
Information and Computation 147, 57�88 (1998)

Verifiable Properties of Database Transactions

Michael Benedikt

Bell Laboratories, 1000 E. Warrenville Road, Naperville, Illinois 60566

E-mail: benedikt�research.bell-labs.com

and

Timothy Griffin and Leonid Libkin*

Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974

E-mail: griffin�research.bell-labs.com, libkin�research.bell-labs.com

It is often necessary to ensure that database transactions preserve
integrity constraints that specify valid database states. While it is possible
to monitor for violations of constraints at run-time, rolling back transac-
tions when violations are detected, it is preferable to verify correctness
statically, before transactions are executed. This can be accomplished if
we can verify transaction safety with respect to a set of constraints by
means of calculating weakest preconditions. We study properties of
weakest preconditions for a number of transaction and specification
languages. We show that some simple transactions do not admit weakest
preconditions over first-order logic and some of its extensions such as
first-order logic with counting and monadic 7 1

1 . We also show that the
class of transactions that admit weakest preconditions over first-order
logic cannot be captured by any transaction language. We consider a
strong local form of verifiability, and show that it is different from the
general form. We define robustly verifiable transactions as those that can
be statically analyzed regardless of extensions to the signature of the
specification language, and we show that the class of robustly verifiable
transactions over first-order logic is exactly the class of transactions that
admit the local form of verifiability. We discuss the implications of these
results for the design of verifiable transaction languages.] 1998 Academic

Press

1. INTRODUCTION

Databases are typically required to satisfy a collection of integrity constraints��
sentences that specify the valid states of the database. Database transactions that
update the database must preserve these constraints. One approach to the integrity

Article No. IC982731

57 0890-5401�98 �25.00
Copyright � 1998 by Academic Press

All rights of reproduction in any form reserved.

* To whom correspondence should be addressed.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82337092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

maintenance problem is to defer the detection of potential violations of integrity
constraints until run-time, thus preventing the violation of integrity that may be
caused by transactions. However, this approach results in potentially expensive
roll-back operations. To avoid this, one can attempt to verify statically, before a
transaction is executed, that it will necessarily maintain all constraints. If the result
of this verification shows that the transaction may sometimes fail to maintain some
of the constraints, then modifications can be made until correctness is achieved.

If T is a transaction and : is a constraint, we say that T preserves : if for every
database D:

D < : implies T(D) < :.

We use the notation D < : to mean that : is true for the database D.
According to the approach described above, we would like to be able to check

transactions to see if they will always preserve :. But, as the following result tells
us, one cannot hope to have an algorithm for checking this, even for simple trans-
actions and simple constraint specification languages.

Fact A (cf. [2]). For transactions specified as select-project-join expressions of
the relational algebra, and integrity constraints specified as first-order sentences, it
is undecidable to check if a given transaction preserves a given integrity constraint.

Similar results hold for transactions that consist of simple updates and deletions.
Therefore, any approach to automatic verification of transaction safety (such as the
approach of [35, 37] that uses theorem-provers) is inherently limited. Instead, we
adopt an approach based on modifying transactions to ensure safety.

Given a transaction T and a constraint :, we would like to find another
constraint ; that is satisfied by a database D before T is committed if and only if
: is satisfied afterward. In other words, for every database D,

D < ; if and only if T(D) < :.

We shall call such a ; a weakest precondition for :, with respect to T, and denote
it by wpc(T, :). We will require that wpc(T, :) be computable for given T and :.
Since we consider only transactions that do not diverge, this notion of weakest pre-
condition is equivalent to the classical one of Dijkstra [11, 12].

The existence of weakest preconditions would not contradict Fact A, as we
would not be able to determine the validity of the implication wpc(T, :) � :. At
the same time it would solve the problem of statically verifying database integrity
since any transaction T could be transformed to

if wpc(T, :) then T else abort

which will maintain consistency while avoiding any roll-back operations. Further-
more, we could then modify the resulting transaction by applying simplification
algorithms to wpc(T, :), thus recapturing many of the benefits of approaches based

58 BENEDIKT, GRIFFIN, AND LIBKIN

on validity-checking. This is the fundamental idea underlying many algorithms for
the automatic maintenance of integrity constraints [29, 21, 22, 31, 28].

Given the attractiveness of this approach to integrity maintenance, it is important
to understand the tradeoffs involved in designing transaction and specification
languages with respect to our ability to express weakest preconditions. In this
paper, we will concentrate on the basic principles behind developing safe trans-
actions via preconditions, rather than specific algorithms that attempt to detect
violations of integrity.

The main goal of this paper is to study the properties of weakest preconditions
for a variety of transaction and specification languages. In particular, we concentrate
on specification languages that are relevant to integrity constraints, such as first-order
logic over the database schema. Below we give a brief overview of the main results
of the paper.

Assume that we have two languages L1 and L2 in which constraints may be
specified. Also assume that we have a transaction language TL. We say that TL

is L1 -verifiable over L2 iff for every T # TL and every : # L2 , it is the case that a
weakest precondition for : with respect to T is in L1 . If L=L1=L2 , we speak of
L-verifiable transaction languages. Similar concepts have been studied in the more
general programming language context, see [6, 9].

Verifiable transaction languages are exactly those for which the weakest-pre-
condition approach to integrity maintenance is possible. An example of a language
verifiable over first-order logic is the first-order transaction language of [32].
However, no results exist for transaction languages that possess more power than
first-order logic (for example, for languages that allow some forms of recursion).
The first result of this paper is negative: it shows that adding recursion destroys
first-order verifiability.

Theorem B. Let TL be a transaction language that expresses at least one of the
following:

v transitive closure;

v deterministic transitive closure;

v same-generation (even restricted to trees).

Then TL is not verifiable over any of the following languages: first-order logic,
first-order logic with counting, first-order logic supplemented with a recursive collection
of recursive functions and predicates, monadic 71

1 .

We next fix our specification language to be first-order logic, and look at the set
WPC(FO) of transactions (that is, total maps from databases to databases) that
have weakest preconditions for first-order sentences. We show that this collection
cannot be captured by any transaction language.

Theorem C. There is no transaction language that expresses exactly all the
transactions in WPC(FO). This remains true if FO is replaced by first-order logic
over a signature containing a recursive collection of interpreted recursive functions
and predicates.

59VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

The ability to statically check global conditions��that is, conditions that must be
satisfied by the database as a whole��is, as noted above, extremely helpful. One
might also demand a stronger ``local'' version of this, in which one can statically
check properties of individual tuples in the resulting database. That is, one often
would like to find a condition that must be satisfied by a database D and an object
t (typically, a record) in order for t to belong to T(D). It is natural to compare the
class WPC(L) with the class of transactions for which this local checking can be
carried out. For a specification language L, the natural definition of such a class
is the set of transactions admitting prerelations. Informally, a transaction T admits
prerelations over L if it is definable by L-formulae on a set that extends the active
domain of the database. That is, for every relation R of arity n there exists a L-formula
preT

R (x1 , ..., xn) such that, for every n-tuple t=(d1 , ..., dn) and every database D:

D < preT
R(d1 , ..., dn) and d1 , ..., dn # 1(D) � T(D) < R(d1 , ..., dn).

Here 1(D) is a finite set that extends the active domain of the database. The precise
definition will be given in the next section.

The condition T(D) < R(d1 , ..., dn) means that t belongs to the relation R after
the transaction T is applied to the database D. Thus, prerelations allow us to test
membership before transactions are committed.

In papers like [32] prerelations are used in place of weakest preconditions. The
question of the relationship of these two notions, however, has not been addressed.
We shall see that for most specification languages of interest, it is the case that
any transaction that admits prerelations also admits weakest preconditions. The
converse, however, is not true even in very simple settings.

Theorem D. There exists a transaction T in WPC(FO) that does not admit
prerelations. Moreover, T can be chosen to be Datalogc-definable.

However, this result is not robust: if FO is extended by adding a constant for
each element of the domain, then the transaction from Theorem D no longer
provides a separation example. Motivated by this, we say that a transaction
language TL is robustly verifiable over a first-order signature 0 if, for any
extension of 0 to a signature 0$ via a set of recursive predicates and functions, all
transactions in TL remain verifiable over the corresponding extension of first-
order logic. We then prove a positive result that characterizes maximal robustly
verifiable languages when integrity constraints can refer to the individual elements
of the domain. Let FOc be first-order logic over the relational schema supplemented
with symbols for all constants.

Theorem E. There exists a transaction language that captures the class of trans-
actions admitting prerelations over FOc . Moreover, this language is the maximal robustly
verifiable language over FOc . In particular, every transaction robustly verifiable over
FOc is equivalent to a transaction that admits prerelations.

This has implications for transaction language design. If we are interested in a
``nice'' transaction language that is verifiable in an extensible way over all first-order

60 BENEDIKT, GRIFFIN, AND LIBKIN

languages, then we cannot hope that the language will be more expressive than the
first-order transaction language defined in [32, 33].

Organization. We rigorously define our formal setting in the next section. In
Section 3 we study the limitations of weakest preconditions. Section 4 studies the
relationship between weakest preconditions and prerelations. Robustly verifiable
transaction languages are the subject of Section 5. Concluding remarks are given in
Section 6.

The extended abstract of this paper appeared in [8].

2. FORMAL SETTING

We fix the domain to be a countably infinite set U. A relational schema is a non-
empty set SC=(R1 , ..., Rk) of predicates, with a finite arity ni>0 associated with
each Ri . A database over SC is an interpretation of each Ri as a finite subset of Uni.
Most often we will use the schema that consists of a single binary predicate E. Then
databases are interpreted as finite graphs whose nodes are elements of U.

We shall use two notions��specification language, in which constraints are
specified, and transaction language. A specification language L is a recursive subset
of a set of strings with an associate subset sent(L) of sentences, which is also
recursive. As stated in the introduction, we wish to focus on the specification
languages that are relevant to the integrity constraints. In particular, we will study:

v FO��(pure) first-order logic (that is, first-order logic over the relational
schema SC).

v FOc��first-order logic over the signature that consists of SC supplemented
with constant symbols for all elements of U.

v FOc(0)��first-order logic over the signature that consists of SC supplemented
with constant symbols as above and a recursive collection 0 of recursive functions and
predicates over U.

