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Abstract

We compute the hyperfine splitting in a heavyquarkonium composed of different flavors in next-to-leading logarithmi
approximation using the nonrelativistic renormalization group. We predict the mass difference of the vector and pseu
charm-bottom mesons to beM(B∗

c ) − M(Bc) = 65± 24 (th)+19
−16(δαs) MeV.

 2004 Elsevier B.V.

PACS: 12.38.Bx; 14.65.Fy; 14.65.Ha

1. Introduction

The recently discovered charm-bottom heavy quarkoniumcompletes the well investigated charmonium an
bottomonium families and offers a new perspective in the study of the nonrelativistic dynamics of the stro
interactions. The first experimental observation of about twenty events interpreted as the decays of theBc meson by
CDF Collaboration[1] does not match the precision of the spin one charmonium and bottomonium measure
The statistics, however, is expected to increase significantly in future experiments at Tevatron and LHC
improving the accuracy of the data. Note that only the pseudoscalar (spin singlet) state has been observed so
while the vector (spin triplet) mesonB∗

c is still to be discovered. This distinguishescb̄ quarkonium from thebb̄

system, where it is the pseudoscalarηb meson, which asks for experimental detection.
From the theoretical point of view, the charm-bottom mesons are “in between” the approximately Co

bb̄ mesons and thecc̄ mesons. Therefore, a simultaneous analysis of all three quarkonia could shed ne
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on the balance between the perturbative and nonperturbative effects and further check whether a pe
analysis provides a reliable starting point for them. Moreover, since the nonperturbative effects in thecb̄ system are
suppressed with respect to thecc̄ meson, the former could be a cleaner place to determine the charm quark
(provided the experimental accuracyis good enough). Another point to be stressed is that, though the leading ord
dynamics of thecb̄ state is quite similar to thebb̄ andcc̄ one (up to the value of the reduced mass) the higher o
relativistic and perturbative corrections are different. Thus the comparison ofcb̄ andbb̄ (cc̄) properties could help
to establish fine details of the nonrelativistic dynamics.

The spectrum of the charm-bottom quarkonium has been subject of numerous investigations based on
models[2,3], lattice simulations[4], and pNRQCD[5]. This last analysis computed the ground state energy w
a pure perturbative approach. We consider that this analysis further indicatesthat a perturbative approach can b
good starting point for studying theBc system.

In the present Letter we focuson the hyperfine splitting (HFS)Ehfs of theBc , i.e., the mass difference betwe
the singlet and triplet spin statesM(B∗

c ) − M(Bc). The QCD study of the heavy quarkonium HFS has a l
history[6,7]. For the same-flavor quarkonium the next-to-leading order (NLO)O(αs ) correction to the ground sta
HFS can be found in[8] in a closed analytical form. The leading order HFS is proportional to the fourth p
of the strong coupling constantαs(ν) and thus the low order calculations suffer from strong spurious depend
on the renormalization scaleν, which essentially limits the numerical accuracy of the approximation. Henc
the proper fixing of the normalization scale becomes mandatory for the HFS phenomenology. The dynamic
the nonrelativistic bound state, however, is characterized by three well separated scales: the hard sca
heavy quark massm, the soft scale of the bound state momentummv, and the ultrasoft scale of the bou
state energymv2, wherev ∝ αs is the velocity of the heavy quark inside the approximately Coulomb bo
state. To make the procedure of scale fixing self-consistent one has to resum to all orders the large lo
of the scale ratios. For the same-flavor case this problem has been solved in Ref.[9] within the nonrelativistic
renormalization group (NRG) approach and the next-to-leading logarithmic (NLL) result for HFS has been d
The renormalization group improved result shows better stability with respect to the scale variation. Mo
the use of the NRG significantly improves the agreement with the experimental value of HFS in charmo
comparison to the NLO computation. Below we generalize the analysis to the different-flavor quarkonium c
apply the result to predict the splittingM(B∗

c )–M(Bc).

