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As a result of the spider experiments in Nagata et al. (2012), it was hypothesized that the depth percep-
tion mechanisms of these animals should be based on how much images are defocused. In the present
paper, assuming that relative chromatic aberrations or blur radii values are known, we develop a formu-
lation relating the values of these cues to the actual depth distance. Taking into account the form of the
resulting signals, we propose the use of latency coding from a spiking neuron obeying Izhikevich’s ‘simple
model’. If spider jumps can be viewed as approximately parabolic, some estimates allow for a sensory-
motor relation between the time to the first spike and the magnitude of the initial velocity of the jump.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The visual system of spiders includes layers which receive defo-
cused images containing depth information. A remarkable behav-
ioural experiment reported in Nagata et al. (2012) has shown
that depth perception is affected by light wavelength through the
variable amount of defocus related to the chromatic aberration.
This observation has resulted in a specific mechanism proposed
by the authors of that work. Although it is not immediate to estab-
lish direct relations between this model and the responses in
humans or other vertebrates, there are a number of aspects more
or less evidently connected with its working.

The question of ocular control determined by chromatic defocus
has been object of study in humans and guinea pigs in Kotulak,
Morse, and Billock (1995) and Qian et al. (2013) and Refs. therein.
Accommodative gain in humans depends on the chromatic band-
with of the stimulus under dynamic conditions (the present work
offers a simplified approach in which bandwith issues are not con-
sidered, but they are undoubtedly present in the real world).

In vision systems with two sensor classes, each with different
wavelength sensitivity, chromatic aberrations can be exploited.
For such a category, which includes the human eye with their L
and S cones, chromatic aberrations provide a signed cue to defocus
(Fincham, 1951; Flitcroft, 1990). This is possible because the aber-
ration introduces a sign-dependent tendency for one sensor class
to have greater amplitudes than the other. At the same time,
monochromatic aberrations can provide an odd-error cue to focus
direction (Wilson, Decker, & Roorda, 2002), as blur shape may lead
to the detection of differences in the appearance of the point
spread function (PSF) between myopic and hyperopic defocus.
For humans, adaptations to blur changes are important because
adjustments may play a role in tuning the match between cortical
responses and the spatial structure of images (Webster, Georgeson,
& Webster, 2002).

Perception of depth from defocus (DFD) is a well established
concept, and the idea of using changes in focus settings has been
in circulation for a long time. Computationally oriented outlooks
are offered by e.g. (Chaudhuri & Rajagopalan, 1999) or
(Schechner & Kiryati, 2000), while recent psychological or biologi-
cal considerations are better illustrated by papers like Mather and
Smith (2000), Held, Cooper and Banks (2012), and Read (2012), and
bibliography therein. Regarded as a source of defocus estimation,
blur seemed to be just a complementary cue, the pre-eminent
one being stereoscopic disparity. However, blur is not so weak as
previously guessed. While disparity is more precise near fixation
blur is more precise away from the focusing plane (Held, Cooper,
& Banks, 2012; Read, 2012).

In the calculation of DFD, blur differences between images are
employed as a cue for distance estimation. Accurate blur evalua-
tion from natural scenes is in general a difficult problem which
shall not be addressed in the present work. Instead, we will assume
that the values of the relevant variables have already been
extracted from the visual input. Even such a simple method as
measuring the ‘edge bleeding’ length is applicable only in cases
where the image is binary and contained in a single plane perpen-
dicular to the line of gaze. Procedures based on transfer functions
usually require some amount of frequency-based reasoning. In fact,
real data always depend on the present space frequencies, and that
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sort of limitation would also constrain the information from the
spider eye. After the classical papers (Pentland, 1987; Subbarao,
1988), many techniques have been devised for the calculation of
blur parameters, tackling major issues such as the presence of
noise (Chaudhuri & Rajagopalan, 1999), space invariance
(Chaudhuri & Rajagopalan, 1999; Jin & Favaro, 2002), the geometric
model (Favaro & Soatto, 2005) or the nature of the employed filters
(Watanabe & Nayar, 1998; Burge & Geisler, 2011).

A study of responses to perturbations in Schechner and Kiryati
(2000) showed that for the case of two-dimensional DFD using a
circularly symmetric lens-aperture the aperture problem does not
appear. From that viewpoint, DFD allows for more robust estima-
tions (however, note that the comparison involved stereo systems
made of ideal cameras, not biological pupils).

