the reduction of the
two-loop Feynman integrals to the master ones the method of B}jfwas used.

The solution oEq. (3)can be written as a sum of the LL and NLL contributions. The LL result is already known
and read$12] (see alsq13])

@ \LL _ 280=T7Ca ; _oc,1p
(Ds2.,) —“s(”h>[1+ 250 ac, & T (10)
For the NLL term we obtain
NLL _ _
(6D ), = Bro(up) (2770 — 1) + BaaZ () (=700 — 1), (1D
where

2
2 v
By Biyo — 2B5[c1+ B In(54-)] — Bona O
2B3(Bo — yo) *
_ —Bryors? + Boyry Vs + Bo(Bry Vs — 4oy @)
2B5(2B0 — yo)m

The potential running starts to contribute in NLL order. To compute it we inspect all operators that lead to
spin-dependent ultraviolet divergences in the timéependent perturbation theory contribution with one and two
potential loopg12,21,22] They are

(12)

B> . (13)

(i) the ©(v2, asv) operatorg6],
(i) the tree®(v*) operators, some of which can be checked against the QED anfdl§g<8],
(iii) the one-loopO(«;v3) operators for which only the Abelian parts are kndda], while the non-Abelian parts
are new.

In the NLL approximation, we need the LL soft and ultrasoft running of@he?) and ®(v*) operators, which
enter the two-loop time-independent perturbation thetiagrams, and the NLL soft and ultrasoft running of the
O(a,v) andO(a;v3) operators, which contribute at one loop. The running of@ie?, a,v) operators is already
known within pNRQCD[12]. The running of the other operators is new. For some of them, it can be obtained
using the reparameterization invariaiizd]. We refrain from writing the corresponding system of NRG equations,
which is rather lengthy, and only present its solution, which can be cast in the form

18
=rra52(vh)ZA,-fi, (14)

i=1

2) \NLL
(SD(SZ)’s)p

where the coefficientd; and f; are given in theAppendix A To get this result we rescale the ultrasoft cutoff to
Vys = vlz,/w,. The difference to the previous definition is beyond the NLL accuracy.
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The LL result(10) obeys the tree level matching condition

2) \LL
(D@D, =, (15)

while Egs. (11) and (14yanish atv = v;, by construction. We then use the known one-loop result of the potential
[6] to obtain the NLO matching condition at the scéle vy = v, = vj,. It reads

2 5 5 7 U}g
(Dsz,s)l-loopz _§TF’11 — —CpA+Cp+=Cyln

36 8 mim2
3 - 1 2
3(epmamm2 Lol popymitme ) (M2 e (16)
4 mi+my 2 mi— ma m1 T

Note that in the limitny = m> = m,, this equation does not reproduce thesaflavor equal-mass expression

2
@ \ad 5 3 11C4 —9Cr 7 vy |as(vy)
(D52,5)1'|00p_ [—§TFVII+§(1—|n2)TF+T + ZCAlnn/Tq ST[ N (17)
because of the two-gluon annihilatioargribution present in the latter case.
Thus the NLL approximation for the Wilson coefficient is given by the sum
(2) NLL (2) 2 NLL ) NLL 2
( ( )) ( (V)) (‘SD ( )) (‘SD ( )) (DS2 s)l-loop’ (18)

whereD(z) )= D(Z) L) and we combine the soft and potential running by setting: v, = v, which is
conS|stent at the order of interest. Fr&mgs. (1) and (2)ve obtain the final result for the NLL spin-flip potential

D
k A4Crm
o D<2) NLL Y (g202)in( 2 2. !
5Hspin |:( ()) - (agcy) In . 3m1mzs (19)

3. Hyperfine splitting in NLL approximation

We are now in the position to derive the NLL result for the HFS. It is obtained by computing the corrections to
the energy levels with the insertion of the potentiéd) in the quantum mechanical perturbation theory. The result
for principal quantum number reads

4Cta LL 1\ LL
ENte = -3 F% Ec{(1+25¢n)(D§22{S(v)) + ( In( - ) +Win+ 1) +ye+ —) ; (?c?)