We shall also consider the following two logics, which are more powerful than
the first-order logic and play an important role in finite model theory and descriptive
complexity.

v FOcount��first-order logic with counting. For precise definition, see
[13, 19, 24]. This is a two-sorted logic, with the second sort of natural numbers
whose universe is [1, ..., n], where n is the size of the universe of the first sort. First-
order logic is extended with counting quantifiers, _ix .�(x) meaning that here are
at least i elements of the first-sort universe satisfying �. This quantifier binds x but
not i. The order, the constants for 1 and the maximal element, and the bit predicate
are available on natural numbers, where bit(i, j) is true iff the jth bit in the binary
representation of i is one. For example, _i _ix .�(x) 7 bit(i, 1) 7 (\j(_ jx .�(x))
� j�i) says that there are odd number of elements satisfying �. Another example
of non-first-order property definable in FOcount is equal cardinality.

v Monadic 71
1 , whose formulae are of the form _A1 } } } _Ak .9 where Ai 's are

monadic (unary) predicates and 9 is a first-order formula over SC _ (A1 , ..., Ak) .

61VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

For all specification languages it will be the case that we shall have a binary
relation < for validity between databases and sentences of the languages. For all
the languages above, validity is defined in the usual way.

A transaction language consists of (1) Syntax, a recursive subset of the set S of
strings over a finite alphabet, and (2) Semantics, a total recursive function M that
takes a string s, and an encoding of a database, and returns either another database
encoding or ``error,'' provided s # S. Examples include relational algebra and
calculus, SQL, first-order transaction language of [32], a variety of languages from
[3, 4], and so on. We shall always use the same symbol for both syntactic and
semantic objects. For example, for the language given by (S, M) , T # S and a
database D, we will write T(D) to denote the result of M on T and the encoding
of D.

We are interested in maintaining database integrity. To formalize this problem,
let L be a specification language and TL a transaction language. We define the
following problem:

Preserve(TL, L). Given T # TL and : in L, is it the case that D < : implies
T(D) < : for every database D?

According to Fact A, this problem is undecidable even for transactions specified
by the simplest form of SQL statements and for first-order constraints. This can be
derived from a result of [2]. Since the transaction model of [2] differs from the one
that we consider, we present a simple proof below for the sake of completeness.

Proposition 1. Let L be FO, and let TL contain the transactions given by the
select-project-join expressions of the relational algebra. Then Preserve(TL, L) is
undecidable.

Proof. Assume that Preserve is decidable, and consider two transactions on graphs:
T1 takes a graph on a finite set of nodes V and produces its diagonal ([(x, x) | x # V]) and
T2 produces the complete graph without loops ([(x, y) | x, y # V, x{ y]). T1(E)
can be implemented as 61, 3(_1=3(E_E)) and T2 as 61, 3(_1{3(E_E)) (we assume
that V is the union of the first and the second projections of E).

It suffices to restrict our attention only to nonempty graphs. Observe that if a
first-order sentence , is not satisfied in any T(D), then Preserve(T, ,) iff c, is
valid. Now let �#_x .E(x, x), and let ; be an arbitrary first-order sentence in the
language of E(} , }). Then ; is valid in every finite graph if and only if both c� 6 ;
and � 6 ; are valid in every finite graph. Using the observation above, we derive
that ; 6 � is valid iff Preserve(T1 , c; 7 c�), because c; 7 c� fails in all non-
empty outputs of T1 . Similarly, ; 6c� is valid iff Preserve(T2 , c; 7 �). Thus, if
Preserve is decidable, then it is decidable whether an arbitrary sentence ; is valid
in all finite graphs. Since undecidability of the latter is known (cf. [14]), we have
a contradiction. K

As we explained in the Introduction, a way around this is to introduce weakest
preconditions. Below is the main definition.

Definition. (1) Let L1 and L2 be two specification languages. We say that a
transaction T in a transaction language TL has L1-weakest preconditions over L2

62 BENEDIKT, GRIFFIN, AND LIBKIN

if for every L2-sentence : there exists an L1 sentence wpc(T, :), computable from
T and :, such that for every database D on which T is defined,

D < wpc(T, :) if and only if T(D) < :.

The class of transactions having L1 -weakest preconditions over L2 is denoted by
WPC(L1 , L2). We also write WPC(L) for WPC(L, L).

(2) We say that a transaction language TL is L1 -verifiable over L2 if every
TL transaction T is in WPC(L1 , L2). If L=L1=L2 , we speak of a language
verifiable over L.

The proposition below shows that while WPC(} , }) is monotone in the first
argument and antimonotone in the second, WPC(}) need not be (anti)monotone
in its one argument. We use the notation LPL$ mean that L is a sublanguage
of L$.

Proposition 2. (a) Let L$1PL1 and L2PL$2 . Then WPC(L$1 , L$2)�
WPC(L1 , L2).

(b) It is possible to find languages LPL$ and a transaction T such that
T # WPC(L)&WPC(L$).

(c) It is possible to find languages LPL$ and a transaction T such that
T # WPC(L$)&WPC(L).

Proof. (a) follows immediately from the defintions. For (b) and (c), take T to
be the transitive closure of a graph. For (b), take L$ to be first-order logic augmented
with constants for each element u # U. Take L to be the family of Boolean combina-
tions of formulae �u#_x . (E(x, u) 6 E(u, x)) meaning that u is a node with either
incoming or outcoming edge in the graph given by the predicate E. Then D < �u

iff T(D) < �u , and hence T # WPC(L). On the other hand, T � WPC(L$) (see
Theorem 3). For (c), we take L to be first-order logic, and L$ to be first-order
logic with fixpoint. Since T is definable in the latter, T # WPC(L$), but T � WPC(L),
see Theorem 2. K

Similar notions have been studied in a more general programming language con-
text. For example, weakest preconditions over first-order logic for a simple while
loop language can be expressed in infinitary logic [6] or in weak second-order
logic [9]. However, Proposition 2 shows that it is not always possible to extend
results of this kind to less expressive specification languages. In particular, according
to Theorem B, weakest preconditions for transitive closure (which is definable with
while loops) are not first-order expressible.

We will also use prerelations which allow for testing of local conditions. We are
now ready to formalize the definition we presented informally in the introduction.
Let 0 be a signature. By Term(0) we denote the set of all 0-terms which are built
up from variables by using the symbols from 0. (We treat constants as functions
of arity zero.) Given a database D, its (active) domain dom(D) is the set of all
elements of U that occur in the database. For a set 1�Term(0) and a database

63VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

D we define 1(D) to be the set of all x # U such that x={(y1 , ..., yn) for some n-ary
term { # 1 and some y1 , ..., yn # dom(D).

Definition. Let T be a transaction. We say that T admits prerelations over
L if there exists a finite collection of terms 1 and a collection of L-formulae
preT

1 , ..., preT
k , preT

i having ni free variables, such that for any Ri in the schema and
any d1 , ..., dni

U, it is the case the for every database D:

D < preT
i (d1 , ..., dni

) and d1 , ..., dni
1(D) � T(D) < Ri (d1 , ..., dni

)

The collection of all transactions that admit prerelations over L is denoted by PR(L).

The intuition behind the definition above is this. Since T(D) < Ri (d1 , ..., dni
) says

that the tuple (d1 , ..., dni
) belongs to Ri after T is applied, using prerelations we can

test, before T is committed, whether a given tuple will be in the database afterward.
We need the set 1 of terms to be able to define transactions that extend the active
domain of a database (for example, insertion of a new tuple may extend the
domain). The set 1(D) is a superset of the active domain of T(D), and the formulae
preT

i are used to determine when a tuple from 1(D) belongs to the ith relation of T(D).
Prerelations can be viewed as providing the ability to verify local properties of

databases as well as global properties. Prerelations have been used extensively in [32].
If L is pure first-order logic (in particular, 0 is empty and the only terms are
variables), then the notion of having prerelations reduces to the familiar notion of
a first-order definable transaction.

For all the languages we shall consider in this paper it is the case that
PR(L)�WPC(L). Indeed, to construct wpc(T, :) for any T # PR(L) we can
use 1 and preT

i to simulate the new database state after the transaction, and then
substitute all symbols for Ri in : by the formulae defining the new state. It is easy
to see that the power of first-order logic is sufficient for doing this. Later in the
paper we examine this inclusion and show that for most languages of interest it is
strict.

3. WEAKEST PRECONDITIONS

The goal of this section is to study weakest preconditions for first-order logic
and its extensions. We first prove that a language that can express (deterministic)
transitive closure or the same-generation query cannot have weakest preconditions
over FO. We then extend this result to more powerful specification languages, and
finally prove that no transaction language captures the class of transactions having
weakest preconditions over first-order logic.

We need a few technical definitions. Given a graph G=(V, E) , its deterministic
transitive closure (cf. [23]), dtc(G), is the graph (V, E$) where (x, y) # E$ iff (x, y) # E
or there is a sequence of nodes x=x1 , x2 , ..., xn= y such that each (xi , xi+1) # E, and
furthermore, each xi has out-degree 1, i=1, ..., n&1. The transitive closure of a
graph is denoted by tc(G).

Given a graph G=(V, E), the same-generation query returns the graph sg(G)=
(V, E$) where (x, y) # E$ iff there is a node v # V and two walks in G from v to x

64 BENEDIKT, GRIFFIN, AND LIBKIN

and from v to y that have the same length. Usually the same-generation query is
asked for trees. So we define the class of queries

SGtree=[q | if G is a tree, then q(G)=sg(G)].

In particular, sg # SGtree .
A chain is a graph of the form [(x1 , x2), ..., (xn&1 , xn)] where all xis are distinct.

A simple cycle is a graph of the form [(x1 , x2), ..., (xn&1 , xn), (xn , x1)] where all xis
are distinct. A chain-and-cycle graph, or a C6C-graph consists of n�1 connected
components, of which exactly one is a chain, and others (perhaps zero) are simple
cycles. An example of a C6C-graph is shown below.

Lemma 1. The class of CHC-graphs is first-order definable. Neither chains nor
cycles are first-order definable.

Proof. A graph is a C6C-graph iff it has exactly one root (node with in-degree
zero), exactly one endpoint (node with out-degree zero), the root has out-degree 1,
the endpoint has in-degree one, and all other nodes have both in- and out-degrees
1. That is,

\x \y \z .E(x, y) 7 E(x, z) � z= y outdegrees are at most 1

7 \x \y \z .E(y, x) 7 E(z, x) � z= y indegrees are at most 1

7 _!x \y .cE(y, x) unique root

7 _!x \y .cE(x, y) unique endpoint

defines the C6C-graphs.
That chains and cycles are not first-order definable can be proved straight-

forwardly using standard techniques (cf. [18, 27]). K

For the rest of the paper, 9c6c denotes the first-order sentence in the language
of E(} , }) above that defines C6C-graphs.

3.1. Languages Not Verifiable over FO

In this subsection we prove part of Theorem B from the Introduction. That is,

Theorem 2. Assume that TL can express one of the following:

v transitive closure;

v deterministic transitive closure;

v any query from SGtree .

Then TL is not verifiable over FO.

65VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

Proof. Follows from the following three claims.

Claim 1. tc � WPC(FO).