In the present paper we wish to make an explicit formulation of
the idea in Nagata et al. (2012). Supposing that the problem of
measuring the chromatic aberration or the blur radii from the
images themselves has already been solved at some previous stage,
we concentrate on the question of setting up some neural coding
for the obtained magnitudes, and suggest the use of spike latency.
The proposal is illustrated by a numerical simulation of a spiking
neuron hypothetically doing this job.
2. Methods

Efficient visual systems should enable animals to obtain food
and avoid predators. Jumping spiders try to jump accurately
enough to catch their preys. They are equipped with two pairs of
principal eyes (PEs) and anterior lateral eyes (ALEs). Even if ALEs
are occluded jumps can be precise, showing that PEs suffice for
absoulte depth perception. The remarkable point is that PEs do
not have overlapping fields, thus ruling out stereo effects. More-
over, these eyes have no focal adjustment mechanism, and no
moves capable of generating motion parallax have been observed
either. Thus, the only remaining explanation lies in the use of blur
differences from the different wavelength sensitive parts of the PE
retinas (Nagata et al., 2012 and Refs. therein).

A basic way of modelling the function of these PEs is to consider
a lens with two focal lengths depending on the wavelength values.
Like in Nagata et al. (2012), the starting point is the thin lens equa-
tion written in the form

1
d
þ 1

v ¼
1
F

ð1Þ

where d is the object distance, v the image distance and F the focal
length. Note that d > 0 for objects in front of the lens and v > 0 for
images behind the lens. In these conditions, d is al so called ‘depth’.
The authors of Nagata et al. (2012) study the case of equal image
distances v and different perceived depths d;d0, caused by the use
of different focal lengths, say Fg ; Fr with Fg < Fr (‘g’ for green, ‘r’
for red). Taking the two equalities and deleting one from the other
it is immediate to arrive at

d0 ¼ d
1þ df

¼ 1
f

1� 1
1þ df

� �
; f � 1

Fg
� 1

Fr
; ð2Þ

which is Eq. (1) in Nagata et al. (2012). The meaning of the present
magnitudes is d0 = estimated distance, d = true distance.

For this type of lens, the general law relating the absolute values
of object and image sizes Ro;R, focal length F and object distance d
reads

R ¼ Ro
F

d� F
ð3Þ

In the studied situations, d > F.
2.1. Aberration method

Different focal values F give rise to different image sizes R. Let
Rg ;Rr indicate the image sizes R of (3) for F ¼ Fg and for F ¼ Fr

respectively. The difference Rr � Rg amounts to the lateral or trans-
verse chromatic aberration. We call C the ratio between this chro-
matic aberration and one of the two sizes, i.e.

C ¼ jRr � Rg j
Rr

¼ d
d� Fg

Fg f : ð4Þ

Thus, C > 0 for d > Fg . From this equation it is straightforward to
find the true distance d as a function of C

d ¼ Fg

1� C1C
� dðCÞ; C1 � Fg f : ð5Þ

Next, we can consider what happens when ‘g’ and ‘r’ are inter-
changed in Eq. (4), i.e., the reference is ‘r’ instead of ‘g’, while the
f value is kept unchanged. Thus, instead of (4), we are left with

C0 ¼ jRr � Rg j
Rg

¼ d
d� Fr

Fr f ; ð6Þ

where we have made use again of (3). At this point, evaluating the
dðCÞ function of Eq. (5) with argument C0, we obtain

d0 ¼ dðC0Þ ¼ Fg

1� C1C0
: ð7Þ

One may care to check that Eqs. (4)–(7) indeed lead to the relation
between d; d0 already established by Eq. (2).

For this mechanism to work it is necessary to find the relative
aberration C from two image planes by examining the regions
where green is distinct and where red is distinct. When the figure
is a circle centred at the origin it is possible to obtain
C ¼ 1� Rg=Rr ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffi
Ag=Ar

p
, where Ag ;Ar indicate the figure areas

in image space for the green-distinct and red-distinct parts (this
is an ideal set-up, rather infrequent in the world of real images;
the general problem of extracting distance cues is a question which
we are here sidestepping). Although simple, the ‘lateral chromatic
aberration’ method requires simultaneous inputs from two planes.