2. Renormalization group running of the spin-dependent potential

To derive the NRG equations necessary for the NLL analysis of the HFS, we rely on the method base
formulation of the nonrelativistic effective theory[10] known as potential NRQCD (pNRQCD)[11]. The method
was developed in Ref.[12] where, in particular, the leading logarithmic (LL) result for HFS has been obtained
also Ref.[13]). In pNRQCD the HFS is generated by the spin-flip potential in the effective Hamiltonian, wh
momentum space has the form

(1)δHspin= D
(2)

S2,s

4CF π

3m1m2
S2, S = σ 1 + σ 2

2
,

whereσ 1 andσ 2 are the spin operators of the quark and antiquark with massesm1 andm2, CF = (N2
c −1)/(2Nc),

andD
(2)

S2,s
is the Wilson coefficient, which incorporates the effects of the modes that have been integrated ou

effective theory calculations such couplings become singular as a result of the scale separation. The renorm
of these singularities allows one to derive the equations ofthe NRG, which describe the running of the effectiv
theory couplings, i.e., their dependence on the effective-theory cutoffs. The solution of these equations sum
logarithms of the scale ratios.
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In general, one should consider the soft, potential and ultrasoft running ofD
(2)

S2,s
corresponding to the ultraviole

divergences of the soft, potential, and ultrasoft regions[14]. We denote the corresponding cutoffs asνs , νp and
νus , respectively.νus andνp are correlated as was first realized in Ref.[15]. A natural relation between them
νus = ν2

p/(2mr), wheremr = m1m2/(m1 +m2) is the reduced mass. The dependence onνs first emerges in the LL
approximation after integrating out the hard modes. It disappears after subsequent integrating out the soft mo
giving rise to a dependence onk, the three-dimensional momentum transfer between the quark and anti
Thus the soft running effectively stops atνs = k. The dependence onνp emerges for the first time in the NL
approximation and cancels out in the time-independent Schrödinger perturbation theory for heavy quarkoni
observables. Thus, in pNRQCD one considersD

(2)

S2,s
as a function ofk andνp . For the calculation of the spectru

it is convenient to expand thisk-dependent potential aroundk = νs

(2)D
(2)

S2,s
(k, νp) = D

(2)

S2,s
(νs, νp) + ln

(
k

νs

)
νs

d

dνs

D
(2)

S2,s
(νs , νp) + · · · .

The characteristic momentum for the Coulomb system isαsmr and forνs ∼ αsmr the average of ln(k/νs) over
bound state wave function does not produce a large logarithm while the derivative in lnνs results in extra facto
of αs . Thus, for the calculation of the HFS in NLL approximation one can take the first term on the right-han
of Eq. (2)in the NLL approximation, the second term in the LL approximation and neglect the higher der
terms.

Once expanded, the potential is a function ofνs andνp (we should not forget that there is also a depende
on mi , the masses of the heavy quarks, andνh, the matching scale of the order of the heavy quark masses)
us start with the discussion of the soft running. To the NLL approximation it is determined by the following
equation

(3)νs
d

dνs

D
(2)

S2,s
= αscF (m1)cF (m2)γs,

wherecF is the effective Fermi coupling,

(4)γs = γ (1)
s

αs

π
+ γ (2)

s

α2
s

π2 + · · ·

is the soft anomalous dimension andαs = αs(νs) is renormalized in theMS scheme. The running of th
coefficientcF is known in NLL approximation[16]. It reads

(5)cF (mi) = z−γ0/2
[
1+ αs(νh)

4π

(
c1 + γ0

2
ln

ν2
h

m2
i

)
+ αs(νh) − αs(νs)

4π

(
γ1

2β0
− γ0β1

2β2
0

)
+ · · ·

]
,

wherez = (αs(νs)/αs(νh))
1/β0, νh ∼ mi is the hard matching scale,c1 = 2(CA + CF ) and the one- and two-loo

anomalous dimensions read[16]

(6)γ0 = 2CA, γ1 = 68

9
C2

A − 52

9
CATF nl.

HereCA = Nc , TF = 1/2, nl is the number of massless quark flavors, andβi is the(i + 1)-loop coefficient of the
QCD β function