Proof of Claim 1. Assume tc # WPC(FO) and let :#\x \y .E(x, y). Then a
graph satisfies wpc(tc, :) iff it is connected, which means connectivity is FO-definable.
This contradiction proves tc � WPC(FO).

Claim 2. dtc � WPC(FO).

Proof of Claim 2. Assume dtc # WPC(FO). Let :#\x \y . (x{ y � E(x, y) 6

E(y, x)), and let ;=wpc(dtc, :). Define ##9c6c 7 ;. Then G < # iff G < 9c6c

and in dtc(G) there are no two unconnected nodes. For any graph G satisfying 9c6c

we have tc(G)=dtc(G), so G < # iff G is a chain. However, it is known (see
[13, 27]) that testing for chain is not FO-definable. Thus, dtc � WPC(FO).

Claim 3. If q # SGtree , then q � WPC(FO).

Proof of Claim 3. We define a family of graphs, [Gn, m | n, m�1] that will be
used in this proof as well as in the proof of Theorem 3. A graph Gn, m is shown on
the picture below. It is a tree, with two branches, each being a chain. The subtree
rooted at one of the root's children is an n-node chain, and the other is an m-node
chain.

Now assume that q # WPC(FO). If G is a tree, then q(G) consists of a number
of connected components, each of them being a complete graph. In particular, if for
some node x there is no other node in the same generation as x, then x is an
isolated node in q(G). Let :i , where i�1, be a first-order sentence saying that there
exist exactly i isolated nodes (i.e., those with a loop and no other incoming or
outgoing edge). Let ;i=wpc(q, :i). Then it is easy to see that Gn, m < ;i iff
|n&m|=i&1. Thus, for any n�1, Gn&1, n+1 < ;3 and Gn, n < c;3 .

To prove Claim 3, we now have to show that for any first-order sentence # there
exists a number N such that for all n>N, Gn&1, n+1 < # iff Gn, n < #. To prove this
statement, we use Hanf 's technique modified for the finite case by [17]. Given a
graph G, an r-neighborhood of a node a, Nr(a), is the subgraph of G on the set of

66 BENEDIKT, GRIFFIN, AND LIBKIN

all nodes reachable from a by unordered paths of length at most r. An r-type of a
is the isomorphism type of Nr(a), with a as a distinguished node. It can be seen
from the structure of the graphs Gn, m that for every r, and every n>2r+1, the
graphs Gn, n and Gn&1, n+1 have the same number of neighborhoods of every given
r-type.

Now if # of quantifier rank k is given, take r to be 3k. Then for any n>2r+1,
Gn, n and Gn&1, n+1 have the same number of r-neighborhoods that realize each
r-type. That is, using the terminology from [17], these two graphs are r-equivalent.
According to [17], 3k-equivalent structures cannot be distinguished by sentences of
quantifier rank k; hence Gn, n and Gn&1, n+1 cannot be distinguished by #. Consequently,
no first-order sentence distinguishes the families [Gn, n | n>1] and [Gn&1, n+1 | n>1].
This finishes the proof of Claim 3 and the theorem. K

3.2. Weakest Preconditions for More Powerful Logics

Here we extend the result of the previous subsection for more powerful logics
defined in Section 2. By doing so, we complete the proof of Theorem B from the
Introduction.

Theorem 3. Let L be either FOcount , or FOc(0) for an arbitrary 0, or monadic
71

1 . Then neither transitive closure, nor deterministic transitive closure, nor any query
in SGtree is verifiable over L.

Proof. We start by showing that the transitive closure and deterministic trans-
itive closure are not verifiable over L. The proof for FOcount and FOc(0) is
essentially the same as the proof of Theorem 2, if we can show that connectivity and
testing for chain are not definable in those logics. For FOcount this follows
immediately from [27] (or [13]), and for FOc(0) this follows from the result of
[7] that generic Boolean queries definable in FOc(0) are definable in relational
calculus with the order relation, since directed connectivity is not definable in the
latter [36]. That testing for chain is not definable in first-order logic with built-in
order relation follows from [13], which shows that this problem is first-order
complete for deterministic logspace.

In the case of monadic 71
1 , the proof for tc is the same as before, since connec-

tivity is not expressible in monadic 71
1 [5]. For dtc, we have to show that testing

whether a graph is a chain is not monadic 71
1 -definable. It was shown in [17] that

for any monadic 71
1 sentence � there exists a number n such that � can not

distinguish C 1
n , one cycle of length 2n, from C 2

n , two cycles of length n. However,
C1

n can be distinguished from C 2
n for any n>2 if testing for chain is available.

Indeed, consider the sentence ##\x \y .E(x, y) � chain[E$xy�E]. Here chain is the
sentence that tests whether a graph is a chain, and everywhere in this sentence we
replace the basic predicate E(z, v) with E$xy (z, v)#E(z, v) 7 (c(x=z) 6 c(y=v)).
Then # holds iff for every edge (x, y), the graph resulting from removing this edge
is a chain. Such a sentence # clearly distinguishes C 1

n from C 2
n . This finishes the

proof for the case of (deterministic) transitive closure.
Now let q # SGtree ; we show that q is not verifiable over L. When L=FOcount ,

we can apply the proof of Claim 3 in Theorem 2, since, by the result of [30] (see

67VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

also [15]), for each k it is possible to find a number r such that any two structures
that realize the same number of all r-neighborhoods cannot be distinguished by a
FOcount sentence of quantifier rank k.

For FOc(0), first define an order relation O on U that is isomorphic to | (that
is, the usual order on N). Now we show that q is not verifiable over FOc(0 _ [O]).
Assume it is verifiable. Consider :2 from the proof of Theorem 2 (asserting that there
are two isolated points) and let ;2=wpc(q, :2). Note that Gn, m < ;2 iff n&m=1
or m&n=1.

According to [7, Proposition 3], there exists an infinite set X�U and a FO(O)
sentence #2 such that for all graphs G whose sets of nodes are in X, we have G < #2

iff G < ;2 . In particular, for any graph of the form Gn, m with nodes from X,
Gn, m < #2 iff |n&m|=1. Now consider an arbitrary graph G of the form Gn, m with
the set of nodes A. Let f : A � X be a monotone injective map from A to X, and let
f (G) be the image of G under this map. Then, since #2 is a FO(O) sentence, we get
G < #2 iff f (G) < #2 iff |n&m|=1. Thus, the assumption that q # WPC(FOc(0))
implies that in first-order logic with built-in order relation, we can test if Gn, m

satisfies |n&m|=1.
Now we are going to show that such a test is impossible. Assume that the first-

order language contains only the symbol O to be interpreted as a linear order. For
each x, define

Ex(u, v)#[(vOu) 7 ((uOx) 6 (u=x)) 7 (\z.c(vOz) 6 c(zOu))]
6 [(uOv) 7 ((xOu) 6 (u=x)) 7 (\z.c(uOz) 6 c(zOv))].

That is, Ex defines a relation that is ``successor backward'' for elements under x and
the successor relation (associated with the ordering) for elements above x. Such a
relation is isomorphic to Gn, m where n is the number of elements under x and m
is the number of elements above x. Let #$2(x) be a first-order formula in the
language of O obtained from #2 by replacing each occurrence of E(u, v) with
Ex(u, v). Then a finite linear ordering (L, <) satisfies _x .#$2(x) iff there a ``middle''
element such that the number of elements above it is n and the number of elements
below it is n&1 (or vice versa). This happens iff the size of the finite universe is
even. However, since a FO(O) sentence of quantifier rank k cannot distinguish two
linear orderings of size >2k [34], we have a contradiction that shows that q is not
verifiable over FOc(0).

Finally, we must show that q is not verifiable over monadic 71
1 . Assume such a

q is verifiable. Let G=[Gn, n | n�1]. Then there exists a monadic 71
1 sentence ;

such that, if G is a tree, then G < ; iff G # G. To see this, note that the first-order
sentence :0 saying that a graph has one root of outdegree 2, two leaves on indegree
1, and that every other node has both in- and outdegree 1, defines a graph one of
whose connected components is Gn, m for some n, m, and all other connected
components are cycles. Let :1 be the first-order sentence _!x .E(x, x) 7 (\y .E(x, y)
6 E(y, x) � x= y); that is, :1 states that there exists a unique isolated point.
Then, if G is a tree, then G < :0 7 wpc(q, :1) iff G # G, since for any tree of the
form Gn, m , where n{m, there exist at least two isolated points in q(Gn, m).

68 BENEDIKT, GRIFFIN, AND LIBKIN

To complete the proof, we must show that there is no monadic 71
1 sentence ;

such that, if G is a tree, then G < ; iff G # G. Let Tree be the class of all trees.
According to [16, Theorem 5.5], it suffices to show that for any positive integers
c and k, the duplicator can win the (c, k) Ajtai�Fagin game for G and Tree&G.
The game is played as follows.

Step 1. The duplicator selects a graph G # G.

Step 2. The spoiler colors the nodes of G with c colors.

Step 3. The duplicator selects a graph G$ # Tree&G and colors its nodes with
c colors.

Step 4. The spoiler and the duplicator play k rounds of the Ehrehfeucht�
Fra@� sse� game on colored G and G$.

The winner is determined as the winner in Step 4. For more details on games,
see [15, 16]. To determine a winner in Step 4, we shall use the criterion below,
that follows immediately from Theorem 4.3 of [17]. We shall use the notation
G1rd, m G2 if G1 and G2 are two colored graphs, and for every isomorphism type
of a d-neighborhood of a node, either both graphs have the same number n�m of
nodes that realize this type, or both have at least m nodes that realize this type.
Note that in a graph colored with c colors, a neighborhood of a point is structure
in the vocabulary (E, U1 , ..., Uc , a) , where E is the binary edge relation, U is are
unary relations that are interpreted as sets of nodes colored with the ith color, and
a is a constant interpreted as a point around which the neighborhood is taken.

Claim 1. Let k be a positive integer. Then there exist positive integers d and m
such that, whenever G1 and G2 are two colored trees of outdegree at most 2, and
G1rd, m G2 , then the duplicator has a winning strategy in the k-round Ehrehfeucht�
Fra@� sse� game on G1 and G2 .

Claim 1 is just a special case of Theorem 4.3 of [17], when the structures are
trees, and the maximum degree is 2.

Before we prove that the duplicator has a winning strategy in the (c, k)
Ajtai-Fagin game, we need the following combinatorial lemma.

Lemma 4. For every positive integers p and l, there exists a positive integer
N[p, l] such that, for any N>N[p, l] and any partition of the set [1, ..., N] into l
sets, there exist two numbers i1 , i2 that belong to the same class, such that for any
i1�i�i2 , it is the case that i belongs to a partition class that has at least p+i2&i1

elements.

