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1. INTRODUCTION 

As is well known, the Neumann or third kind problem for a nonlinear 
wave equation is written as follows: 

i 

afu(t)- i a,(aiu(z)lJ~) 
r=l 

=fn(t) in (0, T) x L2; 

(N-W) j i v,(&z4(t)/$Tjiqqp) + a(u(t)) 

i 

I=1 
=fAt) on (0, T) x F, 

1, u(o)=u~ and a,u(o) = Ul in Sz. 

Here and hereafter, 0 is a domain in R”, its boundary r being a C” and 
compact hypersurface; x = (x1, . . . . x,) and t denote points of 08” and a time, 
respectively; a, = J, = a/at and 8, = 8/&c, (i = 1, . . . . n); V,u is the gradient of 
t4 in x; v = (vr (x), . . . . v,(x)) denotes the unit outer normal to r at x E r (for 
the sake of simplicity, we assume that v,(x) E CT(EP) below). The local 
existence in time of classical solutions to (N.W) was proved by the first 

154 
0022-0396/89 $3.00 
Copyright 0 1989 by Academic Press, Inc 
All rights of reproductmn m any form reserved 



QUASILINEAR HYPERBOLIC SYSTEM 155 

author [7]. The first equation of (N.W) is quasilinear, but the boundary 
condition is fully nonlinear. This full nonlinearity causes the derivative loss 
which breaks down the usual iteration process. And also, the boundary 
condition of the linearized problem does not satisfy the so-called uniform 
Lopatinski condition. The difficulties of solving (N.W) come from these 
facts essentially and we must construct the iteration scheme with the 
greatest care. 

In the present paper, we shall prove the local existence theorem in time 
of classical solutions to the following mixed problem for second-order 
systems: 

afu(t)-di(P’(t, D’u(t))) + Qo(ty D'U(t))=f~(f) in (0, T) x Sz; 

~,P’(t,D~u(t))+Q,(t,D’u(t))= fr(t) on (0, T) x r, 

u(0) = ug and a+(o) = u, in 52. 

Here and hereafter, u = ‘(ai, . . . . u,) denotes an m-vector (‘44 means the 
transpose M); P’, Qn, and Qr are m-vectors of nonlinear functions in t, x, 
and D’u= (a,u,V,u, u) of the forms: Pi= ‘(Pi, . . . . Pk) and Qv= 
t(Q vly ..a, Q v,J (i = 1, . . . . n; V= Sz and r); the summation convection is 
understood such as the sub- and superscripts i, j take all values 1 to n; the 
functions are always assumed to be real valued. 

Such a problem (N) belongs to a physically reasonable problem, typical 
if not the most general. In fact, if we put m = 1, Pi= a,ulJl+lv,ul’, 
QD = 0, and Qr = a(u), then (N.W) is described by (N). Another important 
example is a model for a three-dimensional nonlinear elastodynamical 
equation with some applied surface force which is not dead load, in which 
the unknown is actually 3-vector valued (cf. [ 1 I). This will be treated in 
Section 8 below. 

(N) was already treated and the local existence theorem was proved by 
the first auther and G. Nakamura [9]. But, the order of Sobolev spaces in 
which solutions exist was not best possible. After the works [7,9], 
T. Kato [2] treated also mixed problems of the same type as in (N) in his 
abstract framework. And, when m = 1, the nonlinear functions Pi, Qd) and 
Qr do not depend on t and a,u, and fr(t) = 0; applying his abstract theory 
to (N), he gave some improvements of the results due to [7] regarding the 
minimal order of the Sobolev spaces in which the solutions exist. Our pur- 
pose in the present paper is to give the same improvements as in Kato [2] 
when m > 1, where the nonlinear functions depend on t and a,u, and 
fr(t) f 0. Our approach below is concrete and elementary and different 
from Kato’s in [2]. Another advantage of the approach in the present 
paper is that some hyperbolic-parabolic coupled system containing a 
model for a higher dimensional nonlinear thermoelastodynamical equation 
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as a physical example can be handled in a similar fashion, which will be 
published elsewhere. 

One of the essential points of solving (N) lies in the simple reduction of 
(N) to some “hyperbolicelliptic” coupled system for unknown u and 8,~. 
This reduction was lirst developed by the first auther [7]. The same 
reduction was used in [9, 21 and will be also used in the present paper 
(cf. Sect. 4 below). 

Now, let us introduce our assumptions. Throughout the present paper, 
it is assumed that the spatial dimension n > 2, because the case when n = 1 
was already treated by the second author [3]. Let u,,~, u,,, and u,+ ,u 
denote independent variables corresponding to a,u,, a,u,, and u,, respec- 
tively. Here and hereafter, the sub- or superscripts i and j (resp. subscripts 
a and 6) refer to all integers 1 to n (resp. 1 to m). Put U = (uoo, u,,, u,+ ,o). 
The first assumption is that 

(A.l) the P; = Pi(t, x, U) and QV, = Q,(t, x, U) are in 
&?“( [ - T,, 7’,] x fi x D( U,)) and satisfy the condition: 

(*I Pl(t,x,O)=Q,(t,x,O)=O for (t,x)~[--TO, T,]xfi. 

Here and hereafter, U0 and 7’, are given positive constants; the subscript 
V always refers to Sz and C D( U,,) = { UE R(n+2)ml 1 UI < U,}. The condi- 
tion (*) guarantees that the composed function P;(t, x, U(x)) and so on 
belong to L*(Q) for each t provided that U(x) EL*(Q). When 52 is 
bounded, we need not assume (*). But, in the present paper, we consider 
where a is bounded and unbounded. 

Put 

Alk = (A:kb), B”, = (Bky,d (k = 0, 1, . . . . n, n + l), (1.1) 

where Aik and B”, are m x m matrices and the subscripts a and b denote the 
row and column, respectively. The second assumption is that 

(A.2) ‘AO=A”and tA’“=A’o on [-To, T,]xBxD(U,); 

‘BF=BFand ‘B>+B’,=Oon [-To, T,]xTxD(U,). 

Roughly speaking, the final assumption in (A.2) means that the boundary 
condition does not contain oblique derivatives. In fact, when m = 1, Qr 
does not depend on Jiu by the condition: ‘B> + B’, = 0. 

The third assumption is that 

(A.3) there exist positive constants 6, and 6, such that (A”(& -, U( .)) 
J,v, a,v) + (446 ., U(.)) aiv, v> 2 6, llvllf -do Ilvllf$ for t E 
[ - To, To], v E H*(a), and U(x) E H”,‘(8, D( U,)). 
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Here and hereafter, H”(G) denotes the usual Sobolev space on G of order 
s with norm ll.Ils,G and for any function space S equipped with norm 1.1 
we denote a product space S x ... x S and its norm simply by S and 1.1, 
respectively; we write Il.lls,R= Il.IIS and I).lls,r= 4 .+>,; the (, ) and (, ) 
denote the usual inner products of L2(Q)=Ho(Q) and L2(r)= HO(T), 
respectively; Ha*l(O, D(U,)) = {U E L”(Q)1 I(V,u(x), u(x))1 < U. for 
XE~}. Assumption (A.3) is stronger than the assumption that the A0 are 
strongly elliptic. But, many important physical examples satisfy (A.3). 