(7)β0 = 11

3
CA − 4

3
TF nl, β1 = 34

3
C2

A − 20

3
CATF nl − 4CF TFnl.

The value of one-loop anomalous dimension

(8)γ (1)
s = −β0

2
+ 7

4
CA
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can be extracted from the result of Ref.[12]. The result for the two-loop coefficient

(9)γ (2)
s = 1

216

[
C2

A

(
5− 36π2) + 88CAnlTF + 4nlTF (27CF − 40nlTF )

]
,

is new. It was obtained by an explicit calculation of thesubleading singularities of the two-loop soft diagram
using the approach of[17–19]. In this approach, dimensional regularization withD = 4− 2ε is used to handle th
divergences, and the formal expressions derived from the Feynman rules of the effective theory are unde
the sense of the threshold expansion[14]. Thus the practical calculation reduces to the evaluation of the coeffic
of the quadratic and linear soft poles inε. Our approach possesses two crucial virtues: the absence of add
regulator scales and the automatic matching of the contributions from different scales. For the reductio
two-loop Feynman integrals to the master ones the method of Ref.[20] was used.

The solution ofEq. (3)can be written as a sum of the LL and NLL contributions. The LL result is already kn
and reads[12] (see also[13])

(10)
(
D

(2)

S2,s

)LL = αs(νh)

[
1+ 2β0 − 7CA

2β0 − 4CA

(
z−2CA+β0 − 1

)]
.

For the NLL term we obtain

(11)
(
δD

(2)

S2,s

)NLL
s

= B1α
2
s (νh)

(
z−γ0+β0 − 1

) + B2α
2
s (νh)

(
z−γ0+2β0 − 1

)
,

where

(12)B1 = β1γ0 − 2β2
0

[
c1 + γ0

2 ln
( ν2

h

m1m2

)] − β0γ1

2β2
0(β0 − γ0)π

γ (1)
s ,

(13)B2 = −β1γ0γ
(1)
s + β0γ1γ

(1)s + β0(β1γ
(1)s − 4β0γ

(2)s )

2β2
0(2β0 − γ0)π

.

The potential running starts to contribute in NLL order. To compute it we inspect all operators that l
spin-dependent ultraviolet divergences in the time-independent perturbation theory contribution with one and
potential loops[12,21,22]. They are

(i) theO(v2, αsv) operators[6],
(ii) the treeO(v4) operators, some of which can be checked against the QED analysis[18,23],
(iii) the one-loopO(αsv

3) operators for which only the Abelian parts are known[18], while the non-Abelian part
are new.

In the NLL approximation, we need the LL soft and ultrasoft running of theO(v2) andO(v4) operators, which
enter the two-loop time-independent perturbation theory diagrams, and the NLL soft and ultrasoft running of
O(αsv) andO(αsv

3) operators, which contribute at one loop. The running of theO(v2, αsv) operators is alread
known within pNRQCD[12]. The running of the other operators is new. For some of them, it can be obt
using the reparameterization invariance[24]. We refrain from writing the corresponding system of NRG equatio
which is rather lengthy, and only present its solution, which can be cast in the form

(14)
(
δD

(2)

S2,s

)NLL
p

= πα2
s (νh)

18∑
i=1

Aifi,

where the coefficientsAi andfi are given in theAppendix A. To get this result we rescale the ultrasoft cutoff
νus = ν2

p/νh. The difference to the previous definition is beyond the NLL accuracy.
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(15)
(
D

(2)

S2,s

)LL
∣∣∣
ν=νh

= αs(νh),

while Eqs. (11) and (14)vanish atν = νh by construction. We then use the known one-loop result of the pote
[6] to obtain the NLO matching condition at the scalek = νs = νp = νh. It reads

(
D

(2)

S2,s

)
1-loop =

[
−5

9
TF nl − 5

36
CA + CF + 7

8
CA ln

(
ν2
h

m1m2

)

(16)− 3

4

(
CF

m1 − m2

m1 + m2
+ 1

2
(CA − 2CF )

m1 + m2

m1 − m2

)
ln

(
m2

m1

)]
α2

s (νh)

π
.