Proof of the lemma. If l=1, the statement is trivial, so we assume l>1. Let
f =max[p, l]. We claim that N[p, l] can be taken to be 4f 4+f (f+1)+1. There
exists a number N0 # [4f 4+1, 4f 4+f (f+1)+1] such that N0 is divisible by l and
l+1. Let k=N0�l and s=N0�l+1. Consider partitioning of [1, ..., N0] into l classes.
Then at least one class, say X, contains k elements, x1 , ..., xk . Let di=xi+1&xi ,
i=1, ..., k&1. Then at most s of dis are greater than or equal to l+1. Hence, at least
m0=N0 �(l(l+1))&1 of dis are less than l+1. Let I=[i | xi+1&xi�l]; we know
that |I |�m0 .

69VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

If at least one di=1, then we are done, since k�p+1. So assume that di>1 for
all i # I. Assume that the conclusion of the lemma is false. Then, for every i # I, there
exists yi such that xi< yi<xi+1 and y i belongs to a partition class that has fewer
than p+di elements. In particular, such a class has fewer than p+l elements. Since
there are l classes, we obtain that the number of such yis is at most l(p+l), which
implies that the cardinality of I is at most l(p+1), that is, m0�l(p+l). This
implies N0�l 2(l+1)(p+l)+1, which is easily seen to contradict the assumption
that N0�4f 4+1. This contradiction proves the lemma.

Using Lemma 4, we conclude the proof as follows. Given c and k, let d and m
be given by Claim 1. Let l=(2d+1)c, and let N=N[m, l]. Then in step 1 the
duplicator selects Gn, n where n>N+2(d+1). Let us call a node internal if it is at
the distance at least d+1 from the root and the leaves. A d-neighborhood of such
a node is a 2d+1-element chain. The choice of n guarantees that both branches of
Gn, n have at least N+1 internal nodes.

Now the spoiler colors the graph with Gn, n with c colors. Let G1 be this colored
graph. Note that there are at most l=(2d+1)c of isomorphism types of d-neighbor-
hoods of internal nodes in G1 . Thus, coloring corresponds to partitioning the internal
nodes into l classes, given by the isomorphism types of their d-neighborhoods.
Applying Lemma 4 to N+1 internal nodes in one of the branches of Gn, n , we
obtain that there exist two internal nodes a, b in the same branch, such that a and
b have isomorphic d-neighborhoods, b is at a distance j from a, and for every node
on a path from a to b, the isomorphism type of its d-neighborhood occurs at least
j+m times among the internal nodes of this branch.

Then in step 3, the duplicator selects the graph G$ obtained from Gn, n by collapsing
b to a, that is, by removing all the nodes starting from the successor of a up to b. Note
that G$ # Tree&G. Then G$ is colored by the duplicator, and the coloring in inherited
from G1 . We call the resulting colored graph G2 .

It remains to show that G1rd, m G2 , since this will imply that the duplicator can
win the k-round Ehrenfeucht�Fra@� sse� game on G1 and G2 by Claim 1. First notice
that there is no d-neighborhood that is present in one graph but is absent in the
other. Furthermore, the only neighborhoods that have different number of realizers
in G1 and G2 are those of the nodes removed in order to construct G2 from G1 . For
each of those neighborhood types, the number of nodes that realized them and that
were removed, does not exceed j, and at the same time we know that each of those
neighborhood types was realized at least j+m times in G1 . Thus, each of those
neighborhood types is realized at least m times in both G1 and G2 , which proves
G1rd, m G2 .

This concludes proving that no q # SGtree is verifiable over monadic 71
1 , and

completes the proof of the theorem. K

Since the sentences not having weakest preconditions in the proof of Theorem 3
are all in FO, we obtain:

Corollary 1. Let L be either FOcount , or FOc(0) for an arbitrary 0, or
monadic 71

1 . Then neither transitive closure, nor deterministic transitive closure, nor
any query from SGtree is in WPC(L, FO). K

70 BENEDIKT, GRIFFIN, AND LIBKIN

3.3. The Structure of Transactions with Weakest Preconditions

Here we prove the result showing that the class of verifiable transactions cannot
be captured by a transaction language. (By capturing we mean that a language
expresses exactly the transactions from a given set.)

Theorem 5. There is no transaction language that captures WPC(FO). Further-
more, for an arbitrary recursive signature 0, there is no transaction language that
captures WPC(FOc(0)).

Proof. We first prove that no transaction language captures WPC(FOc(0)).
We assume without loss of generality that the schema consists of a binary relational
symbol E(} , }). The proof below will automatically apply to any nonempty rela-
tional schema. Given a transaction language TL, we show that it cannot capture
WPC(FOc(0)). We will assume that the transactions in TL are enumerated as
(Ti) i>0 . This is possible because the syntax of any language is a recursive set. We
let (Gi) i>0 enumerate the set of all graphs. All sentences of FOc(0) will be
enumerated as ,0 , ,1 , ..., and we define the equivalence relation =n on graphs by
G=n G$ iff G < ,i � G$ < ,i for all i�n.

The idea of the proof is a diagonal argument. We will be building a transaction T,
and for each m we will find a graph G such T(G){Tm(G). To ensure that the trans-
action T we build is in WPC(FOc(0)), we will ensure that for each positive integer
n, there is an integer P(n) such that for all i>P(n), T(Gi)=n Gi . That is, for each
n and G, eventually T does not change the =n class. To see that this last suffices,
we note the following.

Lemma 6. Suppose T is a computable transaction and there is a recursive function
P on the integers such that for each positive integer n and for all i>P(n),
T(Gi)=n Gi . Then T is in WPC(FOc(0))

Proof of the lemma. We construct a weakest precondition algorithm for T as
follows. Given a sentence ,, find an n such that ,=,n . Then apply the hypothesis
to find an m (=P(n)) such that T(Gi)=n G i for each i>m. Determine by testing
which elements of [Gi : i�m] have the property that T(Gi) < ,, and generate a
sentence / of FOc(0) that defines this finite set. Let � be a sentence that describes
the set of all Gi with i�m. Now output the sentence 8=/ 6 (c� 7 ,).

We claim that 8 is a weakest precondition for ,. If we have Gi with i�m, then
Gi satisfies 8 if and only if it satisfies /, and by the definition of / this is true if and
only if T(Gi) < ,. If we have Gi with i�m, then Gi satisfies 8 if and only if it
satisfies ,. Since T(Gi)=n Gi for i�m and ,=,n , we get that for each i�m,
T(Gi) < , � Gi < ,. Combining the previous two sentences we get that for i�m,
T(Gi) < , � Gi < 8, which completes the proof that 8 is a weakest precondition
for ,. Lemma is proved. K

The construction, then, is intuitively as follows: start enumerating graphs until
arriving at a graph Gj whose =1 class has many elements in it. Let T be the identity
on G1 } } } G j&1 , and then let T(Gj) be an element =1 equivalent to Gj but not equal
to T1(Gj). Then enumerate all graphs above Gj until arriving at a Gk whose =2

class has many elements in it. Let T be the identity on Gj+1 } } } Gk&1 , and then let

71VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

T(Gk) be an element =2 equivalent to Gk but not equal to T2(Gk). Continue this
process so as to diagonalize each Ti , while preserving the = n class for progressively
larger n.

We now start the formal construction of T. We define a function H(m, n) by
letting H(m, n) be lexicographically least pair (i, j) such that m<i< j and
Gj=n Gi and Gj{G i .

Then let P(n) and Q(n) be defined inductively by P(0)=Q(0)=1, and by letting
P(n+1) be the first component of H(P(n), n), and Q(n+1) be the second compo-
nent of H(P(n), n).

Finally, define the following transaction T. If i=1 or i is not in the range of P,
then T(Gi)=Gi . If i>1 is in the range of P, consider the graph G$=TP&1(i)(Gi).
Since GP(k){GQ(k) for every k>0, we know that for j=Q(P&1(i)) it is the case that
Gi{Gj . Now we define T(Gi) in this case to be the one of Gi , Gj that is not equal
to G$, and if both are unequal to G$, then we define T(Gi) to be Gmin(i, j) .

The theorem now follows from the following three claims: the transaction T is a
total recursive function, it is in WPC(FOc(0)), and it is different from each Ti

in TL.
To prove the first claim, notice that =n is an equivalence relation with only

finitely many equivalence classes. We now show that H(m, n) is a total function.
That is, for every m and n there are (i, j) such that m<i< j and Gj=n Gi and
Gj{Gi . If the above were not the case, then fix a counterexample m and n. Then
all Gis with i>m are pairwise nonequivalent with respect to =n . But this gives us
infinitely many =n classes. From this, we see that H(m, n) is recursive, since we can
check each pair (i, j) in turn to see if i� j and Gj=n Gi and Gj{G i until we find
a pair for which this is true.

From this we see easily that P and Q are total recursive. Next we note that since
both components of H(m, n) are above m, the functions P(m) and Q(m) are
(strictly) monotonically increasing. From this it follows that we can test recursively
whether an i is in the range of P or not, that P&1(n) is well-defined for every n in
the range, and that the range of P is infinite.

Note also that GP(n+1)=n GQ(n+1) and P(n+1){Q(n+1), using the definition
of H(m, n).

Since P(n) and Q(n) are distinct for every n, we get that for each m and i and
each n it is true that one of GP(n) , GQ(n) must be unequal to Tm(Gi). Since P is
monotonic, we can calculate the unique m such that P(m)=i whenever i happens
to be in the range of P. Together the last two sentences show that T is total and
recursive.

We now turn to showing the second claim: that T admits a weakest precondition
algorithm. We do this by verifying that for each positive integer n and for each
i>P(n), T(Gi)=n Gi , and then citing Lemma 6 above.

Consider T(Gi) for i>P(n). If i is not in the range of P or i=1, then T(Gi)=Gi

and so clearly T(Gi)=n Gi . If i is in the range of P, then let j=P&1(i). Then T(Gi)
is one of either GQ(j) or GP(j) , so in either case, T(G i)=j GP(j) , since, as commented
above GQ(j)=j GP(j) . But then T(Gi)=j Gi , since P(j)=i. Since P is monotonic and
i>P(n), we have P&1(i)>n. This says that j>n, and hence T(G i)=n Gi , which

72 BENEDIKT, GRIFFIN, AND LIBKIN

completes the proof of the second hypothesis of Lemma 6, and hence the proof that
T is in WPC(FOc(0))

Finally we show that for each m>0, T{Tm . Let i=P(m) (so m=P&1(i)).
Clearly, i is in the range of P (and the strict monotonicity of P guarantees i>1),
so by definition, T(Gi) has the property that T(Gi){TP&1 (i)(Gi). But this means
T(Gi){Tm(G i), and this completes the proof that no transaction language captures
WPC(FOc(0)).