The fourth assumption is that 

(A.4) v,(x)B’,(t,x,U)=Ofor (~,~,U)E[-~~,T,]~~~D(U,). 

Assumption (A.4) means that the operators B> do not contain the normal 
derivative of u on r. 

The final assumption is that 

(AS) { -vj(x) A”(& x, U) + 2BF(t, x, U)} 5 . r 2 0 for (t, x, U) E 
[-To, r,]xrxD(U,) and [ER”. 

Here and hereafter, 5 . q = 5, q, + . . . + &,,q, for any m-vectors 5 and q in 
W”. Assumption (A.5) is one of the conditions in order that the energy of 
the corresponding linear problem to (N) does not increase (cf. Majda 
c4, P. 1451). 

Let J and X be an interval of R and a Hilbert space, respectively. By 
C“(J, X) and Lip(J, X) we denote the set of all X-valued functions which 
are in Ck and Lipschitz continuous in J, respectively. Put 

X”,“(J, G)= fi CN(J, HL+M-N(G)). 
N=O 

The purpose of the present paper is to prove 

THEOREM 1.1. Assume that n > 2 and (A. 1 k( A.5) are valid. Let K be an 
integer 2 [n/2] + 3 and let uo, uIr m(t), and f,-(t) satisfy the following 
conditions: 

uo E fwn III E W-‘(Q), 

f62w~~K-22,0(C0, TOI, Q), f,(t)EXK-2.1’2([0, To], r); (1.2) 

&+-‘fQ(t) E LMCO, ToI, L2(Q)); 
a;“-‘f,(t) E Lip( [0, To], H”‘(r)); (1.3) 

uo, ul, fn (t), and f,(t) satisfy the compatibility condition of 
order K- 2 (this notion will be defined exactly in (3.4) of 

Sect. 3 below); (1.4) 

(u1 @I, e,(x)) E HrnV, mu,)) (D$ = (Vxu, u)). (1.5) 
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Let B be a positive constant such that 

I/uollK+ lb1 IIK-l + lfnlK-2,0,[0,To,+ (fr)K--2,1,*,CO,To, 

+ess sup IlafP’ f&)llo+esssw GX~‘frODh,2~~~ 
fE co, To1 t E co, To1 

(1.6) 

where the I . I K-~,~, [o,Tol and <. )G*, 1/2, co, rol are norms o~X”-*~~( CO, ToI, an) 
and XK-22,1’2( [0, To], r), respectively, which will be defined in Section 2 
below. Then, there exist a short time T > 0 and a constant A > 0 depending 
essentially only on K and B such that (N) admits a unique solution u(t) E 
X”‘( [0, T], 52) satisfying the properties: 1111 K,o, Co, TI < A and D’u(t) E 
H”,‘(fi, D( U,)) for t E [O, T). 

Remark. Since Ka [n/2] + 3, by Sobolev’s imbedding theorem we see 
that the present solution u(t) E C’( [0, T) x 0). And, as was stated in [Z], 
this order seems to be the best possible to get C* solutions. In [7,9], it 
was assumed that Ka [n/2] + 8. To get our improvement, Ka [n/2] + 3, 
we treat the problem in a more delicate fashion than in [7,9] and need 
some new results on the linear hyperbolic theory obtained by the first 
auther [8]. The uniqueness of solutions in XKo([O, T], 52) and the 
existence of C”-solutions were already proved in [7,9]. Hence, we shall 
prove the existence of solutions in XKso( [0, T], 52) only. Below, K will 
always refer to an integer > [n/2] + 3. 

The present paper is organized as follows. In Section 2, basic notations 
are given. In Section 3, the compatibility condition for (N) is defined. In 
Section 4, the iteration scheme for solving (N) is defined. In Sections 5 and 
6, as preparations for proving the convergence of our iteration scheme, we 
give some results on the linear hyperbolic and elliptic theories. In 
Section 7, we prove Theorem 1.1. In Section 8, we give two examples con- 
taining (N.W) and the three-dimensional nonlinear elastodynamics. In the 
Appendix, we give some estimations of nonlinear terms and supplementary 
lemmas used in the text. 

Below, (k.h), (Ap.h), Theorem k.h, and Theorem Ap.h will always refer 
to the formula (k.h) in Section k, the formula (Ap.h) in Appendix, 
Theorem k.h in Section k, and Theorem Ap.h in the Appendix, respectively. 

2. NOTATIONS 

In this section, we explain our basic notations. For any k-vector 
v = (u,, . ..) vk) and multi-index c( = (a,, . . . . ak) we put u” = VT’ ... vzk and 
ltll =a,+ ... +cr,. For differentiations, we use the symbols: a,= 
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(a 1, . ..) a,); a:a;u = (a:a;u,, . ..) i?fQ~,); DLD:u = (a;a;u; j+ Ial <L + M, 
j< L); DLu = DLDzu; Dyu = D’Dyu. Put 

II4 m,L = sup ID,Lu(x)l; 
xcR 

I4 oo,L,~=sup{IDL4WI I (t,x)~ C-T Wfi}. 

Let L”(J, X) be the set of all X-valued functions which are measurable in 
J and bounded everywhere in J in the strong topology of X, where J and 
X are an interval of R and a Hilbert space, respectively. Put Yo3”(J, G) = 
L”(J, H”(G)) and for L2 1, YL,s(J, G)= {u(t)~X~-l,~(J, G) ) 13f’u(t)~ 
L”(J, HL+S-M(G)),Lip(J, Z3Lf”-M-1(G)) for O<M<L- l}. Note 
that YLVSc YL--MSstM and XL,‘c XL-MTs+M for O<M< L. As the norms 
of YL,“(J, G), we use the following: 

140,3,J,G = sup Ilu(tNl,,G; 
1eJ 

L-l 

I4 L,s,J,G= Iu(O,L+s,J,F+ c sup ll(aMu)(r)-(~~~~r)llL+~-M-l 
M = 0 y#y 

for L> 1. 

If u(t) E XL*“(J, G), then 

Hence, we also use I .I L,s,J,G as the norms of X”,‘(J, G). Put IuJ~,~,~= 
I4 L,s.J.Q and (“)L,s,J= bi~,s,J,~. For the matrix-valued functions, we use 
the same notations to denote their differentiations, norms, and so on. 

We use the same letter C to denote different constants depending on the 
same set of arguments. C( .-e) denotes a constant depending essentially on 
the quantities appearing in the parentheses. In particular, by using the 
subscripts I= 1, 2, . . . . we distinguish the important constants. For example, 
Ci, Cz, C, ( . ..). C2 ( ..-), and so on. 

For any nonlinear function I;(t, x, u), we write 

@:?ymo, --G U)(Wl> **., w/J 

Note that (F), (t, x, 0) =0 and F(t, x, u) = F(t, x, 0) + (F), (t, x, u). 