2.2. Blur method

In each of the two considered image planes one colour shows a
distinct outline and the other a blurred one. Following e.g.
Chaudhuri and Rajagopalan (1999) or Pentland (1987), or studying
the similar triangles in Fig. 3A of (Nagata et al., 2012), it is easy to
reason that the blur radius b amounts to

b ¼ q
jDv j
v ; ð8Þ

where q is the lens aperture radius, v denotes the distance from the
image plane (focus plane) to the lens, and Dv indicates the separa-
tion between that plane and the employed sensor plane. From Eqs.
(1) and (2), setting equal d and different F; v values for the two cases
of Fr;v r and of Fg ;vg , we arrive at Dv ¼ v r � vg ¼ v rvgf . Taking into
account the colours of the distinct and blurred parts in every case,
the radii for the red and green blurs are

br;g ¼ qv r;g f ð9Þ

By combining these relations and (1) again, we obtain two possible
forms for the d distance in terms of the blur radii, which are

d ¼ Fr

1� Fr fq
br

ð10Þ

¼ Fg

1� Fg fq
bg

¼ Fg

1� b1
bg

; b1 � Fgfq: ð11Þ
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The physical meaning of b1 is the green blur radius for d tending to
infinity. It may be viewed as the special value of a free parameter -
say a sort of ‘weight’- to be learnt. Of course, mathematically speak-
ing it is enough to make just one measurement for determining a
single parameter, but that could also be the result of some ‘learning’
procedure, e.g., a minimization of an error function of the type
e ¼ ðd� dexpectedÞ2. Assuming that the other parameters are some-
how known, object distances may be estimated as a function of
the observed blur radius in the considered image plane (and, unlike
method 1, one plane suffices). If the animal usually makes estima-
tions from (11), it has somehow learnt the value of the Fgfq prod-
uct. After changing the light type it should apply (10), but keeps
using (11) with br instead of bg , thus evaluating

Fg

1� Fg fq
br

¼ d0 ð12Þ

One may check that the d and d0 of formulas (10)–(12) satisfy the
relation d0 � d ¼ �fdd0, equivalent to (2), which was the law
explaining the results of Nagata et al. (2012).

The ratio between then two blur radii is

bg

br
¼ Fg

Fr

d� Fr

d� Fg
¼ 1� bg

q
: ð13Þ

Note that Eq. (5) as a function of the transverse aberration and
Eq. (11) in terms of the blur radius are formally equal. Therefore,
any idea about parameter learning can be carried over from one
scheme to the other.

2.3. Latency coding

The first idea that comes to one’s mind is to apply firing rate
coding using inputs proportional to the d distance obtained
through rule (5) or (11). However, inputs involving functions of
the type f ðxÞ / 1

1�1=x do not seem to be very usual in neural model-
ling. In addition, for spiking models, rate coding requires long inte-
gration times, so that differences in spike numbers can be well
appreciated. On the contrary, latency coding only needs the time
to the first elicited spike, and looks more advantageous. Most cor-
tical neurons fire spikes with a delay depending on the strength on
the received input. For inputs relatively weak, but above threshold,
that delay, also called spike latency, can be quite noticeable. Regu-
larly spiking cells in the cortex of mammalians can have latencies
of the order of tens of ms. Such delays offer a spike-timing mech-
anism for encoding the intensity of the input. The benefits of
latency coding for another task, namely, coding the spatial struc-
ture of flashed images, were discussed in Gollisch and Meister
(2008).

For the Izhikevich neuron model Izhikevich (2003, 2004, 2007)
in the ‘small-a approximation’ (Romeo & Supèr, 2014) —which
amounts to keeping the quadratic integrate-and-fire level—, the
membrane potential of the cell evolves in time according to

VðtÞ ¼ Vm þ
ffiffi
I

p
tan

a
ffiffi
I

p
C

t þu0

 !
;

u0 ¼ arctan
V0 � Vmffiffi

I
p

 !
; ð14Þ

where V0 ¼ Vð0Þ and

I ¼ I � Im � u0

a
; Im ¼ aV2

m � c; Vm ¼ �
b

2a
: ð15Þ

a;b; c are constants of this model, I is the input current, C (not C)
indicates the membrane capacitance, and u0 stands for the initial
value of the recovery variable u. Consider the time to the first spike,
say t ¼ t1. Setting Vðt1Þ ¼ Vp (‘peak’ potential) implies