To prove that no transaction language captures WPC(FO) we need a slight
moldification of the proof above: we need to also ensure that T is generic in order
for T to have a chance to be definable in pure first-order logic, while the above
construction did not do anything to ensure genericity.

We again make use of an enumeration (Cn) of graphs such that no two graphs
in the enumeration are isomorphic, and every graph is isomorphic to one of the Cn 's.
That is, the enumeration contains representatives for every isomorphism class of
graphs. We can get such a recursive enumeration by enumerating the first graph G1 ,
then enumerating graphs until we come upon one nonisomorphic to any previously
enumerated graph, etc.

Let I be the range of the enumeration (Cm) n # | . For any graph G, let [G]
denote the (unique) graph Cn that is isomorphic to G. Given any mapping T
from I to I, T expands to a mapping [T] from graphs to graphs by letting
[T](G)=T([G]).

Note that every finite collection of isomorphism classes can be expressed by a
sentence of FO. Let (,i) , as before, enumerate the FO sentences. We can now
define a transaction T from I to I exactly as we defined T before, but using Ci in
place of Gi .

Now we claim that [T] is in WPC(FO), but is unequal to any Tn . The proof
that [T] is recursive and diagonalizes the Tn's is exactly as before, using the fact
that for each n there is an =n class that contains infinitely many nonisomorphic graphs.

To see that that [T] is in WPC(FO), show that for each positive integer n and
for each i>P(n), T(Ci)=n Ci : this follows exactly as before. A weakest precondi-
tion algorithm for [T] is constructed as follows. Given a sentence ,, find an n such
that ,=,n . Then find an m such that T(Ci)=n Ci for each i>m. Determine by testing
which elements of [Ci : i�m] have the property that T(Ci) < ,, and generate a
sentence / of FO that defines the union of the finite set of isomorphism classes of
this set. Let � be a sentence of FO that describes the set of isomorphism classes of
all Ci with i�m. Then exactly the same proof as above shows that / 6 (c� 7 ,)
is a weakest precondition for ,. This completes the proof of Theorem 5. K

As the last result of this section, we show that one cannot find a condition on
degrees of nodes in graphs that describes the transactions with weakest precondi-
tions. We are motivated by the following property of first-order queries, established
in [27]. For a graph G, its degree count dc(G) is the number of different in- and
outdegrees of nodes of G. Then, for any first-order query q, dc(q(G)) is bounded by
a number that depends only on q and the maximal possible in- or outdegree in G.
For example, if G is an arbitrary binary tree, then an upper bound on dc(q(G)) is
fully determined by q.

73VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

One may ask whether the class WPC(FO), which includes all first-order
definable transactions, satisfies this property. We can show that this is not the case.
In fact, a degree-based characterization is impossible for WPC(FO). Given any
function f : N � N such that f (n)>0, let Qf be the family of graph queries q such
that dc(q(G))� f (dc(G)) for every G.

Corollary 2. For any f, both Qf&WPC(FO) and WPC(FO)&Qf are
nonempty.

Proof. Let q return the diagonal if its input graph is connected, and the
complete graph on the input's nodes if it is not. Since connectivity is not first-order,
q � WPC(FO). On the other hand, q # Q*x . 1 . Conversely, T # WPC(FO) that will
be described later in the proof of Theorem 7 is such that when its input is a chain,
it constructs its transitive closure. Hence, T is not in Qf for any f. K

4. PRECONDITIONS VS PRERELATIONS

The goal of this section is to examine the relationship between WPC(FO)
and PR(FO). In particular, we find a transaction that separates them. However, we
are not interested in just any transaction. Usually transformations expressed by
database languages are required to satisfy certain properties. In particular, one is
most often interested in transactions and queries computable in polynomial time. In
addition, queries and transformations are sometimes required to be generic, that is,
invariant under any permutation of the universe.

There is a large body of research dealing with languages capable of expressing
polynomial-time generic database queries or transformations. Languages in which
such transformations can be expressed include datalog with negation [1], languages
based on structural recursion [10], loops [27], nondeterministic reduce operators [25],
while queries [1], etc.

Hence, our first goal is to produce a generic polynomial time computable trans-
action that separates WPC(FO) from PR(FO). The transaction exhibited below
can be expressed in all languages mentioned in the previous paragraph. The result
below provides the proof of Theorem D from the Introduction. After proving
Theorem 7 we proceed to show that PR(FOc(0)) can be captured by a transaction
language, which gives us a separation result for WPC(FOc(0)) and PR(FOc(0)).
We close the section by showing that WPC(FOc) and PR(FOc) coincide on
generic transactions.

Theorem 7. There exists a polynomial-time computable generic transaction T
such that

T # WPC(FO)&PR(FO).

Proof. Given a C6C-graph G, let chain(G) be the connected component of G
which is a chain. We consider the following transaction T on graphs G=(X, E):

T(G)={tc(chain(G))
(X, [(x, x) | x # X])

if G < 9c6c

if G < c9c6c .

74 BENEDIKT, GRIFFIN, AND LIBKIN

It is not hard to see that T is generic and PTIME-computable. Now assume that
T is in PR(FO). Since 0 is empty, there exists a first-order formula ;(x, y) in free
variables x and y such that (x, y) belongs to the output of T(G) if G < ;(x, y)
when x and y are interpreted as elements of X. In particular, T(G) can be calculated
as the result of a first-order query. Notice that if G is a chain, then T(G) is its trans-
itive closure. However, according to the bounded degree property of first-order
logic [27], there is no first-order definable query on graphs which computes trans-
itive closure if its input happens to be a chain. Hence, T � PR(FO).

The proof of T # WPC(FO) is more involved. Recall the following definitions
and results from [18]. In a graph, an r-neighborhood of a node x, denoted by
Nr(x), is the set of nodes of that graph that can be reached from x by a nonoriented
path of length �r. By �(r)(x) we denote a formula in which x is the only free
variable and all quantifiers are of form \y # Nk(x) or _y # Nk(x) where k�r. Let
d(x, y)>i denote that the distance between x and y is bigger than i. For every
constant i, d(x, y)>i can be expressed in first-order logic. It is known that every
first-order sentence is equivalent to a Boolean combination of Gaifman sentences of
the following form [18]:

:#_x1 } } } _xs .\�(r)(x1) 7 } } } 7 �(r)(xs) 7 �
i, j=1, ..., s, i{ j

d(xi , x j)>2r+ . (1)

Hence, it is enough to show that with respect to T, every : of form (1) has a
weakest precondition. Without loss of generality, assume s�1 (otherwise : is
constant and the proof is trivial).

Now observe that T(G) has the following property. It is either a diagonal graph
(having loops on all its nodes and nothing else), in which case Nr(x)=[x] for any x,
or it is a finite nonreflexive linear order (transitive closure of a chain) in which case
N1(x) contains all nodes for any x.

It is enough to find a sentence ; such that G < ; iff T(G) < : provided that G
is a graph that satisfies 9c6c . Since all neighborhoods in diagonal graphs consist of
one point, we have two cases. If �(r)(x) holds in the neighborhood consisting of x
only, where the corresponding graph has a loop on x, then : on the diagonal graph
reduces to the statement that there exist at least s distinct nodes. Hence, in this case
a precondition for : is (9c6c 7 ;) 6 (c9c6c 7 +s) where +s is a first-order sentence
saying that there are at least s distinct nodes. If �(r)(x) fails in the one-point
neighborhoods, then 9c6c 7 ; is a precondition.

Now, assuming that G satisfies 9c6c , we construct a precondition for : by
considering the following cases.

Case 1: s>1 and r�1. Then : cannot be satisfied on a finite linear order
because this would imply the existence of two nodes such that the distance between
them is at least 2. Hence, for case 1 we take ; to be false.

Case 2: s�1, r=0. Here we consider two subcases. First, suppose that �(r)(x)
fails in one-point neighborhoods where the only edge is the loop on that point.
Then : becomes false and hence ; is taken to be false. Second, assume that �(r)(x)

75VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

is satisfied in such one-point neighborhoods. Then : becomes equivalent to
_x1 } } } _xs . (�i, j=1, ..., s, i{ j d(xi , xj)>0). Thus, it will hold in T(G) iff the chain part
of G has at least s points. The sentence ps verifying this property is given below;
then ; is taken to be ps .

ps#_y1 } } } _ys . ((\z .cE(z, y1)) 7 E(y1 , y2) 7 } } } E(ys&1 , ys))

Case 3: s=1, r�1. Then : becomes _x .�(r)(x). Since we only consider : on
graphs of the form Ln , a linear order on n nodes, an r-neighborhood of any x # Ln

is the whole of Ln , which means that there exists a (nonlocal) sentence :$ that is
equivalent to : on all Ln (it is obtained from : by removing range restriction from
local quantifiers). Now we need the following claim, proved in [20, 34] by using
Ehrenfeucht�Fraisse� games.

Claim. For every first-order sentence :$, it is possible to find n # N such that
either for all m�n: Lm < :$, or for all m�n: Lm < c:$.

Using this claim, we can find the precondition ; as follows. Look at :$ and find
the n as stated above. Let N1 _ N2 be the partition of [0, 1, ..., n&1] such that for
all i # N1 : Li < :$ and for all j # N2 : Lj < c:$. Let p0

i be the sentence saying that
the chain part of the input has precisely i elements; it can be defined as pi 7 cpi+1 .
Then ; is found as

;#\ �
i # N1

p0
i 7 �

j # N2

cp0
j +6 pn

if for all m�n: Lm < :$, and

;#\ �
i # N1

p0
i 7 �

j # N2

cp0
j +7cpn

if for all m�n: Lm < c:$.
Finally, we observe that the weakest precondition ; given above is computable

from :. Indeed, it is possible to verify if �(r)(x) holds in one-node diagonal graphs,
and for case 3 it is known [20] that n can be taken to be 2k, where k is the quan-
tifier rank of :$. Hence, all that is needed for constructing the precondition in case
3 is verifying if :$ holds for Lj , where j=0, ..., 2k+1. The theorem is proved. K

The next result shows that the preconditions constructed by the algorithm in the
proof of Theorem 7 are rather complex.

Corollary 3. Let T be the transaction from Theorem 7. Then, for any n>1,
there exists a sentence : of quantifier rank n, such that if m is the quantifier rank of
wpc(T, :) computed by the algorithm of Theorem 7, then m�2n.

Proof. We may take : to be already a Gaifman sentence. Then, according to the
algorithm of Theorem 7, one of the Boolean components of wpc(T, :) is p2n which
means that the quantifier rank of wpc(T, :) is at least 2n. K

76 BENEDIKT, GRIFFIN, AND LIBKIN

We do not know if a better algorithm is possible. In fact, it remains open whether
polynomial time weakest precondition algorithms exist for any transaction in
WPC(FO) that is not first-order definable.