160 SHIBATA AND KIKUCHI 

Let R’(x) be m x m matrices of functions in 9?‘(D) such that 

v,(x) R’(x) = 0 for x E r. (2.2) 

Finally, we find some bilinear forms S, (R)[v, w] on H’(Q) x H’(Q) and 
S,(R)[v, w] on H’(0) x L2(Q) such that 

<R’a,v, w> = S, (WV, WI + S,(R)Cv, WI 
for any v E H’(Q) and w E H’(Q), (2.3) 

where R = (R', . . . . R"). These are used to define the first energy of the 
linearized problem and to solve the elliptic boundary value problem by 
using the well-known Lax-Milgram theorem. To get (2.3), first we prepare 
some notations. Since r is a compact and C” hypersurface, we may 
assume that there exist a finite number of open sets G, in R”, positive num- 
bers o,, and C” diffeomorphisms Y, from Gj onto GI for I = 1, . . . . p, such 
that G= {Y=(Y,, . . . . Y,)ER” I IY’I = I(Y,, . . . . Y,-,)I ~0, and Iv,1 < 
o,},SZnG,=Y:({y~G;ly,>o}), and TnG,=!P1({y~G;Iy,=O}). Let 
@r = (@r, 3 . . . . Qln) be the inverse maps of !P/. If we put Y{,(y) = 
wvww,:(Y)) and J[(y’)= I(Y;,(y’, 0), . . . . Y;(y’, O))(, we have that 
vi(x)= -Y,:(y’,O)/.J,(y’) and dT,=J,(y')dy' for x=Y#,O)EG,~I’ 
where drx is the surface element of K In particular, by (2.2) we see that 

R’V’,Y,(Y’, 0)) Y;(Y’, 0) = 0 for ( y’, 0) E G;. (2.4) 

Let #[(x)E CF (G,) (Z= 1, . . . . p) be the partition of unity on r and put 
IClr(y) =#,(Y,(~))E Cp(G;). By the change of variables x= Y,(y) and 
(2.4), we have 

(Rla*V, w) = i "Cl J '++i(Y', 0) s;l(R,y') a;v’(v’, O).w'(y', 0) dy', 
I=, (/=I Iw"-1 

where a;=a/ay,,v’(y)=v(Y,(y)) and Sy(R, y')=R'(Y,(y',O)) Y;(y',O) 
J,( y’). If we put 

sl(R)h WI = i ‘il j 
/=ly=l “; 

y’,(Y){wR, Y’) ah’(Y) q’(Y) 

- SY (R, Y’) &,v’(y) . &,w’(y)} 4; (2Sa) 

S,(R)[v, WI = i nf’ -I,” {$,(yW;WK y’)) a;v’(y)~w’(y) 
/=lq=l + 
-mb(Y)) %(R, Y’) w(Y)+‘(Y)) dY, (2Sb) 
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where rW; = {v= (yl, . . . . y,) E R” ( y, > 0}, noting the formula 

W4VY w> = i nil -J@ &l{‘h(Y) qv, Y’) q’(Y) *W’(Y)} 4, 
I=ly=l + 

by integration by parts we have (2.3). Furthermore, by Schwarz’s 
inequality, we have 

lSl(R)[V, wll G c { i Wll -.o] IbIll IbIll ; 

I=1 

(2.6a) 

,S,(R)[V, wll <c {;l lIma,l] IbIll Ilwllo. (2.6b) 

The S,(R) and S,(R) are continuous bilinear forms on H’(a) x H’(g) 
and H’(Q) x L*(G), respectively. 

3. COMPATIBILITY CONDITIONS 

In this section, we shall define the compatibility condition which the 
uO, ui, fn(t), and f,(t) should satisfy in order that solutions to (N) exist. 
To do this, first we shall prepare some notations. Let u(t) E X”“( [0, T], 52). 
Since P’(t, #u(t)) and Q v(t, D’u(t)) belong to XK- ‘,O( [0, T], 52) as 
follows from Theorem Ap.3, we can write 

dy^Pi(t, D’u) = @r”P’)(t, x, D’u)+ 5 C’ P;h>;(f, x, Dill) 
h=l 

x (Dp,u$ . . . (~p;u)4(~fu)a:. . . (a;+ lu)d; (3.la) 

af'Q,k x, D’u)= (af"Q,)(t, x, D’u) + 5 C’ Q$&&, x, D’u) 
h=l 

x (DpJq: . . . (~;yu)d(~fu)d.. . (a;+ 1.y:. (3.lb) 

Here, P$$/ and Q y,M ,@ “?, h are some nonlinear functions in t, x, and 
D’u; ah = (c$, . . . . CY~) and flh = (/If, . . . . pi); a,” and Bz are all multi-indices; 
and the summation C’ is taken over all (ah, /I”) such that 

i, (IaS1 + IBSlb=h. (3.2) 
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Let us define u,+, + 2, 0 d it4 d K - 2, successively by 

U M+2=(at”f,)(o)+a,((a;“P’)(O, (~1, @PON -@f”Q,)(O, (u,, D:uo)) 

+ hi, 1’ IId, {P~h~~(O, .> UI> D$o) 

x Ph) 4.. . (@uh)“qu2)B:. . . (uh+ ,)d} 

- Q;&40, ., ~1, Q:uo) 
x (D$,$ . . . (D~uh)“:(u2y:~~~ (q+ ,)$. (3.3) 

Obviously, if u(t) E XK,‘( [0, T], 9) is a solution to (N), then (ayu)(O) = 
u,,, for 0 < M < K. For the later references, we give 

LEMMA 3.1. Let B, uo, ul, and fn (t) be the same as in Theorem 1.1. 
Then, u,~ff~-““(SZ) and Ilu,IjK~,,,<C1(K, B)for 2<M<K. 

Noting (3.2) and applying Theorem Ap.1 to (3.3), we can prove easily 
Lemma 3.1 by induction on M. So, we may omit the proof (cf. [9, 
Appendix 33 ). 

If u(t) E XKso( [0, T], Q) is a solution to (N), we see that 
dr{viP’(t, D’u(t))+Qr(t, D’u(t))}~,=o=(cY;“f,)(0) on r for O<Md 
K- 2. Keeping this in mind, let us define the compatibility condition 
for (N) as follows. We shall say that uo, u,, fa(t), and f,(t) satisfy the 
compatibility condition of order K- 2 if 

v,(~C”p’)(O, (u,, D:uo))+ R”‘Qr)(O, (~1, D:uo)) 

+ E C’ [v,Pf;~;~(O, ‘, ~1, D:uo)+ Q~&dO, .> ~1, D:uo)l 
h=l 

x (Lqll$. 
h 

-(D:Uh)“h(U2) ‘.“f”h+l) 
8” P:: 

=(a;“f,-)(o) on r (3.4) 

for O<M<K-2. 