t1 ¼ C

a
ffiffi
I
p arctan Vp�Vmffiffi

I
p

� �
�u0

� �
. For simplicity we adopt the initial

condition V0 ¼ Vm, which leads to u0 ¼ 0. Further, admitting input

values of such a scale that Vp�Vmffiffi
I
p � 1, we apply arctan x ¼ p

2 þO 1
x

� �
for x� 1, which takes us to

t1 ’
pC

2a
ffiffi
I

p ¼ pC

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðI � I0Þ

p ; I0 � Im þ u0: ð16Þ

Next, the question of the relation between neural input and defocus
‘hypothetic measurements’ has to be addressed. We shall assume
that some preprocessing mechanism is sending signals which sup-
ply the measured size of either the relative lateral aberration or
the blur radius, i.e., C or bg is already available. If so, any of them
can be used to produce an input I of the form

I � I0 ¼ j �
C
C1 � 1
	 


bg

b1
� 1

	 

8><
>:

9>=
>; ¼ j

Fg

d� Fg
; ð17Þ

where j is some constant with dimensions of current, C; C1 are the
variables of Eqs. (4) and (5), and bg ; b1 the magnitudes in (11). The
quotients j=C1 or j=b1 can be envisaged as ‘gain’ parameters,
while j itself is a contribution to the I bias term. The existence of
these two possibilities rests on the analogy between (5) and (11),
which leads to the second equality of (17) in both cases. For any
of them the input is just linear in the relevant variable (C or bg).
Combination of (16) and (17) yields the approximate spike latency
as a function of the distance

t1g ’
pC
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d� Fg

ajFg

s
: ð18Þ

The added ‘g’ subscript indicates that t1 has been found from F ¼ Fg .
Hence, d can be ‘read out’ from t1g by means of d

Fg
¼ 1þ 4aj

p2C2 t2
1g .

Actually, when the second term on the r.h.s. dominates it is enough
to keep

d ’ Fg
4aj
p2C2 t2

1g : ð19Þ

This approximation will be good for d� Fg with a sufficiently large
j value.

From (16)–(19), we can derive the relation between latency t1g

and radius bg for green blur, i.e., t1g ’ pC
2

ffiffiffiffiffiffiffiffi
b1

aj bg

q
. As a result, when

taking br instead of bg the latency changes by the approximate rule

t1r ’

ffiffiffiffiffi
bg

br

s
t1g ¼ t1g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bg

q

s
; ð20Þ

where (13) has been applied. Neglecting O bg=q
� �2
	 


, we obtain the
latency difference t1g � t1r ’ t1g bg

2q , which exhibits to what extent t1r

is shorter than t1g .
Dropping the colour subscript from t1, and indicating the reso-

lution in spike times by Dt1, the associated error in distance reso-
lution Dd obeys the approximate law

Dd ¼ A t1 Dt1; A � 8Fgaj
p2C2 : ð21Þ
3. Results and discussion

3.1. Simulation

A comparison between simulated and approximate t1 values is
shown in Fig. 1. The employed focal values were Fg ¼ 1 mm,
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Fig. 1. Results for Fg ’ 1 mm and f ’ 5 � 10�3 (mm)�1, roughly similar to the set-up of Nagata et al. (2012). Left: theoretically obtained distances d from green blur (solid line)
and underestimated d0 based on red blur (dotted line). Right: time to first elicited spike t1 as a function of the real distance d, when the received inputs involve the values of Fg

and Fr . Symbols denote the outcome of numerically simulating an RS Izhikevich neuron with inputs given by Eq. (17) and the parameter values quoted in the text (circles for
green blur, triangles for red blur) while lines indicate the analytical approximations (solid for green blur, dotted for red blur).
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f ¼ 5 � 10�3 (mm)�1, and the neuron parameters C ¼ 1 lF,
a ¼ 0:04 lA/(mV)2, b ¼ 5 lA/mV, c ¼ 140 lA (which are the coeffi-
cients in Izhikevich’s model for currents measured in lA),
j ¼ ð1=0:04Þ lA [so that aj = 1 (lA)2/(mV)2], and the neuron
parameters of the regularly spiking (RS) type given in Izhikevich
(2003): a ¼ 0:02 ðmsÞ�1

; b ¼ 0:2 lA/mV, c ¼ �65 mV, d ¼ 8 lA.
The Euler method was applied with a time step Dt ¼ 5 � 10�2 ms.
As can be seen, in the studied set-up, which is similar to the sce-
nario of Nagata et al. (2012), the agreement between numerical
simulation and theoretical approximation is quite good.