2n
NLL NLL NLL
02 )"+ 6DF, 0+ (0 )i (20)
wherei = 2Craym,, ES = —C2a2m,/(4n?), ¥,(z) = d"InT'(z)/dz", T'(z) is the Eulerl'-function, andyg =

0.577216..is Euler's constant IEq. (20)the first order correction to the Coulomb wave function at the origin
due to one-loop contribution to the static potential re@8$

5¢n=%[g ,30<|< >+\IJ1(n+l) 2n‘1’2(n)—1+y5+5)], (21)

wherea; = 31C4/9 — 20TFn; /9. Furthermore, the second line®6. (20)results from the second term in square
brackets inEq. (19)after average over the Coulomb wave function. By expanding the resummed expression up to
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O(a?), we get

4C%a? o TCALL  7Cy 4m?
ENLL —___ F™s EC 1 “s C Oy In r
n.hts 3 n)tt | + 4 + 8 mimo
(—SCpmr 3CA(m1+m2)> (ml) nTp(—15—11n + 12¢%Wy(n))
+ Inf — )+ —=
mi—ma 8(m1 — m2) mo 9n
C4(—393— 41n — 126ygn — 1261W1(n) + 2642W2(n))
72n
n a—gL” n 19C/2‘ _ S5CanysTr
7-[2 Uy Uy 6 6
—C2  11CsCrp  C2(m1? 2 2Crn T,
+ A ACF  Cplmy + m29) 2 2CFnysTF
6 8 (m1+m2)? 3
11C2(m1+mp)  ACpnyTpm, ~11Crm,  nyTr(my+mo) my
+ +Ca - Inf —
8(m1 —mp) my —mp my —mp 2(m1—mp) mp

N 19C3  5Can;Tr n 4m?
6 6 mima

C2(—1380- 3051 — 450yn — 4500W1(n) + 92412V (n))
144
43Cr  nyTr(—114— 109 — 18ygn — 182W1(n) + 8412 Wa(n))
+Cy 12 + 36 )

(22)

whereas = a(v), Wy (x) =d"InT(x)/dx", Ly =In(Cras/n) andv, = 2m, andv = v/n has been chosen.
The O(aflnzas) term is known[12,13}, while theO(a? Ina;) term is new. The equal-mass case expresgpn

relevant for charmonium and bottomonium, can be deduced Eqnf20)by replacing

2 2) \q9
(Df92),s)l-loop — (D (sz),s)floop (2

and settingn1 = m». After including the one-photon annihilation contribution, the Abelian part of the equal-mass
result reproduces th@(maf Inay) and(?(maz In ) corrections to the positronium HFS (see, €148,23).

4. Numerical estimates and conclusions

For the numerical estimates, we adopt the strated9]aind replace the on-shell mass of the charm and bottom
quarks by one half of the physical masses of the ground state of bottomonium and charfa&@jiumpractice,
we takem;, = 4.73 GeV andn. = 1.5 GeV, consistent with the accuracy of our computation. Furthermore, we take
as(Mz) as an input and rdrwith four-loop accuracy down to the matching scajeto ensure the best precision.
Below the matching scale the running @f is used according to the logarithenprecision of the calculation in
order not to include next-to-next-to-leading logarithms in our analysifidn1, the HFS for the charm-bottom
quarkonium ground state is plotted as a functiom d@fi the LO, NLO, LL, and NLL approximations for the hard
matching scale value, = 1.95 GeV. As we see, the LL curve shows a weaker scale dependence compared to
the LO one. The scale dependence of the NLO and Nyressions is further reduced, and, moreover, the NLL

1 For the running and decoupling af we use the prograrRunDec [27].
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Fig. 1. HFS for charm-bottom quarkonium as the function of the Fig. 2. HFS for charm-bottom quarkonium as the function of the
renormalization scale in LO (dotted line), NLO (dashed line), hard matching scale;, in LO (dotted line), NLO (dashed line),
LL (dot-dashed line), and NLL (solid line) approximation for LL (dot-dashed line), and NLL (solid line) approximation for
v, = 1.95 GeV. For the NLL result thband reflects the errors due v =0.95 GeV. For the NLL result theand reflects the errors due
to ag(Mz) =0.118+ 0.003. to as(Mz) = 0.118+ 0.003.