4. ITERATION SC~ME 

Since the full nonlinearity of the boundary condition in (N) causes the 
derivative loss which breaks down the usual iteration process, we use the 
following simple reduction of (N) to a “hyperbolic-elliptic” coupled system 
for unknowns u and 8,~. Differentiate (N) once in t and put a,u =v and 
U(t) = (v(t), oiu(t)). Then, using (l.l), we have 
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a:v(t) - &(A”(t, ., U(t)) a,v(t) + A”(?, -, U(t)) dy(t)) - FQ(t, U(t)) 

= a,fdt) in (0, T) x 0; 

U-U v,mt, ., u(t)) a,v(t) + B’,(t, ., u(t)) aiv(t) + B>(t, ., u(t)) a,v(t) 
+ F,(t, U(t)) = w(t) on (0, T) x r; 

v(0) = II, and (w(o) = k in Q, 

where 

BO,(t, ., U(t))=v,AIO(t, .) ll(t))+BO,(t, .) U(t)); 
Fn(t> u(t)) = -F,, (6 u(t)) + F,,(t, U(t)); 

F,, (t, U(t)) = ai(kn+l(t, .) U(t)) v(t) 
+ wxt, u(o)) - (a,w(t, u(t)); 

Fm(t, u(t)) = (dQn)(t, u(t)) Wt); 
FAt, u(t)) = (0 ‘“+‘(t, ., U(t))+ B”r+‘(t, -, U(t))} v(t) 

+ vi(a,P’)(t, U(t)) + (a,Qi- Mt, U(t)). 

And also, the original problem (N) can be rewritten as follows: 

a,v(t) - aiV”(t, u(t))) + Qn(t, U(t)) + Au(t) 

(El =f,(t)+A u,+~~v(s)ds) 
( 

in L2, 

v,Pi(t, u(t)) + QAt, U(t)) = f,(t) on r 

(4.la) 

(4.lb) 

(4.lc) 

(4.ld) 

(4.le) 

for all t E [0, T], where A is a constant determined in Theorem 5.3 below. 
Below, we shall solve systems (H) and (E) for unknowns u(t) and v(t). 

This simple procedure was first developed by [7,9]. T. Kato [2] also used 
this procedure in his abstract framework. In the proofs of [7,9], problem 
(H) was reduced to the zero initial data case, because of the compatibility 
condition. Furthermore, somewhat rough linear theory on hyperbolic 
mixed problems was used. These are the reasons why the assumption 
K> [n/2] + 8 was needed in the original papers [7,9] (cf. remark after 
Theorem 1.1). 

Since (E) is still fully nonlinear with respect to u(t), we shall reduce (E) 
to an equivalent problem (E)’ as follows. Below, u’(t) will always refer to 
a function in XL’@!, 9) such that 

(ayJ)(o) = uw in52forOdMGK; 

IIDKuo(t)llo< C,(K, IS) for all te R. (4.2) 
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The existence of such a u’(t) is assured by Theorem Ap.5. Put 
U( 2) = u”(t) + w(t) and U’(t) = (v(t), Diu”( t)). Then, noting that U”(0) = 
(ul, Dtu,), we can rewrite (E) as equations for unknown w(t) as follows: 

(El’ PQ,J Cw(f)l = g,(t) in Q and pr[w(t)] =gr(t) on r for all 
t E [0, 7’1, where 

PQ~ [W] = -a,(A”(O, ., U1, Dtu,) ajW + A’“+ ‘(0, -, ul, Dku,)w) 

+B;,(o,~,~,,D~~,)~,W+B~+~(~,~,U,,D~U~)~+I~~ 

(4.3a) 

PI- [WI = vf(A”(Oy ., ul, Dku,) a,w + A’“+ ‘(0, ., u,, DLu,)w) 

+ B’,(o, ., 4, D:Uo) a,W + B”,+‘(o, ., U,, gU,)W; 

(4.3b) 

g,(t) = Gm (6 v(t)) + Qnz(c v(t), w(t)) + Gm(f, v(t), w(t)); 
(4.4a) - 

Gm (6 V(f)) =&2(t) - am + am, UOW)) - Qn(t, U"(t)) 

( note that u’(t) = u. + Ji asuo(s) ds); (4.4b) 

GA v(f), w))=a,{wv, ., VW-~(0, ., uO(o)))ajw(t) 

+ (Ain+l (t, ., U”(t)) - /I’“+ ‘(0, *, UO(0))) w(t)} 

-(B;(t, ., U"(r))-Bh(0, ., UO(0)))cY,w(t) 

- (B;;+'(t, ., U'(t))- B;;+'(O, ., UO(O)))w(t); (4.4c) 

G,,(t, v(t), w(r)) = a, {WC U(t)) - P'(t, UO(t)) 
-~qt, ., u”(t)) a,W(t)--A’“+ yt, ., P(t)) w(t)) 

- {Qn(c u(t)) - Qn(6 u”(t)) 

-B;(t, ., U"(t))a,w(t)-B;;+'(t, e, U'(t)) W(t)}; (4.4d) 

a-(r) = Gr, (4 v(t)) + G,-.~(c v(t), w(t)) + G,,(t, v(t), w(t)); 
(4.5a) 

G,,(t, v(t))=fi-Cl)-v,P'(t, U'(t))-Q& u"(t)); (4Sb) 
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G,,(t,v(t), w(t))=vi((A”(t, -, UO(t))-AQ(O, ., U"(0)))~,w(t) 

+ (A'"+l(t, .) UO(t))-A'""(0, *, ItTO(O w(t)} 

+ (W, ., UOU)) - WO, ., UO(O))) a,wttj 

+ (B"f'(t, ., U'(t))-B"r+'(O, ., U'(O)))w(t); (4.5c) 

G,-.3(t, v(t), w(t)) = v, {WC u(t)) -WC u’(t)) 

--A”(& *, uO(t))a,w(+A’“+‘(t, -, UO(t)) w(t)} 

+ {Qrk u(t)) - Qi-(c u”W) 
-B',(t, ., U'(t))&w(t)-B;+'(t, ., U'(t))w(t)}. 

By using the method of successive approximations, we shall solve systems 
(H) and (E)‘. To do this, first let us introduce the spaces Z and Z, in which 
all the functions in our iteration scheme belong. The space Z is the set of 
all pairs (v(t), w(r)) E YK-‘,‘( [O, r], Q) x YK-***( [O, T], Q) such that 

cYf”w(O)=O forO<M<K-3; VW = “MM+ 1 forO<M<K--2; 
(4.6a) 

lvlK-,,o,[O,T,~~H~ IWK-2,2.[0.T,G& Iwl,-3,2,[O,T,~G (4.7) 

(v(t), R”oW and (v(t), @(““(d + w(t))) E fwQ au,)) 

for t E [0, r]. (4.8) 

Here and hereafter, T, AH A,, and .sE are constants determined below 
which depend only on K and B essentially; U, is a constant E (0, U,) deter- 
mined below. We assume that 

(AS.l) 0~ T<min(l, To) and O<s,<l. 