The separation result continues to hold for more powerful logics, although it is
impossible to find a separating transaction that will have such a nice description as
above. First we observe the following.

Proposition 3. For any 0, PR(FOc(0)) can be captured by a transaction
language.

Proof. Since all functions and predicates in 0 are recursive, the set 1(D) is
computable. The transactions in the language capturing PR(FOc(0)) are given by
tuples (1, :1 , ..., :k) where 1 is a finite set of terms, and each :i has ni free variables.
The generated transaction is defined to be such that the tuple (1, :1 , ..., :k)
constitutes a prerelation. This fully determines the transaction, and the definition of
prerelation implies that such a language captures PR(FOc(0)). K

Sequential languages that define the same classes of transactions can be found in
the literature, see for example [32, 33].

From Proposition 3 and Theorem 5 we obtain:

Corollary 4. For any 0, there are transactions in WPC(FOc(0))&PR(FOc(0)).

However, in contrast to pure first-order logic, there are no generic separating
transactions if constants are present in the language.

Proposition 4. There are no generic transactions in WPC(FOc)&PR(FOc).

Proof. As before, we assume without loss of generality that we are dealing with
the language of graphs. Let T be a generic transaction in WPC(FOc). Our goal
is to show that T admits prerelations. First notice that for any graph G with the
set of nodes X, the set of nodes of T(G), Y, is a subset of X. Indeed, assuming the
existence of a # Y&X, pick any b # U&X, b{a, and consider a permutation ? that
permutes a and b and leaves everything else fixed. Since G=?(G), by genericity we
obtain that b is also a node of T(G). Since U is infinite, this means that Y is infinite,
which is impossible. Thus, Y�X. Consequently, defining prerelations for T, we can
take 1 to contain a single variable. In other words, it is enough to find a formula
;(x, y) such that G < ;(a, b) � (a, b) # T(G) for every a, b # X.

Let c and d be arbitrary distinct elements of the universe, and let 9 be a
FOc -sentence expressing wpc(T, E(c, d)). Let 8 be a sentence expressing
wpc(T, E(c, c)). Now we consider formulae �(x, y) and ,(x) in two and one free
variables respectively that are obtained from 9 and 8 by replacing each occurrence
of c by x and each occurrence of d by y. Define

#(x, y)#(x= y 7 ,(x)) 6 (c(x= y) 7 �(x, y)).

Let C be the set of all constants that occur in #. Note that c, d � C.
We now claim that for any graph G whose set of nodes X is disjoint from C, the

formula # defines prerelations. That is, G < #(a, b) iff (a, b) # T(G) for every

77VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

a, b # X. Consider the case a{b; the case of a=b is similar. Let ? be a permutation
of the universe that permutes a and c, b and d, and leaves everything else fixed.
Then by genericity (a, b) # T(G) iff (c, d) # T(?(G)). Since 9=�(c, d) is a weakest
precondition, (c, d) # T(?(G)) iff ?(G) < �(c, d), which is equivalent to G < �(a, b),
since ? leaves everything outside of [a, b, c, d] fixed and � does not use any of these
constants. This proves our claim.

Now consider a new formula ;(x, y) obtained from #(x, y) as follows: any
atomic subformula involving a constant k from C (which is of the form z=k or
E(k, z) or E(z, k) where z is either x, or y, or a bound variable) is replaced by false.
Note that ; is now a FO-formula. Then for any graph G with the node set X such
that X & C=<, we have G < #(a, b) iff G < ;(a, b) for any a, b # X.

Let G now be an arbitrary graph on X. Consider a, b # X and any permuta-
tion ? of U such that ?(X) & C=< (it exists because U is infinite). Since ; is a
FO-formula (in particular, does not mention any constants), G < ;(a, b) iff
?(G) < ;(?(a), ?(b)). Since ?(X) & C=<, ?(G) < ;(?(a), ?(b)) iff (?(a), ?(b)) #
T(?(G)) which, by genericity, is equivalent to (a, b) # T(G). Thus, G < ;(a, b) iff
(a, b) # T(G), proving that T admits prerelations. K

Since the formula ; constructed in the proof above does not mention any
constant, we can also conclude that there are no generic transactions in WPC(FOc)
&PR(FO).

5. ROBUSTLY VERIFIABLE TRANSACTIONS

Summarizing the results of the previous sections, we can say that many non-first-
order transactions do not have weakest preconditions. Nevertheless, it is possible to
find some non-first-order transactions that do have them. However, there is a gap
between FO and FOc . While we can find ``nice'' transactions that are not first-order
definable and have weakest preconditions over FO, no such transactions exist when
FO is replaced by FOc . In particular, the Datalogc-definable transaction that
provided the separation for WPC(FO) and PR(FO) no longer has preconditions
if the language is FOc . While this follows from Proposition 4, we give a direct proof
that illustrates the problems caused by the presence of constants.

Proposition 5. The transaction T # WPC(FO)&PR(FO) from the proof of
Theorem 7 is not in WPC(FOc).

Proof. Let c be a constant symbol for some element of the universe. Assume
that T # WPC(FOc). Let : be a formula in the language that consists of E and c
defined as (_x _y .E(x, y) 7 (x{ y)) 7 (\x .cE(x, c) 7 cE(c, x)); this formula says
that the graph has at least one edge which is not a loop, and c is not one of its
nodes. Let ;=wpc(T, :) and ##;7 (_x .E(x, c) 6 E(c, x)). Then G < # iff G < 9c6c

(since T(G) has an edge which is not a loop), c is one of its nodes but c is not a node
in T(G). That is, G is a C6C-graph but not a chain. In other words, for the graphs in
which one node is the interpretation of c, testing for chains would be FOc-definable.
However, this is impossible, and hence T � WPC(FOc). K

78 BENEDIKT, GRIFFIN, AND LIBKIN

Proposition 5 shows that a transaction verifiable over a language is not
necessarily verifiable over even a simple extension of the language. This motivates
the following definition. We call a transaction robustly verifiable if it is verifiable in
every extension of the language. Below, we show that for FOc as a specification
language (in fact, even for FOc(0)), a precise characterization of robust transac-
tions is possible��these are exactly the FOc(0) definable ones.

Formally, a transaction T is robustly verifiable over FOc(0) if for every extension
of 0 to 0$ with a recursive collection of recursive predicates and functions, it is the
case that T # WPC(FOc(0$)). A transaction language TL is robustly verifiable if
all its transactions are.

The following result, together with Proposition 3, gives the proof of Theorem E.
In what follows, we use PR(FOc(0)) to mean both the class of transactions that
admit prerelations and the transaction language that captures this class. The existence
of such a language was proved in Proposition 3.

Theorem 8. For every 0, the transaction language PR(FOc(0)) is robustly
verifiable over FOc(0), and every transaction robustly verifiable over FOc(0) is
equivalent to a transaction in PR(FOc(0)).

Proof. As in the previous results, without loss of generality we will assume that
the signature consists of a single binary relation. We first show that transactions
in PR(FOc(0)) are robustly verifiable. Let T be given by a set of terms 1 and
formula ,E (x, y) giving the prerelation of E(x, y) with respect to T. Without loss
of generality, we can assume all terms in 1 have the same arity n. We give an
algorithm WPC transforming every formula #(z) in FOc(0$) for any extension
0$$0 into a FOc(0$) formula WPC[#](z) such that G < WPC[#](z) iff T(G) < #(z).

The algorithm is recursive in the logical complexity of #. If # is quantifier-free,
WPC proceeds by replacing every occurrence of E({1 , {2) where each {i is a term,
by the formula

_y1 . �
{ # 1

{(y1)={1(z)+
7_y2 . �

{ # 1

{(y2)={2(z)+
7 ,E ({1(z), {2(z)).

Then define

WPC[c#]=cWPC[#]

WPC[#1 6 #2]=WPC[#1] 6 WPC[#2],

WPC[#1 7 #2]=WPC[#1] 7 WPC[#2].

If ##_x .,(x, z), define WPC[#] to be

_y1 .\ �
{ # 1

,$({(y1), z) 7 _y2 .\ �
\ # 1

,E (\(y2), {(y1)) 6 ,E (\(y2), {(y1)))+ ,

79VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

where ,$(x, z)=WPC[,]. First, we must show that the algorithm WPC is correct.
We will show that for each T in PR(FOc(0)), given by 1, ,E , and for each formula
#(z) in FOc(0$), and for each graph G=(X, E) , and a vector t of elements from
1(G), the following holds:

G < WPC[#](t) � T(G) < #(t).

Taking # to be a sentence, we get as a corollary to this lemma that WPC witnesses
the effective verifiability of PR(FOc(0)). The proof proceeds by induction on the
complexity of #.

If #(t) is atomic, then #(t) is either of the form E(t1 , t2), with each ti an element
of 1(G) or contains no occurrences of E. In the first case we get the required equiv-
alence immediately from the definition of PR:

T(G) < E(t1 , t2) � t1 , t2 # 1(G)

and G < ,E (t1 , t2) � G < WPC[E(t1 , t2)].

In the second case, WPC[#]=#, so the equivalence is trivial.
The induction steps for boolean connectives go through routinely:

T(G) < #1 7 #2

� T(G) < #1and T(G) < #2

� G < WPC[#1] and G < WPC[#2] by induction hypothesis

� G < WPC[#1] 7 WPC(#2)

� G < WPC[#1 7 #2].

For the quantifier case ##_x .,(x, z), let ,$(x, z)=WPC(,). For each G and for
each t�1(G), we get

T(G) < _x .,(x, t)

� _v # 1(G) .T(G) < ,(v, t)

� _v # 1(G) .G < ,$(v, t) by induction

� _v # 1(G), _v$ # 1(G) such that G < ,$(v, t) and

((v, v$) # T(G) or (v$, v) # T(G))

� G < _v .\ �
{ # 1

,$({(v), t) 7_v$. �
\ # 1

(,E ({(v), \(v$)) 6 ,E (\(v$), {(v)))+
� G < WPC[#](t)

which completes the proof of correctness of the WPC algorithm.
For the other direction, assume that T is a robustly verifiable transaction. We

will prove that T admits a formula ,E(x, y) and a set of terms 1 defining the

80 BENEDIKT, GRIFFIN, AND LIBKIN

prerelation as in the definition of PR(FOc(0)). That is, we will show that there are
1 and ,E (x, y) such that T(G) has edge set [(x, y) | x, y # 1(G), G < ,E (x, y)].

Let P
�

be an additional 4-place predicate symbol. Let L+ be the set of all first-
order formulae in the language with symbols for all constants in the universe, all
elements of 0, and the symbol P

�
. Let L be FOc(0).