Introducing the employed parameters in (21), and imagining a
‘readout’ resolution of Dt1 ¼ 1 ms, the distance error Dd of Eq.
(21) for t1 ¼ 5 ms amounts to 4 mm.

3.2. Motor response

So far we have shown a model based on simple assumptions
attributed to the environmental needs of spiders, in particular, to
their quest for preys. After gathering experimental knowledge
about their visual system, a chromatic scheme was formulated.
Taking advantage of that model we have been able to establish
an approximate relationship between target distance and spike
latency. At the present stage, an interesting speculation would be
to wonder whether the ‘readout’ (19) can be related to any variable
which determines the motor response aimed at catching the prey.
In order to give an answer we have to make some sort of assump-
tion about the trajectory of the jump made by the animal. These
jumps may be described by motions in a constant gravitational
field. Being accurate, spiders cannot really be regarded as point-
like objects, as they may offer a sizable ratio of surface area to mass
density. As air drag can in general play a role, one could think of
including a braking force ~Fbraking ¼ �b~v , where b is a constant
which depends on the medium and on the geometrical properties
of the body, and ~v indicates the velocity vector.

Following the textbook (Symon, 1971), we see that for small
values of b,

d ¼ v2
0

g
sinð2/Þ 1� 4

3
bv0

mg
sinð/Þ þ . . .

� �
; ð22Þ

where v0 is the magnitude of the initial velocity, / the jumping
angle relative to the horizontal —or ‘shoot angle’—, g the accelera-
tion of gravity, and m the mass of the animal. The unwritten terms
are contributions of higher order when b is small. If we content our-
selves with rough estimations, a situation of small drag may be
approximated by just the b ¼ 0 contribution, which amounts to
the well-known parabolic result

d ¼ v2
0

g
sinð2/Þ: ð23Þ

Comparing (19) and (23) we eliminate d and arrive at

t1 ’
pC
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinð2/Þ
ajFgg

s
v0: ð24Þ

We have thus found a ‘motor’ meaning for the ‘latency’ t1: for a
given angle, t1 is proportional to v0, the magnitude of the initial
velocity for the jump. Taking sinð2/Þ ’ 1; t1 of the order of 10 ms,
and the quoted parameter values, v0 is of the order of 1 m/s, which
corresponds to a jump of around 4 cm. In principle, a perturbative
approach in b from (22) might supply successive corrections for
small nonzero values of this constant.

In contrast, when the braking effects are important b is large
and, according to the discussion in Symon (1971), d can sometimes
be approximated by

d ’ mv0

b
cosð/Þ: ð25Þ

Then, the same comparison leads to

t1 ’
pC
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
b

cosð/Þ
ajFgg

v0

s
: ð26Þ

Thus, in this situation, instead of a linear relation of the form
t1 / v0, the main contribution to t1 is of the type t1 / v1=2

0 . Further,
unlike in (24), the value of t1 depends now on m=b.

4. Conclusions

Manifest formulations of the concepts contained in Nagata et al.
(2012), concerning the effects of light wavelength on depth percep-
tion, have been provided. Granting that the extent of the chromatic
aberration or the blur radius can be computed from the perceived
images themselves, we have derived expressions relating their val-
ues to the actual target distance, reproducing the length underes-
timation remarked in Nagata et al. (2012). In view of the form of
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the input signals, we suggest using a type of latency coding where
the distance is an increasing function of the time to the first spike.
A numerical simulation, based on a widely accepted neural model,
indicates that it can offer good performance in terms of resolution.
Assuming that spider jumps can be described by shoot trajectories,
approximate estimates give grounds for establishing a sensory-
motor relation, between the time to the first elicited spike and
the magnitude of the shoot velocity. In the case of negligible aero-
dynamical effects they are linearly related, but in situations with
very large braking forces that time is proportional to the square
root of the magnitude of the shoot velocity.

While in the presented model inputs are based on wavelength
selection (like in the experiment of Nagata et al. (2012)), a natural
environment would actually provide similar information based on
distance. Unlike our simplified set-up, real tasks satisfying the
environmental needs of the animal would call for an efficient
read-out and processing of all the existing distance cues from the
visual input, which undoubtedly pose a much more complex
challenge.
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