The space Z, is the set of all pairs (v(t), w(t)) E Z such that 
v(t) E J?‘,‘( [O, T], Q), w(r) E XK-*v2( [O, r], Q), and 

c?~w(O)=O forO,<M<K-2; VW = “MM+ 1 forO<M<K--1. 
(4.6b) 

Our iteration scheme is defined as follows: For given p > 2 and 
(F’(t), wp-l (t))tzZ,, let us define vP(t) by a solution to the following 
linear problem: 
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i 

a:vqt)-,,(k”(t, ‘) uP-l(b))a,vP(t)+A’J(t, .) Up-l(t))a,vo(t)) 

=a,f,(t)+F,(t, Up-‘(t)) in (0, T) x Q; 

(W, 
v,Ab(t, ., UP-l(t)) iy(t)+L+(t, .) UP-l(t)) a,+(t) 

+ By+, .) up- l(t)) c3,vP(t) 
=a,f,-(t)-F,(t, Up-‘(t)) on (0, T) x r, 

VP(O) = u, and (~,vPNO) = “2 in Q, 

where Up-‘(t) = (vp-’ (t), Di(u”(t) + w”-‘(t))). And, let us deline wP(t) by 
a solution to the linear problem: 

(E), ~~~[w~(f)]=gi(t) in 52 andp,[wP(t)]=g$(t) on r, where 

g”,(t) = G,, (f, vP(f)) + Gv2(& vP(t), wp- ‘W) + Gut& v”(t), wp- ‘(t)). 

To prove the convergence of our iteration scheme, we must prove that 
there exist A,, A,, .sE, and T such that 

Z, is not empty; (4.9) 

(VP(t), wP(t)) E z,; (4.10) 

IvP--p-lll,O,CO,T,+ Iwp--p-110,2,co,T, 

~~{I~p~1-~~-21,,o,~o,T,+I~~-1-w~-210,2,~o,T,}. (4.11) 

We conclude this section by proving (4.9). Since DLu,, u, E HK-'(0) 
and K- 12 Cn/2] + 2, by Sobolev’s imbedding theorem we know that 
IW”, (XI, ~:“ow)l + 0 as x + co. By this and (1.5), we see that there I I 
exists a U2 E (0, U,) such that 

II(“,, ~~“O)llm,I G u2. (4.12) 

Let (v(t), w(t)) satisfy (4.6a) and (4.7). Put U(t) = (v(t), Di(u'(t) + w(t))). 
By Theorem Ap.7 with F(t, x, U)= U, (4.2), (4.6a), (4.7), and (4.12), we 
have 

II Vt)ll m,~~l~(“~~~~“o)~l,,,+CT”l~lK-2,,,~O,r, 

<U2+CTE(C2(K, B)+A,+A,) for r E [0, T]. 

Here and hereafter, E always refers to a fixed constant E (0, [n/2] + l- 
(n/2)). Let U, E (0, U,) and choose T so that 

(As.2) U,+CT"(C2(K,B)+A,+A,)<Ul. 

Then, (v(t), D:(u”(r) + w(t)))~ Hmsl(SZ, D(U,)) for TV [O, T]. In the same 
way, we see that (v(r), Dku’(t)) E H"-'(a, D(U,)) for TV [0, T] provided 
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that (As.2) is valid. Namely, under assumption (As.~), combining (4.6a) 
(or (4.6b)) and (4.7) implies (4.8). Since la,u’I,- ,,o,co,r, < C,(K, US) as 
follows from (4.2), if we choose AH so that 

(As.3) A, a C,(K, B), 

then (8,11”(t), O)oZ,. From this, we have (4.9). 

5. PREPARATIONS FOR SOLVING PROBLEM (E), 

First, we shall state a unique existence theorem of solutions to the 
following problem: 

q,,[w]=hninQandq,-[w]=h,onI’, 

where 
qnJw] = -a,(qQjw +qk)+qh&w +q”n+lw +Iw; 

qr[W] = Vi(qi’a,W + qiW) + q>diW + qF+ ‘W. (5.1) 

Here, I is a constant; q” = q”(x), qi= qi(x), q;= q;(x), and q;+’ = qc+ ‘(x) 
are m x m matrices of functions satisfying the following four conditions: 

(A.5.1) The q”, qi, qiy, and q;+l are decomposed as foil;:;: qlT1 
qg,+q$;q’ = 41,+&q; = 4vm++4;s;4”21 = 4vm +4vs 
where qf!,,, q;,q>m,qy-;lELkF1(c?); q~m,q;;1E9F2(i2); 
4k 41s9 d-w 4rs n+’ E W-‘(Q); qhs, qnn+sl E WyQ). 

(A.5.2) ‘q” = q” in Sz. 

(A.5.3) (q”aiw, aiW)+ (q@iW, W) 261 IlwIIf-60 IIwII~ for wEH*(Q)a 

(A.5.4) v,q’,=O on IY 

First, let us discuss the uniqueness of solutions in H*(a) and the exist- 
ence of weak solutions in H’(Q). Multyplying (5.1) by v and integrating 
the resulting formulas over 52 and r, by integration by parts we have that 
(qni [W], V) + (qj-[W],V> = 41 [W, V] where q, c”‘> “I = (@JwS a,v) + 

S,(q)[W,V]+S*(q)[W, V] + (qbaiW+q~+1w9v)+(qiw, div)+ (4”r+1w>v)* 

Here, S,(q) (I= 1,2) are the bilinear forms defined by (2.5) with R= 
4 = (d-9 .--, q>) and we have used (2.3). Applying Theorem Ap.4(2) with 
a=min(6,/4 I(q~+lllm,o, l), we have that l(q~+‘w,w)l<(6,/4) Ml:+ 
aa1 3 llq”,” 1 II co,03 r) IJw(I $ Let ya be a constant such that 

.z, l14’llco,o+n~1 ll4knIIm,o+ l14nr+111a3,0am~ (5.2a) 
k=l 
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Then, using Schwarz’s inequality and (A.5.3), we see easily that there exists 
a ,u~ = C(6,, r, y,) such that 

km [WI> WI + <qrCwl>w> 
2(W) /IwlI:+(~-Po--o) Ilwll: for w OH’. (5.3) 

If we choose ,J > 0 so that I 2 ,D,, + 6,, then the uniqueness of solutions in 
H*(Q) to (5.1) is valid. By Schwarz’s inequality and (2.6), we see that 
q1 [w, v] is a continuous bilinear form on H’(Q) x H’(Q). By (5.3), we see 
that q1 [w, w] > (6,/2) /WI/~ provided that 1 >p,, + 6,. Since H*(B) is 
dense in H’(Q), it follows from this inequality that q2 is a coercive bilinear 
form on H’(Q) x H’(B). Hence, by the Lax-Milgram theorem, we have 
the existence of weak solutions in H’(Q) to (5.1). Furthermore, by the 
usual method (cf. [S, Sect. 3]), we get the regularities of weak solutions. 
Namely, we have 

THEOREM 5.1. Assume that (A.5.1)-(A.5.4) are valid. Let L be an integer 
E [2, K]. Let yK be a constant such that 