Our proof will proceed by attempting to inductively construct a recursive inter-
pretation P of P

�
such that T does not admit definable weakest preconditions over

the extension of L by P. Our attempt to construct such a ``bad'' P will be a
straightforward diagonalization: we will pick a certain sentence Hasmax below,
and for each possible sentence , we will pick an initial segment of P designed to
prevent , from being the precondition of Hasmax. Since we know that T is in
WPC(FOc(0)), this diagonalization cannot succeed; that is, at some point we
have constructed a finite initial segment of P that cannot be extended further to
prevent a particular sentence , from being the precondition of Hasmax. The heart
of the argument shows that we can use this initial segment and the sentence , to
get a first-order definition of T, thus showing that T is in PR(FOc(0)).

The proof is now organized as follows: first, we define the framework for our
inductive diagonalization argument. We then show that if this diagonalization were
to succeed, we would have a contradiction of robust verifiability for T. Finally, we
show that from a partial function at which the diagonalization fails we can
construct a prerelation for T.

First, we introduce some new notation. For ,(t) an L+ formula, P a subset of
U_U_U_U, G a graph (that is, a graph on a finite subset of U), and t # U, we
write (G, P) < ,(t) if G < ,(t), when P

�
is interpreted as P.

Let P-maximal(s, t) be the L+ formula (_x _y .E(x, y) 7 P
�
(x, y, s, t)) 7

(\x \y . (E(x, y) � cP
�
(s, t, x, y))). Let

Hasmax#_s _t .E(s, t) 7 P-maximal(s, t)

That is, Hasmax is the L+-sentence asserting that there is a P-maximal pair.
If p and q are partial functions, then qop means that q extends p as a function.

For any set A, let /A be its characteristic function. We use this notation in the
following definitions.

Suppose p is a finite partial function from U4 into [0, 1]. If , is an L+ sentence,
say that:

[1] p is ,-good if for all finite P with /Pop, and for all graphs G,

(G, P) < , � (T(G), P) < Hasmax

[2] say p is ,-poor if p is not ,-good.

[3] p is ,-terrible if there is a graph G such that for all finite P with /Pop,

c((G, P) < , � (T(G), P) < Hasmax). (V)

81VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

Intuitively, a finite partial function p used in the definitions above is to be inter-
preted as an approximation to a predicate P. The idea of the construction that will
follow is that we want our final P not to satisfy ((G, P) < , � (T(G), P) < Hasmax)
for any L+ sentence ,. Then Hasmax will not have a definable weakest precondi-
tion in L+, contradicting the assumption that T is robustly verifiable. We construct
our solution by inductively constructing a sequence of approximations pn that
guarantee (V) for each , in turn. We can show that we can continue this construc-
tion successfully provided that the p we have constructed thus far is not ,-good. We
show that if we are ``stuck'' with a ,-good p then T has a (1, ,E (x, y)) as required.

The proof of the theorem now falls into two cases.

Deriving a contradiction if the diagonalization succeeds. The diagonalization
succeeding corresponds to the following being true:

Case 1. Every finite partial function p is ,-poor for each ,.
We will now show that this leads to a contradiction of robust verifiability.

Proposition 6. For every L+ sentence , and every ,-poor p, there exists a partial
function p$ with a finite domain such that p$op and p$ is ,-terrible. Furthermore,
p$ can be found effectively given p.

Proof. Since p is poor for ,, there is finite P with /Pop, and a graph G such
that (V) holds. Since we can test property (V), we can find such G and P effectively
by listing out all pairs (G, P) until we find one such that (V) holds.

Let p$ be a finite partial function such that p$op and

({1(s1), ..., {4(s4)) # P � p$({1(s1), ..., {4(s4))=1
(2)

({1(s1), ..., {4(s4)) � P � p$({1(s1), ..., {4(s4))=0.

Here each {i (x), for i # [1, 2, 3, 4], ranges over terms contained in an atomic sub-
formulae of , or atomic subformulae of Hasmax, and s i range over the vectors from
U such that the length of si equals the arity of {i , and each element of si is a vertex
of G or a vertex of T(G).

Then p$ will be ,-terrible. Condition (2) guarantees that for every P$ with
/Pop, we have

(T(G), P$) < Hasmax � (T(G), P) < Hasmax

and also

(T(G), P$) < , � (T(G), P) < ,.

This finishes the proof of the proposition. K

To finish Case 1, we inductively construct a function p defining a characteristic
function which is ,-terrible for every ,. That is, let (,i) be an enumeration of all
the sentences in L+, and let p0 be empty, and pn+1 be any finite p$opn such that

82 BENEDIKT, GRIFFIN, AND LIBKIN

p$ is ,n -terrible. The construction of this sequence can be carried out effectively by
Proposition 6. We can also ensure that �n pn defines a total function by throwing
the n th element of U into the domain of pn if it is not there already.

Let P be the unique set such that /Popn for all n. Clearly, P is recursive, since
the construction of pn is recursive. If we unwind the definition of what it means to
be terrible, we see that for P as above, there can be no sentence of L+ that holds
in a graph G exactly when (T(G), P) < Hasmax. Hence T does not admit weakest
preconditions over L+, and this contradicts the fact that T is robustly verifiable,
completing the proof in Case 1.

Getting a prerelation if the diagonalization is stalled. This corresponds to the
negation of Case 1. That is:

Case 2. There is a , and a p that is ,-good.

Fix such a p and ,. Without loss of generality, we can assume that p is not
empty. Let dom(p) be the set of pairs (s, t) such that there exists t in the domain
of p that contains both s and t.

Our goal will be to show that there is a formula ,E (x, y) and a set of terms 1
which defines the edges of T(G). Consider the set:

EDEF =def [(G, x, y) # DB_U_U | ((x, y) # dom(p)7 (x, y) # T(G))

6 (c((x, y) # dom(p))7c((G, p1 _ ((dom(p) _ [(x, y)]))�[(x, y)]))

< , W (G, p1 _ (dom(p)}[(x, y)])) < ,))].

In the above, A�B=[(x, y, w, z) # U_U_U_U | (x, y) # A 7 (w, z) # B], p1=
p&1(1) and DB stands for the set of finite graphs whose nodes are from U.

We will show that EDEF is definable by a formula ,E (x, y) and set of terms 1
and that EDEF is exactly the prerelation for T of G. That is, we prove the following.

Claim 1. (G, x, y) # EDEF � (x, y) # T(G)

Proof of Claim 1. First suppose (x, y) # T(G). We will show that (G, x, y) # EDEF.
If (x, y) # dom(p), then by the first disjunct in EDEF, (G, x, y) # EDEF, so

assume (x, y) � dom(p). Since (x, y) � dom(p), the characteristic function of p1 _

((dom(p) _ [(x, y)])�[(x, y)]) gives an extension of p. Since p is ,-good, this
means that

(G, p1 _ ((dom(p) _ [(x, y)])�[(x, y)])) < ,

� (T(G), p1 _ ((dom(p) _ [(x, y)])�[(x, y)])) < Hasmax

and

(G, p1 _ (dom(p)�[(x, y)])) < ,

� (T(G), p1 _ (dom(p)�[(x, y)])) < Hasmax.

83VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

Note that since (x, y) # T(G), we have for each (s, t) # dom(p),

(T(G), p1 _ ((dom(p) _ [(x, y)])�[(x, y)])) < cP-maximal(s, t)

and

(T(G), p1 _ (dom(p)�[(x, y)])) < cP-maximal(s, t).

Also note that since (x, y) � dom(p), and dom(p){<, (x, y) is P-maximal in the
model (T(G), p1 _ (dom(p)}[(x, y)])). Furthermore, (x, y) will not be P-maxi-
mal in the model (T(G), p1 _ ((dom(p) _ [(x, y)])�[(x, y)])) , since here we
have P

�
(x, y, x, y) holding.

Using the above we can verify that

(T(G), p1 _ (dom(p)�[(x, y)])) < Hasmax

and

(T(G), p1 _ ((dom(p) _ [(x, y)])�[(x, y)])) < cHasmax

since (x, y) is the only P-maximal element in the first model, and there are no
P-maximal elements in the second model. This shows that the second disjunct in
EDEF holds. Hence, (G, x, y) # EDEF.

Now suppose (x, y) � T(G). We will show (G, x, y) � EDEF. Clearly (G, x, y)
does not satisfy the first disjunct in EDEF. If (x, y) # dom(p), then it fails the second
disjunct as well, and we are done. So suppose (x, y) � dom(p). Once again we have

(G, p1 _ (dom(p)�[(x, y)])) < ,

� (T(G), p1 _ (dom(p)�[(x, y)])) < Hasmax

and

(G, p1 _ ((dom(p) _ [(x, y)])�[(x, y)])) < ,

� (T(G), p1 _ ((dom(p) _ [(x, y)])�[(x, y)])) < Hasmax.

To finish the proof, it therefore will suffice to prove that

(T(G), p1 _ (dom(p)�[(x, y)])) < Hasmax

� (T(G), p1 _ ((dom(p) _ [(x, y)])�[(x, y)])) < Hasmax.

But since (x, y) is not an edge of T(G), any pair (s, t) is p-maximal in either of the
above models if and only if it is p-maximal in (T(G), p1). Hence both the above
statements are equivalent to (T(G), p1) < Hasmax. So (G, x, y) fails the second
disjunct in EDEF as well as the first, and the proof of claim 1 is complete. K

84 BENEDIKT, GRIFFIN, AND LIBKIN

To complete the proof, we need the following lemma.

Lemma 9. EDEF is definable by a formula ,E (x, y) along with a set of terms 1.
That is, there is a formula ,E (x) and a set of FOc(0)-terms 1 such that

(G, x, y) # EDEF � x, y # 1(G) and G < ,E (x, y).

Proof of Lemma. T # WPC(FOc(0)) allows us to write out the first disjunct of
EDEF in L as

�
(a, b) # dom(p)

wpc(T, _x _y . (x=a 7 y=b)) 7 (x=a 7 y=b).

The second disjunct in EDEF is composed of two conjuncts. The first conjunct
is just the negation of �(a, b) # dom(p) (x=a 7 y=b). To handle the second conjunct
we first obtain a L-formula #(x, y) such that

(G, p1 _ (dom(p)�[(x, y)])) < , � G < #(x, y)

by taking , and replacing every atomic formula of the form P
�
({1 , {2 , {3 , {4) by

(�(a, b, c, d) # p1
({1=a) 7 ({2=b) 7 ({3=c) 7 ({4=d)) 6 (�(e, f) # dom(p) ({1=e) 7

({2= f) 7 ({3=x) 7 ({4= y)).
One can analogously get a L-formula }(x, y) such that

(G, p1 _ ((dom(p) _ [(x, y)])�[(x, y)])) < , � G < }(x, y).