approximation remains stable at the physically motivated scale of the inverse Bohr 1@giys;, ~ 0.9 GeV,

where the fixed-order expans breaks down. At the scalé ~ 0.85 GeV, which is close to the inverse Bohr
radius, the NLL correction vanishes. Furthermore;’at 0.92 GeV, the result becomes independent;dfe., the

NLL curve shows a local maximum correspondingigrs = 65 MeV, which we take as the central value of our
estimate. The NLL curve also shows an impressive stability with respect to the hard matching scale variation in the
physical rangen, < v, < my, as we observe ifrig. 2 The NLL curve has a local maximum gt = 1.95 GeV,

which we take for the numerical estimates. All this suggests a nice convergence of the logarithmic expansion
despite the presence of the ultrasoft contribution whgrs normalized at the rather low scalé/v, ~ 0.5 GeV.

Let us discuss the accuracy of our result. For a first edgenof the error due to uncalculated higher-order
contributions, we take 9 MeV, the difference of the NLL and LL results at the local maxima. A different estimate
can be obtained by varying the normalization scale in the physical ra8g€ 0 < 1.4 GeV. In this case the
difference with the maximum is 16 MeV. Being conservative, we take this second number for our estimate of the
perturbative error. Within the power counting assumed in this Letter, the nonperturbative effects are beyond the
accuracy of our computation and shalle added to the errors. Followifi@], we infer them using charmonium
data. For an estimate we attribute the whole differeretevben perturbation theory and the experimental result,
~ 14 MeV, to nonperturbative effects. Taking into accotlt they are suppressed by the inverse heavy quark
mass at least asf(lasmq)z, we obtain~ 9 MeV for the typical size of the nonperturbative contribution to the HFS
in B.. For a conservative estimate of the nonperturbative error we multiply this number by two.

A further uncertainty is introduced by the error@af(M 7). In Figs. 1 and 2his is reflected by the yellow band,
which is based om(Mz) = 0.118+ 0.003. At the scale” = 0.92 GeV it induces an uncertainty (jfl‘g MeV.

To conclude, we have computed the HFS for a heavy quradkn composed of quark and antiquark of different
flavors in the NLL approximation by summing up the subleading logaritathie” 1« to all orders in the
perturbative expansion. The use of the NRG stabilizes the result with respectovér@tion at the physical
scale of the inverse Bohr radius and allow for solid first principle theoretical predictions. An explicit result for the
two-loop soft anomalous dimension of the spin-flip potential is also presented.

We predict the mass splittinof the vector and pseudoscalar charm-bottom mesons

M(BY) — M (B) = 65+ 24(th) T12(8a,) MeV, (24)
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where the errors due to the high-order perturbative corrections and the nonperturbative effects are added up in
quadrature in “th”, whereasié,” stands for the uncertainty ia; (Mz) = 0.118+ 0.003. With improving statistics
and precision of theé8. data our result can be considered as a prediction foBfheeson mass.
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Appendix A

The analytical results for the coefficientsand A; of Eq. (14)read ¢ = (a;(v,)/as ()Y Po)

A= Z3ﬂ0*2CA oF1 (3 _ 2C4 14— 2C4 , ﬁ)’ fo= ZZﬂO*(25CA)/6’ f3= Z250*4CA’
o po 2
fa= 72P0—3Ca f5= 72P0—2C4 fo= 72Po—=2C4 |n(2 _ Zﬂo)’ fr= 72Po—Ca
fa= Zﬁof(l3CA)/67 fo= Zﬂ0*2CA7 fio= Zﬂo+CA7 fii= ZZﬁo, fio= 72Po |n(2 _ Zﬂo),