Note that in the limitm1 = m2 ≡ mq this equation does not reproduce the same-flavor equal-mass expression

(17)
(
D

(2)

S2,s

)qq̄

1-loop =
[
−5

9
TF nl + 3

2
(1− ln2)TF + 11CA − 9CF

18
+ 7

4
CA ln

νh

mq

]
α2

s (νh)

π
,

because of the two-gluon annihilation contribution present in the latter case.
Thus the NLL approximation for the Wilson coefficient is given by the sum

(18)
(
D

(2)

S2,s
(ν)

)NLL = (
D

(2)

S2,s
(ν)

)LL + (
δD

(2)

S2,s
(ν)

)NLL
s

+ (
δD

(2)

S2,s
(ν)

)NLL
p

+ (
D

(2)

S2,s

)
1-loop,

whereD
(2)

S2,s
(ν) ≡ D

(2)

S2,s
(ν, ν) and we combine the soft and potential running by settingνs = νp = ν, which is

consistent at the order of interest. FromEqs. (1) and (2)we obtain the final result for the NLL spin-flip potential

(19)δHspin=
[(

D
(2)

S2,s
(ν)

)NLL + γ
(1)
s

π

(
α2

s c2
F

)LL ln

(
k

ν

)]
4CF π

3m1m2
S2.

3. Hyperfine splitting in NLL approximation

We are now in the position to derive the NLL result for the HFS. It is obtained by computing the correcti
the energy levels with the insertion of the potential(19) in the quantum mechanical perturbation theory. The re
for principal quantum numbern reads

ENLL
n,hfs = −4

3

C2
F αs

n
EC

n

{
(1+ 2δφn)

(
D

(2)

S2,s
(ν)

)LL +
(

− ln

(
nν

ν̄

)
+ 
1(n + 1) + γE + n − 1

2n

)
γ

(1)
s

π

(
α2

s c2
F

)LL

(20)+ (
δD

(2)

S2,s
(ν)

)NLL
s

+ (
δD

(2)

S2,s
(ν)

)NLL
p

+ (
D

(2)

S2,s

)NLL
1-loop

}
,

whereν̄ = 2CF αsmr , EC
n = −C2

F α2
s mr/(4n2), 
n(z) = dn ln�(z)/dzn, �(z) is the Euler�-function, andγE =

0.577216. . . is Euler’s constant. InEq. (20)the first order correction to the Coulomb wave function at the or
due to one-loop contribution to the static potential reads[25]

(21)δφn = αs

π

[
3

8
a1 + β0

4

(
3 ln

(
nν

ν̄

)
+ 
1(n + 1) − 2n
2(n) − 1+ γE + 2

n

)]
,

wherea1 = 31CA/9− 20TFnl/9. Furthermore, the second line ofEq. (20)results from the second term in squa
brackets inEq. (19)after average over the Coulomb wave function. By expanding the resummed expressio
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ENLL
n,hfs = −4

3

C2
F α2

s

n
EC

n

{
1+ αs

π

[
CF + 7CALn

αs

4
+ 7CA

8
ln

(
4m2

r

m1m2

)

+
(−3CF mr

m1 − m2
+ 3CA(m1 + m2)

8(m1 − m2)

)
ln

(
m1

m2

)
+ nf TF (−15− 11n + 12n2
2(n))

9n

− CA(−393− 41n − 126γEn − 126n
1(n) + 264n2
2(n))

72n

]

+ α2
s

π2Ln
αs

[
Ln

αs

(
19C2

A

6
− 5CAnf TF

6

)

+
(−C2

A

6
− 11CACF

8
− C2

F (m1
2 + m2

2)

(m1 + m2)2

)
π2 − 2CFnf TF

3

+
(

11C2
A(m1 + m2)

8(m1 − m2)
+ 4CF nf TF mr

m1 − m2
+ CA

(−11CFmr

m1 − m2
− nf TF (m1 + m2)