+ 114~llK-1)+ i (llq’, Ilm,K--l+ llq$llK-1) 
1=1 

n+l 

+ 1 ol4knooIloo.K-2+ll~~~llm,K--l+ll~knsllK-2+ll~~~llK--l~~YK. 
k=l 

(5.2b) 

Then, there exists a I, > 0 depending only on I,, 6,) 6 1, and r essentially 
such thatfor any 3L 2 IzO and given h, E H”-*(Q) and hrE HL-(3’2)(r), (5.1) 
admits a unique solution w E HL(S2) satisfying the estimate: 

tlwll~~ WC yK, r, &I, bl, n, m, A)(llhnllL-2+ <h,))L_c3,2,}. (5.4) 

Remark. The detailed proof of Theorem 5.1 was given in [8, Sect. 33. 
In [8, Sect. 31, it was assumed that q:c HKUC3’*‘(I). Since qt= q:, + 
q$s&YK-‘(8)+ HK-‘(SZ) in the present case, noting Theorem Ap.4( 1) 
and the fact that r is compact, we have that ((qF))K- C3,2j < 
c{ It&o It co,K- 1 + b&IIK-1). F rom this, we can apply the result in 
[8, Sect. 31 to the present case. 

When the right members h, and hr depend on t, we use the following. 

THEOREM 5.2. Assume that (A.5.1)-(A.5.4) are valid. Let I be the same 
as in Theorem 5.1. Let T>O andput J= [0, T]. Zf h,(t)e XK-**‘(J, 52) and 
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h,(t) E XK-2~1’2(J, r), then there exists a unique w(t) E XK-2*2(J, Q) 
satisfying the equations: 

qnn Cw(Ol = ha(t) in Q and 

on rfor every t E J. 

qr [w(t)1 = b-(t) 
(5.5) 

The main task in the proof of Theorem 5.2 is to show the dependence on 
t of solutions w(t). Since the coefficients of qni and qr are independent of 
t and since qnz and qt. are linear operators, by using Theorem 5.1, we can 
get the dependence on t of solutions w(t) easily. So, we may omit the 
detailed proof of Theorem 5.2 (cf. [S, Sect. 31). 

Our goal of this section is to prove 

THEOREM 5.3. Assume that (A.lb(A.4) are valid. Let uO, ul, m(t), and 
f,(t) be the same as in Theorem 1.1 (1) Let (v(t), w(t))EZ, and let 
ppI, p,-, g,(t), and g,(t) be the same as in (4.3a), (4.3b), (4.4a), and (4.5a), 
respectively. Then, there exists a 1 depending only on K and B such that there 
exists a unique z(t) E XK-2,2 ([0, T], Q) satisfying the equations: 

hi Cz(t)l = h(t) in Q and ’ PrCz(t)l = h-(t) 

on rfor every t E [0, T] (5.6) 

and the properties: (a;“z)(O) = 0 for 0 < M < K- 2. Furthermore, there exist 
T, AE, and cE depending only on K, IE!, and A, such that 

MK-2,2,[O,T, G AE and I4K-3,2,[O,T,~EE. (5.7) 

(2) Let (v(t), w(t)) E Z. Then, there exists a T depending only on 
K, B, A,, and AE such that for the present 1, the inequality 

(A”(& ., U(t)) ajz, a,z) + (B’,(t, ., U(t)) a,z, z) 

+1IIzll;+ (B”,+‘(t,., U(t))z,z)+((‘A’“+‘(t,., U(t)) 

+ &a(& .7 u(t))) a,z + G+ ‘(6 a> U(t)) z, z) 2 Cd,/21 ll41:, (5.8) 

is ualidfor t E [0, T] and z E H2(Q), where U(t) = (v(t), Di(u’(t) + w(t))). 

To prove Theorem 5.3, we begin with 

LEMMA 5.4. Assume that (A.l)-(A.5) are valid. Let u. and u1 be the 
same as in Theorem 1.1. Put U”= (u,, Diu,) and for k= 1, . . . . n + 1, 
i = 1, . . . . n, V = 0, and r, set 
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4% = A”(0, .) 0); q; = (A’/), (0, .) UO); 

qb,=A m+ ‘(0, ‘) 0); q;= (A’“+‘),(O, ., U’); 
k 9vm = %40, -3 0); &= W), (0, ., UO); (5.9) 
q”=q;+q;; q’=41,+&; 

k 
4v=4kvcc +&. 

Then, the present q”, q’, and q”, (k = 1 , . . . . n+ 1) satisfy (A.5.1~(A.5.4). 
Furthermore, 

2 (llq~llm,K-l + 11~5llK--1) 
r,,= I 

+ i (llq’, II co,K-1+ ll&IIK--1) 
r=l 

n+l 

+ c mIknmIImo,K--2+ ll&lIK--2 
k=l 

+ ll&x II aJ,K- 1 + Il&IIK-,KGw~ B). (5.10) 

Proof: Noting (IS), we see easily that (A.5.Z) follows from (A./) for 
1=2, 3, and 4. Noting (1.5), (1.6), and (2.1), by Theorem Ap.3 we 
have (A.5.1) and (5.10), which completes the proof. 

Now, we shall estimate the right-hand side of (5.6). 

LEMMA 5.5. Assume that (A.l) is valid. Let uo, II,, fn(t), and fr(t) be 
the same as in Theorem 1.1. Let (v(t), w(t))E Z,. Let g,(t) and g,-(t) be the 
same as in (4.4a) and (4.5a), respectively. Then, the following two assertions 
are valid. 

(1) ($‘gg)(0)=O on Q and (8yg,)(O)=O on rfor O<M<K-2. 
(2) gQ( t) E XKA2*‘( [0, T], Q), gr(t) E XK-2*1’2( [0, T], f ), and 

IaAK-2,0,~0,T,+ h-h-2,1,2,[O,T, 

G C, (K B, A,) + C,(K B, A,,) T/i,+ Cl W, B, AH, AE)EE. (5.11) 

Proof: First, we proof (1). Since (8yu”)(O) = uM for O< M< K and 
GYW) = uw+ 1 for 0 G M< K- 1 as follows from (4.2) and (4.6b), 
by (3.1) and (3.3) we have 

ar”(f,(t)-a,v(t)+a,(P’(t, Vt)))-Qn(t, u(t)))l,,,,=O 

onQforOdM<K-2, 
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where U(t) = (v(t), Diu’(t)). We have also that a: ( jh (v(s) - 
~suo(s))~}l,4=o on 8 for 0 < M< K- 2. In the same way, it follows 
from (3.1), (3.4), (4.2), and (4.6b) that a~G,,(t,v(t))l,=,=O on l-’ for 
O<M<K--2 (cf. (4.5b)). Since (a;“w)(O)=O for O<M<K-2 
(cf. (4.6b)), we see easily that &“G,,(t,v(t), ~(t))l,,~=O on 0 for 
0 GM< K- 2 if we just look at (4.4~) and (4.5~). Applying Taylor 
expansion to (4.4d) and (4.5d), we can write 

Gnj(t, V(t), w(t))=ai 
i 

1’ (d2P’)(t, u(e))(ok”‘(t), otw(t))de 
0 I 

- s ’ (d2Qn)(t, WW~W), @w(t)) de; (5.12a) 
0 

Gr3(t, v(t), w(t)) = vi j’ (d2P’)(t, UUWD~W), D:W)) de 
0 > 

+ 5,’ (d2Qr)k WVW:w(~), @Y(Q) de, (5.12b) 

where U(0) = (v(t), Dk(uO(t) + ew(t))). Thus, by the fact that (arw)(O) = 0 
on Q for O<M<K-2, we see easily that ayG.,(t,v(t), w(t))l,=,=O on 
Sz for O<M<K-2. Thus, we have (1). 