fis=P, fu=PnE@-P),  As=53  fie=In@),  fir=1

fis=In(2—z), (A1)
Ay [C2CF +2C4C2 + p, 4C2(Cp + 2CF)1(Ca — 8n1Tp)7
2(5CA —4niTrp)(9C s — 4niTE)(2Ca — niTF)
Ap— [—345&?AC%I’11TF + /Lr384C%nl Tr(27CA — 8n;Tr)](5C4 +8Cr)(Ca — 8n;TF)
13CA(19CA — 16m;TF)(9CA — 8niTr)(5C 4 — 4niTE)(9C A + 81 Tr) ’

e —27CAC%(Ca — 8nTF) p 3C2(113C3 — 681C2n; Ty + 648CAn?T2 — 16n°T5H)

8(5Ca — 4 Tr)2(Ca +mTp) ' 4(5CA — 4n Tr)3(Ca + n Tr) ’
e —3CACF ’

4(13C4 — 8, Tr)
i 27C3(Ca — 8 Tr)(13C A — 8y Tr) 3CACr(11C, — 16mTF)

136C4 — 4n;Tr)(A1C A — 4niTE)(Cp — 201 TE)(2CA — i Tr)  8(5Ca — 4niTr)(2CA — niTF)
—3C2(6851C3 — 18936020, Tr + 7968 An?T2 — 8320°T7)
2085C4 —4nTr)(11C s — 4niTE)(Cp — 201 TF)(2C A — 0y TF)
—3C3(481C2 — 346C an; T + 64n2T2)(C — 81 Tr)
13CA(5Ca —4mTr)(11CA — 4niTF)(Ca — 2 TF)(2C4 — i TF)
—9C2(39C2 — 284C an T + 88n?T2)(Ca — 81, Tr)
52(5C4s — 4niTp)(A1C A — 4niTp)(Ca — 20 TE)(2CH — n;TF)]’

|
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[8CACF(Ca +2CF) 4 1y 12C5(2CF + Ca)(Ca — 81 Tr)
- (5CA — 4mTr)(11C A — 4y Tr)(2Ca — miTr) ’
Ay = —3(Ca — 3CF)CF
19C4 — 8niTr
g [—3110404C2n; T + pr3456C%0, T (27C 5 — 8n,Tp)1(5C 4 + 8CF)
13(9C4 — 8n;TF)2(5C 4 — 4n;Tr)(9C 4 + 8n Tr)
B 432C4C3(Cx — 8 TF)
T (9CA — 8 Tr)(5C4 — 4niTr)2(11C A — 4n; Tr)
—9C4C2(2481C3 — 194002, Ty + 1952 4n?T2 — 51207T7)
4(9C4 — 81 Tr)(5C A — 4n Tr)2(11C 4 — 4 Tr)(Ca +ni Tr)
—~72C3(Ca — 8 TF)(21C 4 — 81y TF)
(9CA —8n;Tr)(BCy — 4}’11TF)2(11CA —4nTF)
9C4C2(10401C4 — 2445203, Ty + 206160302 T2 — 62400 AnS T2 + 25611 T})
(9C4 — 8 Tp)(5CA — 4nTr)3(11C A — 4 Tr)(Ca +ni TF) }
_ (=864CAC}(Ca +mTr) +27C5CZ(TCA + 41 TF))(Ca — 81y Tr)
~ 8(5Ca — 4 TF)(Ca — 20 TF)(TCa — 20 Tp)(Ca + i TF)(9C A + 8, Tr)
B -9c3 3c2
= A11C, — anTr2 P AAIC, — ATy
G
T 2(11C 4 — 4 TR)?’
1944C,C3(13C4 — 8nTr) 27C2CF(3C4 — 4nTr)
T 13(5C4 — 4 Tr)(1AC A — 4 Tr)2(Cp — 20, TF) + (5C4 — 4n;Tp)(A1C 4 — 4n; Tr)?
oc3 27C4C2(117C% + 460C an; Tr — 41612T?)
(A1C4 — 4n;Tp)2  26(5CA — 4 Tr)(L1C A — 4 Tr)2(Ca — 2m;TF)
—216C3(585C2 — 554CAn; T + 64n?T2)
* “’[13(5@, — 4 Tr)(11C4 — 4 Tr)2(Ca — 2 Tr)
—54C,C2(325C% — 1268 an; T + 26402T72)
13(5C4 — 4n;Trp)(A1C 4 — 4ny Tp)2(Cy — 2n1Tp)i|’
216C3CF + 432022 1728C,C3 + 864C5C2
= 5Ca —anTr)(A1Ca — dn T )2 M7 (BCh = an Tr)(11CH — dny Tr )2
—864CAC3(Ca+nTr) + 27C5C%(TCa + 40 Tr)
- 4(5CA —4mTF)(Cp — 20 TF)(CaA +mTE)(9CA + 81 TF)
1296C2C3 +432C2C2(3Cx — nTr)
= (9CA — 80 Tr)(5Ca — 4 Tr)(11CA — 4ni Tp)
—216C4C3(21Cp — 8n;TF)(5CA — 4y TF) — 1296C3C2(4C 4 — 3nTF)
(9CA —8n;Tr)(5C4 — 4n1TF)2(11CA —4nTF) ’
2C4 _1) Cr(Ca+2CF)(Ca —8mTF)
Bo ' (5Ca —4nTr)(9Ca — 4nTr)(2C 4 — niTF)