2(m1 − m2)

))
ln

(
m1

m2

)

+
(

19C2
A

6
− 5CAnf TF

6

)
ln

(
4m2

r

m1m2

)

− C2
A(−1380− 305n − 450γEn − 450n
1(n) + 924n2
2(n))

144n

(22)+ CA

(
43CF

12
+ nf TF (−114− 109n − 18γEn − 18n
1(n) + 84n2
2(n))

36n

)]}
,

whereαs ≡ αs(ν), 
n(x) = dn ln�(x)/dxn, Ln
αs

= ln(CF αs/n) and νh = 2mr and ν = ν̄/n has been chosen

TheO(α2
s ln2 αs) term is known[12,13], while theO(α2

s lnαs) term is new. The equal-mass case expression[9],
relevant for charmonium and bottomonium, can be deduced fromEq. (20)by replacing

(23)
(
D

(2)

S2,s

)
1-loop → (

D
(2)

S2,s

)qq̄

1-loop

and settingm1 = m2. After including the one-photon annihilation contribution, the Abelian part of the equal-
result reproduces theO(mα6

s lnαs) andO(mα7
s ln2 αs) corrections to the positronium HFS (see, e.g.,[18,23]).

4. Numerical estimates and conclusions

For the numerical estimates, we adopt the strategy of[9] and replace the on-shell mass of the charm and bo
quarks by one half of the physical masses of the ground state of bottomonium and charmonium[26]. In practice,
we takemb = 4.73 GeV andmc = 1.5 GeV, consistent with the accuracy of our computation. Furthermore, we
αs(MZ) as an input and run1 with four-loop accuracy down to the matching scaleνh to ensure the best precisio
Below the matching scale the running ofαs is used according to the logarithmic precision of the calculation i
order not to include next-to-next-to-leading logarithms in our analysis. InFig. 1, the HFS for the charm-bottom
quarkonium ground state is plotted as a function ofν in the LO, NLO, LL, and NLL approximations for the ha
matching scale valueνh = 1.95 GeV. As we see, the LL curve shows a weaker scale dependence comp
the LO one. The scale dependence of the NLO and NLL expressions is further reduced, and, moreover, the N

1 For the running and decoupling ofαs we use the programRunDec [27].
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Fig. 1. HFS for charm-bottom quarkonium as the function of the
renormalization scaleν in LO (dotted line), NLO (dashed line),
LL (dot-dashed line), and NLL (solid line) approximation for
νh = 1.95 GeV. For the NLL result theband reflects the errors due
to αs(MZ) = 0.118± 0.003.

Fig. 2. HFS for charm-bottom quarkonium as the function of t
hard matching scaleνh in LO (dotted line), NLO (dashed line),
LL (dot-dashed line), and NLL (solid line) approximation fo
ν = 0.95 GeV. For the NLL result theband reflects the errors du
to αs(MZ) = 0.118± 0.003.

approximation remains stable at the physically motivated scale of the inverse Bohr radius,CF αsmr ∼ 0.9 GeV,
where the fixed-order expansion breaks down. At the scaleν′ ≈ 0.85 GeV, which is close to the inverse Bo
radius, the NLL correction vanishes. Furthermore, atν′′ = 0.92 GeV, the result becomes independent ofν; i.e., the
NLL curve shows a local maximum corresponding toEhfs = 65 MeV, which we take as the central value of o
estimate. The NLL curve also shows an impressive stability with respect to the hard matching scale variatio
physical rangemc < νh < mb, as we observe inFig. 2. The NLL curve has a local maximum atνh = 1.95 GeV,
which we take for the numerical estimates. All this suggests a nice convergence of the logarithmic ex
despite the presence of the ultrasoft contribution whereαs is normalized at the rather low scaleν̄2/νh ∼ 0.5 GeV.