Now, we prove (2). Applying Theorem Ap.4( l), we see that 
(~~Pi+Q~)~-22,~/~.~0,~~~Clv,~‘+Q~l~-2,~,~~,~~. Hence, by Theorem 
Ap.3, (1.5), (1.6), (4.2), and (4.7) we see easily that lGnl (., v)J,~~,~,~~,~~ + 
(Gr,(., ~)),-2,1,2,~o,T, < C(K, B, A,). Applying (Ap.2) with u(t) = 
(v(t), Diu’(t)) and u(t)=a,w(r) and so on and using (4.2) and (4.7), we 
have that IGQ2(., v, w)lK-2,0,co,T1 + IGr2(., v, ~~~~~~~~~~~~~~ Q C(K 5, AH) 
{T/1.+&,}. Applying (Ap.4) with u(r)= U(0) and v(t)=Diw(t) to (5.12) 
and using (4.2) and (4.7), we have that IG,,(., v, ~)l,-,~,,~~,~, + 
IGrs(., v, ~)I.~2,1,~0,~, < CW, 5, A,, A,)&,. Noting Theorem Ap.4( 1) 
and combining these estimations, we have (5.1 l), which completes the 
proof. 

Now, we prove Theorem 5.3. First, we choose I > 0 so that (2) is valid. 
Put U(f) = (v(t), Dk(u’(t) + w(t))) for (v(t), w(t)) E 2. By (Ap.9), (4.2), and 
(4.7), we see that 

.g, IhI’“+ ‘(t, ‘9 U(t))ll co,0 + “il IIW, .> Vt))ll m,O + II&+ ‘(f, -9 Uf))ll m,O 
k=l 

~C1{1+tlUI,~2,1,CO,T, }dC,{l+T(C,(K,B)+/l,+/i,)} (5.13) 

for t E [O, T]. Choose T> 0 so that 

(As.4) T{C2(K,5)+AH+AE}< 1. 
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If we put q’=A’“+‘(t, ., U(t)) and q”,=Bk,(t, ., U(t)) (k= 1, . . . . n+ l), then 
in the present case (5.2a) is valid for t E [0, T] with yco = 2C, (cf. (5.13) 
and (As.4)). Hence, we can choose the constant p0 appearing in (5.3) so 
that pLo is independent of K, 5, AH, /i,, sE, and T. If J. < pFco + 6,, then by 
(5.3) we have (5.8). 

Below, p,, will always refer to the constant determined just now. Now, 
we shall prove (1). Let q”, q’, and q”, (k = 1, . . . . n + 1) be the same as 
in (5.9). By (5.10), we put yK= C,(K, III) in the present case (cf. (5.2b)). 
In view of Lemma 5.4, we can apply Theorems 5.1 and 5.2 with 
yK= C,(K, IEI). Then, by (2) of Lemma 5.5 and Theorems 5.1 and 5.2, we 
can choose a 12 ,uO + 6,, depending only on K and (EB such that there exists 
a unique z(t) EX K-2,2([0, T], Q) satisfying (5.6) for every te [0, T]. 
Furthermore, by (1) of Lemma 5.5, we see that pnl [ayz(O)] = 0 in 52 and 
p,[afnz(O)] =0 on r for O< M< K- 2. Hence, by (5.3), we have that 
cY~z(O)=O for O<M<K-2. 

Finally, we prove (5.7). Differentiating (5.6) M-times in t and applying 
(5.4) with L= K-M, we have 

for t E [0, T] and 0 < M 6 K- 2, where we have used the facts that the 
present yK and I depend on K and El only. Combining (5.14) and (5.11), 
we have that 14K-2,2,C0,Tj < C,(K W{C,(K 5, A,) + GW, 5, A,) T/i, 
+ Ci (K, B, AH, A,) sE}. If we choose nE, sE, and T so that 

(As.5) AE= GW, W{C,W, 5, A/,)+ C,(K 5, AH)+ I>; 

(As.6) C, (K, 5, AH, A,) EEG 1; 

(As.7) T/IE<eE< 1, 

then we have Iz],_,,,,~,,~, < nE. Since ayz(t) = Jb iTf”+‘z(s)ds for 
O<M<K-3, we have Ila~z(t)]lKPIPM<[~ Ilc?~f’z(s)IIKpl--Mds. From 
this, it follows that ]z].-,,,,~~,~, < TIzI~-~,~,~~,~, < T/1.<&, (cf. (As.7)). 
Hence, we have (5.7), which completes the proof of Theorem 5.3. 

6. PREPARATIONS FOR SOLVING PROBLEM (H), 

First of all, we give a unique existence theorem and energy inequalities 
of solutions to a mixed problem corresponding to (H),. Let us consider the 
equations: 

Rn(t)[v(f)]=a;V(f)-a,(Rio(t)a,v(t)+R”(t)a,v(t)) 

= ha(t) in (0, T) x 52; 
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Rr(t)[v(t)] = v,R”(l) a&) + R’(t) a,v(t) + RO(t) a,v(t) (6.1) 

= b-(t) on (0, T) x P, 

v(0) = v. and (a,v)(O) = v1 . in Q. 

Here, Rik(t) = Rtk(t, x) and Rk(t) = Rk(t, x) (k = 0, 1, . . . . n) are m x m 
matrices of functions satisfying the following conditions (A-6.1)-(A.6.5): 

(A.6.1) The Rik and Rk are decomposed as follows: Rik = RE + R’j and 
Rk = Rk, + Rk, where Rt and Rk, E ?JK-‘( [ - T,, T,] x 0’) and 
R$ and RYE YKp2s1( [ - T,, T,], a) with some T, E (T, To]. 

(A.6.2) tRio = Rio and ‘R” = RJi on [ - T,, T,] x 0; tR” = R” and ‘R’ + 
R’=O on C-T,, T,] XT. 

(A.6.3) (R'/(t)a,w,&w)+(R'(t)&w,w)2d, ~~~~~~-6~ Ilwll; for WE 
H’(Q) and TV C-T,, T,]. 

(A.6.4) vi(x) R’(t, x) = 0 for (t, x) E C-T,, T,] x r 

(A.6.5) (-Vi(x)Rio(t,~)+2Ro(t,~))~.t;~0 for (~,x)E[-T,, T,] 
xrand ~EOV. 