6

)

Ag

|

A10 (1 —4ur),

A1l

A1

A13

A14

A1s

1-4u,),

A6

+

A17=—2F1<1, 1,4- (Ca+4CFpy)
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N 45c3
4(11C4 — 4}’l]TF)2

—3CACr
+ 8(13C4s — 8niTF)(19CA — 8n;Tr)(5C 4 — 4n;TF)(11C 4 — 4}’11TF)2(2CA —n;Tr)
x (2636415 — 9191144, T + 107125 307 T7 — 5564483077
+ 13145641 Ty — 112647 T7)
N 27C4C3
(9Ca — 8 TF)2(19C 4 — 16n;TF)(5CA — 4n;Tr)2(11CH — 4n; TF)?
1
*(7Ca —2uTr) (2Cs —miTr)
+302656@ 317 TR — 341964830 T7 + 115097& 4n? TR — 131072 TR)
N 3c2
16(19C4 — 16n;TF)(9C 4 — 81 Tr)2(19C 4 — 8 Tr)(5C 4 — 4nTr)?
1
* (11Cx — 40 Tr)2(7Ca — 21 Tr)(2Ca — mi Tr)
— 379669548608, Tr + 37940834480 [n?TZ — 1336115840 51> T2
— 2795040460851/ T# + 258709534724n>T2 — 114482053123n° T8
+ 276450508830/ T}, — 343932928 4nfT8 + 16777216;T7)
-3c3
(19C4 — 16n;TF)(9C A — 81 TF)2(5C A — 4n;Tr)2(11C A — 4n; Tr)?
1
*(@Ca—20Tr)2Cx — miTr)
— 7845516& 5n2T7 4 2337725124n3T2 — 176816384 30! 17
+ 58415104517 TR — 7979008 4nlTE + 262144 TY)
N -3C2
4(19C4 — 16n;TF)(9C 4 — 8n]TF)2(5CA — 4n; TF)3(11CA — 4}’l]TF)2
1
*(@Ca—20Tr)2Cx — i Tr)
+ 5528200720813 T2 — 742251782450 T + 5156251908 41> T

(36441818 — 76904723, Tr + 3453968 4n? 7

(124885248305

|

(6268500€ ] — 91230606 §n; Tr

(659490741 — 138641013080, Tr — 876382076 [n?T7

— 2102788096 3n°TE + 51113164835/ T} — 69730304 4n’T8 + 4194304119T1?)],

—18C3(5C4 — 4 Tr) — 864C2C2% — 432C3Cp N —3456C4C3 — 1728022
(5Ca — 4n; Tr)(11C A — 4n; Tr)2 M BC ) — an Tr)(11C A — 4 Tr )2’
with w, = m,/(m1+ m2) andzFi(a, b; c; z) is the hypergeometric function.

A1g= (A.2)
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