Let us discuss the accuracy of our result. For a first estimate of the error due to uncalculated higher-or
contributions, we take 9 MeV, the difference of the NLL and LL results at the local maxima. A different es
can be obtained by varying the normalization scale in the physical range 0.8 � ν � 1.4 GeV. In this case the
difference with the maximum is 16 MeV. Being conservative, we take this second number for our estimat
perturbative error. Within the power counting assumed in this Letter, the nonperturbative effects are bey
accuracy of our computation and should be added to the errors. Following[9], we infer them using charmonium
data. For an estimate we attribute the whole difference between perturbation theory and the experimental re
≈ 14 MeV, to nonperturbative effects. Taking into accountthat they are suppressed by the inverse heavy q
mass at least as 1/(αsmq)2, we obtain≈ 9 MeV for the typical size of the nonperturbative contribution to the H
in Bc. For a conservative estimate of the nonperturbative error we multiply this number by two.

A further uncertainty is introduced by the error ofαs(MZ). In Figs. 1 and 2this is reflected by the yellow ban
which is based onαs(MZ) = 0.118± 0.003. At the scaleν′′ = 0.92 GeV it induces an uncertainty of+19

−16 MeV.
To conclude, we have computed the HFS for a heavy quarkonium composed of quark and antiquark of differe

flavors in the NLL approximation by summing up the subleading logarithmsαn
s lnn−1 αs to all orders in the

perturbative expansion. The use of the NRG stabilizes the result with respect to theν variation at the physica
scale of the inverse Bohr radius and allow for solid first principle theoretical predictions. An explicit result f
two-loop soft anomalous dimension of the spin-flip potential is also presented.

We predict the mass splitting of the vector and pseudoscalar charm-bottom mesons

(24)M
(
B∗

c

) − M(Bc) = 65± 24(th)+19
−16(δαs) MeV,
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where the errors due to the high-order perturbative corrections and the nonperturbative effects are add
quadrature in “th”, whereas “δαs ” stands for the uncertainty inαs(MZ) = 0.118± 0.003. With improving statistics
and precision of theBc data our result can be considered as a prediction for theB∗

c meson mass.
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Appendix A

The analytical results for the coefficientsfi andAi of Eq. (14)read (z = (αs(νp)/αs(νh))1/β0)

f1 = z3β0−2CA
2F1

(
3− 2CA

β0
,1,4− 2CA

β0
,
zβ0

2

)
, f2 = z2β0−(25CA)/6, f3 = z2β0−4CA,

f4 = z2β0−3CA, f5 = z2β0−2CA, f6 = z2β0−2CA ln
(
2− zβ0

)
, f7 = z2β0−CA,

f8 = zβ0−(13CA)/6, f9 = zβ0−2CA, f10 = zβ0+CA, f11 = z2β0, f12 = z2β0 ln
(
2− zβ0

)
,

f13 = zβ0, f14 = zβ0 ln
(
2− zβ0

)
, f15 = z3CA, f16 = ln(z), f17 = 1,

(A.1)f18 = ln
(
2− zβ0

)
,

A1 = [C2
ACF + 2CAC2

F + µr4C2
F (CA + 2CF )](CA − 8nlTF )

2(5CA − 4nlTF )(9CA − 4nlTF )(2CA − nlTF )
,

A2 = [−3456CAC2
F nlTF + µr384C2

FnlTF (27CA − 8nlTF )](5CA + 8CF )(CA − 8nlTF )

13CA(19CA − 16nlTF )(9CA − 8nlTF )(5CA − 4nlTF )(9CA + 8nlTF )
,

A3 = −27CAC2
F (CA − 8nlTF )

8(5CA − 4nlTF )2(CA + nlTF )
+ µr

3C2
F (113C3

A − 681C2
AnlTF + 648CAn2

l T
2
F − 16n3

l T
3
F )

4(5CA − 4nlTF )3(CA + nlTF )
,

A4 = −3CACF

4(13CA − 8nlTF )
,

A5 = 27C3
F (CA − 8nlTF )(13CA − 8nlTF )

13(5CA − 4nlTF )(11CA − 4nlTF )(CA − 2nlTF )(2CA − nlTF )
+ 3CACF (11CA − 16nlTF )