Putting these two together we can express the second conjunct in L, which shows
that EDEF is L-definable by some formula ;(x, y).

Notice that the above construction yields a ;(x, y) with the following properties.
First, every atomic subformula containing one of the variables x or y is of the form
x={(z) or y={(z) for some term {, where z contains no variables free in ;. Second,
;(x, y) has only finitely many (x, y) satisfying it for every graph G. Now we will
use these properties of ; to construct the required set 1.

Assume EDEF is nonempty. We can write ;(x, y) as

Q1 z1 } } } Qnzn . �
i<m

Bi ,

where each Qkzk is a quantifier binding variable zk , and each Bi is a conjunction of
literals Aij such that any Aij with a variable x free is of the form x={(z) or x{{(z),
where x is not free in {(z). Let 1 be all terms that appear in some Bi .

Claim 2. For every graph G and any (x, y) in U_U, if G < ;(x, y) then x and
y are in 1(G).

Proof of Claim 2. If this is not the case, fix G, x0 and y0 , with (WLOG) y0 not
in 1(G). Let y1 be any other element of U&1(G). Then G < ;(x0 , y1), since for

85VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

each { # 1 and for any z1 , ...zk nodes of G, G < y0={(z1 , ..., zk) if and only if
G < y1={(z1 , ..., zk). But this gives infinitely many edges satisfying ;(x, y),
contradicting the properties of ;. This proves Claim 2.

Claim 2 shows that 1 and ,E=; satisfy the conclusion of Lemma 9. Now
Lemma 9 along with Claim 1 complete the proof of the theorem. K

Corollary 5. PR(FOc(0)) is the maximal robustly verifiable language over
FOc(0). K

6. CONCLUDING REMARKS

In this paper we have looked at the problem of verifying transaction safety before
transactions are executed. The main results can be summarized as follows. If
integrity constraints are specified in first-order logic, then for first-order transaction
languages it is possible to compute both weakest preconditions and prerelations.
However, if a transaction language has a mechanism for doing recursion, then such
ability is generally lost. There are still some transactions that are not first-order
definable but have weakest preconditions. However, if we require that the ability to
calculate weakest preconditions be independent of extensions to the language, then
we can use only languages that admit prerelations.

The last statement, which is a reformulation of Corollary 5 can be interpreted
as follows. If we are interested in designing a ``nice'' transaction language that is
verifiable over FOc , and the verification algorithm can be extended to encompass
additions to the signature, then we cannot hope that the language will be more
expressive than the first-order transaction language defined in [32, 33].

In this paper we only discussed whether it is possible to compute preconditions
or prerelations, and what are the implications of our ability to compute them. The
algorithmic aspects of computing preconditions were left unexplored. In particular,
we would like to address in our future work the problem of efficiently computing
preconditions. We believe it is of practical importance to identify fragments of
transaction languages such as those in [3, 4, 32] for which computing precondi-
tions can be done efficiently (say, in polynomial time).

Computing preconditions may depend on a form in which transactions are
specified. For simple relational transactions it is possible to reason about their
equivalence [26]. Combining this reasoning together with the theorem proving
approach of [35] is an interesting direction to pursue. That is, first we may try to
find a better analyzable transaction which is equivalent to the original one, and
then try to test its safety.

As mentioned in the Introduction, we are interested in transforming a verifiable
transaction T into a safe transaction if wpc(T, :) then T else abort which will
maintain : as an invariant. As pointed out in [31, 21, 22, 28, 29], assuming that
: is always true, it may be possible to find a 2, which is much simpler than
wpc(T, :), such that : � (2 � wpc(T, :)). Using this we can transform T to if 2
then T else abort which is more efficient. We are interested in studying classes of
transactions for which such a simplification can be efficiently carried out.

86 BENEDIKT, GRIFFIN, AND LIBKIN

ACKNOWLEDGMENTS

We thank Neil Immerman and Scott Weinstein for their helpful comments during earlier stages of
this work. We are grateful to the reviewers for a number of valuable suggestions; we especially thank
the reviewer who found an error in an earlier version of the proof of Theorem 3. Thanks to Ron Fagin
for clarifying the use of the Ajtai-Fagin games and pointing out [16], and to Moshe Vardi for bringing
the results of [30] to our attention.

Received July 31, 1996; in revised form February 24, 1998

REFERENCES

1. Abiteboul, S., Hull, R., and Vianu, V. (1994), ``Foundations of Databases,'' Addison�Wesley, Reading,
MA.

2. Abiteboul, S., and Vianu, V. (1989), A transaction-based approach to relational database specifica-
tion, J. ACM 36, 758�789. [Extended abstract in ``Proceedings of the 4th Symposium on Principles
of Database Systems, 1985,'' pp. 193�204.]

3. Abiteboul, S., and Vianu, V. (1990), Procedural languages for database queries and updates, J. Comput.
System Sci. 41, 181�229.

4. Abiteboul, S., and Vianu, V. (1991), Datalog extensions for database queries and updates, J. Comput.
System Sci. 43, 62�124.

5. Ajtai, M., and Fagin, R. (1990), Connectivity is harder for directed than for undirected graphs,
J. Symbolic Logic 55, 113�150.

6. Back, R. J. R. (1981), Proving total correctness of nondeterministic programs in infinitary logic, Acta
Informatica 15, 233�249.

7. Benedikt, M., Dong, G., Libkin, L., and Wong, L. (1998), Relational expressive power of constraint
query languages, J. ACM 45, 1�34. [Extended abstract in ``Proceedings of the 15th Symposium on
Principles of Database Systems, 1996,'' pp. 5�16.]

8. Benedikt, M., Griffin, T., and Libkin, L. (1996), Verifiable properties of database transactions, in
``Proceedings of the 15th Symposium on Principles of Database Systems,'' pp. 117�127.

9. Berghammer, R., Elbl, B., and Schmerl, U. (1995), Formalizing Dijkstra's predicate transformer wp
in weak second-order logic, Theoret. Comput. Sci. 146, 185�197.

10. Breazu-Tannen, V., and Subrahmanyam, R. (1991), Logical and computational aspects of
programming with sets�bags�lists, in ``LNCS 510: Proc. of 18th ICALP, Madrid, Spain, July 1991,''
pp. 60�75, Springer-Verlag, Berlin.

11. Dijkstra, E. W. (1975), Guarded commands, nondeterminacy and formal derivations of programs,
Comm. ACM 18, 453�457.

12. Dijkstra, E. W. (1976), ``A Discipline of Programming,'' Prentice�Hall, Englewood Cliffs, NJ.

13. Etessami, K. (1997), Counting quantifiers, successor relations, and logarithmic space, J. Comput.
System Sci. 54, 400�411.

14. Fagin, R. (1993), Finite model theory��a personal perspective, Theoret. Comput. Sci. 116, 3�31.

15. Fagin, R. (1997), Easier ways to win logical games, in ``DIMACS Series in Discrete Mathematics
and Theoretical Computer Science,'' Vol. 31, pp. 1�32, Amer. Math. Soc., Providence.

16. Fagin, R. (1997), Comparing the power of games on graphs, Math. Logic Quart. 43, 431�455.

17. Fagin, R., Stockmeyer, L., and Vardi, M. (1995), On monadic NP vs. monadic co-NP, Inform.
Comput. 120, 78�92.

18. Gaifman, H. (1982), On local and nonlocal properties, in ``Logic Colloquium '81'' (J. Stern, Ed.),
pp. 105�135, North-Holland, Amsterdam.

87VERIFIABLE PROPERTIES OF DATABASE TRANSACTIONS

19. Grumbach, S., and Tollu, C. (1995), On the expressive power of counting, Theoret. Comput. Sci. 149,
67�99.

20. Gurevich, Y. (1984), Toward logic tailored for computational complexity, in ``Proceedings of
Computation and Proof Theory,'' Springer Lecture Notes in Mathematics, Vol. 1104, pp. 175�216.

21. Henschen, L. J., McCune, W. W., and Naqvi, S. A. (1984), Compiling constraint-checking programs
from first-order formulas, in ``Advances in Database Theory'' (H. Gallaire, J. Minker, and J. Nicolas,
Eds.), pp. 145�170, Plenum Press, New York.

22. Hsu, A., and Imielinski, T. (1985), Integrity checking for multiple updates, in ``Proceedings of
ACM-SIGMOD 1985 International Conference on Management of Data,'' pp. 152�168.

23. Immerman, N. (1987), Languages that capture complexity classes, SIAM J. Comput. 16, 760�778.

24. Immerman, N., and Lander, E. (1990), Describing graphs: A first-order approach to graph canonization,
in ``Complexity Theory Retrospective'' (A. Selman, Ed.), pp. 59�81, Springer-Verlag, Berlin.

25. Immerman, N., Patnaik, S., and Stemple, D. (1996), The expressiveness of a family of finite set
languages, Theoret. Comput. Sci. 155, 111�140.

26. Karabeg, D., and Vianu, V. (1991), Simplification rules and complete axiomatization for relational
update transactions, ACM Trans. Database Systems 16, 439�475.

27. Libkin, L., and Wong, L. (1997), Query languages for bags and aggregate functions, J. Comput.
System Sci. 55, 241�272.

28. McCune, W. W., and Henschen, L. J. (1989), Maintaining state constraints in relational databases:
A proof theoretic basis, J. ACM 36, 46�68.

29. Nicolas, J.-M. (1982), Logic for improving integrity checking in relational data bases, Acta
Informatica 18, 227�253.

30. Nurmonen, J. (1996), On winning strategies with unary quantifiers, J. Logic Computation 6,
755�778.

31. Qian, X. (1988), An effective method for integrity constraint simplification, in ``Fourth International
Conference on Data Engineering.''

32. Qian, X. (1990), An axiom system for database transactions, Inform. Process. Lett. 36, 183�189.

33. Qian, X. (1991), The expressive power of the bounded-iteration construct, Acta Informatica 28,
No. 7, 631�656.

34. Rosenstein, J. G. (1982), ``Linear Orderings,'' Academic Press, New York.

35. Sheard, T., and Stemple, D. (1989), Automatic verification of database transaction safety, ACM
Trans. Database Syst. 14, 322�368.

36. Schwentick, T. (1996), On winning Ehrenfeucht games and monadic NP, Ann. Pure Appl. Logic 79,
61�92.

37. Stemple, D., Mazumdar, S., and Sheard, T. (1987), On the modes and meaning of feedback to trans-
action designers, in ``Proceedings of ACM-SIGMOD 1987 International Conference on Management of
Data,'' pp. 374�386.

88 BENEDIKT, GRIFFIN, AND LIBKIN