8(5CA − 4nlTF )(2CA − nlTF )

+ −3C2
F (6851C3

A − 18936C2
AnlTF + 7968CAn2

l T
2
F − 832n3

l T
3
F )

208(5CA − 4nlTF )(11CA − 4nlTF )(CA − 2nlTF )(2CA − nlTF )

+ µr

[ −3C3
F (481C2

A − 346CAnlTF + 64n2
l T

2
F )(CA − 8nlTF )

13CA(5CA − 4nlTF )(11CA − 4nlTF )(CA − 2nlTF )(2CA − nlTF )

+ −9C2
F (39C2

A − 284CAnlTF + 88n2
l T

2
F )(CA − 8nlTF )

52(5CA − 4nlTF )(11CA − 4nlTF )(CA − 2nlTF )(2CA − nlTF )

]
,
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A6 = [3CACF (CA + 2CF ) + µr12C2
F (2CF + CA)](CA − 8nlTF )

(5CA − 4nlTF )(11CA − 4nlTF )(2CA − nlTF )
,

A7 = −3(CA − 3CF )CF

19CA − 8nlTF
,

A8 = [−31104CAC2
F nlTF + µr3456C2

FnlTF (27CA − 8nlTF )](5CA + 8CF )

13(9CA − 8nlTF )2(5CA − 4nlTF )(9CA + 8nlTF )
,

A9 = 432CAC3
F (CA − 8nlTF )

(9CA − 8nlTF )(5CA − 4nlTF )2(11CA − 4nlTF )

+ −9CAC2
F (2481C3

A − 1940C2
AnlTF + 1952CAn2

l T
2
F − 512n3

l T
3
F )

4(9CA − 8nlTF )(5CA − 4nlTF )2(11CA − 4nlTF )(CA + nlTF )

+ µr

[ −72C3
F (CA − 8nlTF )(21CA − 8nlTF )

(9CA − 8nlTF )(5CA − 4nlTF )2(11CA − 4nlTF )

+ 9CAC2
F (10401C4

A − 24452C3
AnlTF + 20616C2

An2
l T

2
F − 6240CAn3

l T
3
F + 256n4

l T
4
F )

(9CA − 8nlTF )(5CA − 4nlTF )3(11CA − 4nlTF )(CA + nlTF )

]
,

A10 = (−864CAC3
F (CA + nlTF ) + 27C2

AC2
F (7CA + 4nlTF ))(CA − 8nlTF )

8(5CA − 4nlTF )(CA − 2nlTF )(7CA − 2nlTF )(CA + nlTF )(9CA + 8nlTF )
(1− 4µr),

A11 = −9C3
A

4(11CA − 4nlTF )2
+ µr

3C2
F

4(11CA − 4nlTF )
,

A12 = 9C3
A

2(11CA − 4nlTF )2 ,

A13 = 1944CAC3
F (13CA − 8nlTF )

13(5CA − 4nlTF )(11CA − 4nlTF )2(CA − 2nlTF )
+ 27C2

ACF (3CA − 4nlTF )

(5CA − 4nlTF )(11CA − 4nlTF )2

− 9C3
A

(11CA − 4nlTF )2 − 27CAC2
F (117C2

A + 460CAnlTF − 416n2
l T

2
F )

26(5CA − 4nlTF )(11CA − 4nlTF )2(CA − 2nlTF )

+ µr

[ −216C3
F (585C2

A − 554CAnlTF + 64n2
l T

2
F )

13(5CA − 4nlTF )(11CA − 4nlTF )2(CA − 2nlTF )

+ −54CAC2
F (325C2

A − 1268CAnlTF + 264n2
l T

2
F )

13(5CA − 4nlTF )(11CA − 4nlTF )2(CA − 2nlTF )

]
,

A14 = 216C3
ACF + 432C2

AC2
F

(5CA − 4nlTF )(11CA − 4nlTF )2 + µr

1728CAC3
F + 864C2

AC2
F

(5CA − 4nlTF )(11CA − 4nlTF )2 ,

A15 = −864CAC3
F (CA + nlTF ) + 27C2

AC2
F (7CA + 4nlTF )

4(5CA − 4nlTF )(CA − 2nlTF )(CA + nlTF )(9CA + 8nlTF )
(1− 4µr),

A16 = 1296C2
AC3

F + 432C2
AC2

F (3CA − nlTF )

(9CA − 8nlTF )(5CA − 4nlTF )(11CA − 4nlTF )

+ µr

−216CAC3
F (21CA − 8nlTF )(5CA − 4nlTF ) − 1296C3

AC2
F (4CA − 3nlTF )

(9CA − 8nlTF )(5CA − 4nlTF )2(11CA − 4nlTF )
,

A17 = − 2F1

(
1,1,4− 2CA

β0
,−1

)
CF (CA + 2CF )(CA − 8nlTF )

(5CA − 4nlTF )(9CA − 4nlTF )(2CA − nlTF )
(CA + 4CFµr)
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+ 45C3
A

4(11CA − 4nlTF )2

+ −3CACF

8(13CA − 8nlTF )(19CA − 8nlTF )(5CA − 4nlTF )(11CA − 4nlTF )2(2CA − nlTF )

× (
263641C5

A − 919114C4
AnlTF + 1071256C3

An2
l T

2
F − 556448C2

An3
l T

3
F

+ 131456CAn4
l T

4
F − 11264n5

l T
5
F

)
+ 27CAC3

F

(9CA − 8nlTF )2(19CA − 16nlTF )(5CA − 4nlTF )2(11CA − 4nlTF )2

× 1

(7CA − 2nlTF )(2CA − nlTF )

(
3644181C6

A − 7690472C5
AnlTF + 3453968C4

An2
l T

2
F

+ 3026560C3
An3

l T
3
F − 3419648C2

An4
l T

4
F + 1150976CAn5

l T
5
F − 131072n6

l T
6
F

)
+ 3C2

F
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× 1
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(
12488524839C9

A

− 37966954860C8
AnlTF + 37940834480C7

An2
l T

2
F − 1336115840C6

An3
l T

3
F

− 27950404608C5
An4

l T
4
F + 25870953472C4

An5
l T

5
F − 11448205312C3

An6
l T

6
F

+ 2764505088C2
An7

l T
7
F − 343932928CAn8

l T
8
F + 16777216n9

l T
9
F

)
+ µr

[ −3C3
F

(19CA − 16nlTF )(9CA − 8nlTF )2(5CA − 4nlTF )2(11CA − 4nlTF )2

× 1

(7CA − 2nlTF )(2CA − nlTF )

(
62685009C7

A − 91230606C6
AnlTF

− 78455168C5
An2

l T
2
F + 233772512C4

An3
l T

3
F − 176816384C3

An4
l T

4
F

+ 58415104C2
An5

l T
5
F − 7979008CAn6

l T
6
F + 262144n7

l T
7
F

)
+ −3C2

F

4(19CA − 16nlTF )(9CA − 8nlTF )2(5CA − 4nlTF )3(11CA − 4nlTF )2

× 1

(7CA − 2nlTF )(2CA − nlTF )

(
659490741C9

A − 1386410130C8
AnlTF − 876382076C7

An2
l T

2
F

+ 5528200720C6
An3

l T
3
F − 7422517824C5

An4
l T

4
F + 5156251904C4

An5
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5
F

− 2102788096C3
An6

l T
6
F + 511131648C2

An7
l T

7
F − 69730304CAn8

l T
8
F + 4194304n9

l T
9
F

)]
,

(A.2)A18 = −18C3
A(5CA − 4nlTF ) − 864C2

AC2
F − 432C3

ACF

(5CA − 4nlTF )(11CA − 4nlTF )2 + µr

−3456CAC3
F − 1728C2

AC2
F

(5CA − 4nlTF )(11CA − 4nlTF )2 ,

with µr = mr/(m1 + m2) and2F1(a, b; c; z) is the hypergeometric function.
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