Following [S], let us define the energy norm E(R(t))[v(t)] by 

WWCWI = mwii; + WV) aJv(t)y aiv(t)) 

+ St (Wt))Cv(~), v(t)1 + d Ilv(W& (6.2) 

Here, S, (R,(t)) is the bilinear form on H’(Q) x H’(B) defined by (2Sa) 
with R= R,-(r)= (R’(t), . . . . R”(t)) and d is a constant determined as 
follows. Let S,(R,-(t)) be the bilinear form on H’(8) x L2(Q) defined by 
(2.5b) with R= R,(t). Let M(K, T,) be a constant such that 

k$o{i, (IR~I,,K-~,~,+~R’:.IK--~,~,c--T,,~,~) 

+ IRk,lm,~--l,~, + ~%~K-~,I,c-T,,T,~ (6.3) 

By (2.3) and (A.6.3), we have 

E(R(Q)Cv(t)l+ S,(R,-(t))Cv(t)9 v(t)1 

3 lla,wll; + 6, Ilwll: + (d- 6,) Ilwll~. (6.4) 

Thus, by (2.6b), Sobolev’s imbedding theorem, and (6.3), we have 

~(R(mwi 2 IlatV(wa- (b/2) ib(f)il;y (6.5) 
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if we take d = 6, + { CM(K, T,)}*/26, with some constant C. This is the 
manner of choosing the constant d. 

To state an existence theorem of solutions to (6.1), we must define the 
compatibility condition for (6.1). Let v,,,,+~=v~+~(x) (OdM< K- 3) be 
functions defined successively by 

k=O 

(6.6) 

If v(t) E XK- ‘x0( [O, T], Q) is a solution to (6.1), obviously a;“v(O) = v,,,, for 
O<M<K-1. And also, d~R,(t)[v(t)]l,=o=(d~h,)(0) on r for 
0 < M < K - 3. Hence, we shall say that vo, vi, h,(t), and h,(t) satisfy the 
compatibility condition of order K - 3 for (6.1) if 

(6.7) 

for 0 < M< K - 3. The following theorem is a key of solving (H),. 

THEOREM 6.1. Assume that (A.6.1 k(A.6.5) are valid and let TE (0, T, ). 
(1) Let v. E HKP’(12), v1 E H”-*(Q), h,(t) E XKp3,‘([0, T], Q), and 
h,(t) E XKp33”2( [0, T], r). Assume that 

d;KP3h,(t)eLip([0, T], L*(Q)); 8;“P3h,(t)eLip([0, T], H”‘(r)); 

(6-g) 

vo, vl, h,(t), and h,(t) satisfy the compatibility condition 
of order K - 3 for (6.1). (6.9) 

Then, (6.1) admits a solution v(t) E X G ‘,O( [0, T], Q) satisfying the proper- 
ties: &“‘v(O)=v,for 2<M<K-1. 

(2) Let v(t)~X*,‘([o, T],Q) andput h,(t)=R,(t)[v(t)] and h,(t)= 
Mt)Cv(t)l. Then, 

Il~‘vWlli%c li~o’~~~~~ll~+j:~ll~n~~~ll~ 
{ 

+ <b(s)>:,,) ds for TV CO, Tl, (6.10) 

where C= C(T,, M(K, T,), 6,, 6,, n, m, r). 
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(3) In addition to (2), we assume that v(t) E XK- ‘s”( [0, T], 8) and that 
h,(t) and h,(t) satisfy (6.8). Then, 

ww))[af-‘v(t)] ~eC’{E(R(t))C~;K-2v(t)lI,=o 

+ Ct1’2F(t)} for tE CO, Tl, (6.11) 

where C= C(T,, M(K, T,), do, a,, n, m, r) and 

F(t)= IIP-‘W)ll~+ lh,12,-3,0,Co,,,+ (b)2,-3,1,2,Co,r, 

+ ess sup IIcY, 
O<S<l 

K-2h"(dlli+e;~y <C-2b(sD:,2. 
. . 

Remark. Theorem 6.1 was proved by the first auther [8]. In the proof 
of [S], essentially all the coefficients of the operators Ro (t) and R,-(t) were 
defined for all t E [ - T,, T,] containing [0, T] strictly and (A.6.1 k(A.6.5) 
were valid for all t E [ - T,, T,]. 

Our goal in this section is to prove 

THEOREM 6.2. Assume that (A.lb(A.5) are valid. Let uo, ul, fn(t), and 
fr(t) be the same as in Theorem 1.1. Let (v(t), w(t))EZ and put 
U(t) = (v(t), Di(u’(t) + w(t))). Let us consider the linear problem: 

a;z(t)-&(A”(t,., U(t))a,z(t)+Ab(t,., U(t))cYjz(t)) 

= a&(t) + FR(f, U(t)) in (0, T) x Q; (6.12a) 

v,A”(t, ‘2 U(t)) ajz(t) + B>(t, ‘9 U(t)) d,z(t) + BO,(t, .) U(t)) a,z(t) 

= atfAt) - Fi-(t, u(t)) on (0, T) x r; (6.12b) 

z(0) = u1 and (a,z)(O) = u2 in 52, (6.12~) 

where we have used the notations defined in (4.1). Then, the following asser- 
tions are valid. (1) There exists a T, E (0, To] depending only on K, B, AH, 
and AE such that for any TE(O, T,), (6.12) admits a unique solution 
z(t)EXK-l,O ([0, T], Q) satisfying the properties: 

ww)=h4+l for O<M<K-1. (6.13) 

(2) Zf z,(t)EX2*‘([0, T], Q) (I= 1,2) satisfy (6.12), then z,(t) = 
z2(t) for t e [0, T]. 

(3) Let (v(t), w(t))EZ,. Then, there exist T and AH depending only 
on K and IEB such that the solution z(t) to (6.12) satisfies the estimate: 

I4K-,,O,~O,T,~~H. (6.14) 

505/so/ 1 - I2 
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Now, we shall prove Theorem 6.2 by using Theorem 6.1. To do this, we 
must extend the coefficients of the operators in (6.12) to functions defined 
on a wider interval than [0, r]. As will be seen in Theorem Ap.6, there 
exist V(t)E Y K-l*o(R, 52) and WE YK-2,2(R, Sz) such that 

v(t)=V(t) and w(2) = W(f) for TV [0, r]; (6.15) 

i 

K-2 

~V~K-I,O,R~C(K) b~KW,O,~O,T,+ c Ik%)(")liK~l-L 
L=O i 

< C(K){& + c, (K W}; (6.16a) 
K-3 

iWIK-2,2,W~C(K) IWIK-2,2,[0.T,+ c I~(a~w)(o)l~K~L 
i L=O I 

G C(W,, (6.16b) 

where we have used Lemma 3.1, (4.6a), and (4.7). Since we want to 
substitue (V(t), 0: (u”(t) + W(t))) into nonlinear functions defined on 
:;:I < uo>, 1 e us choose T, > 0 depending only on K, III, AH, and AE such t 

IIP’(t), D:(u”W + Wf)))ll oo,l < u, (< uo) for ~E[-T~, T,], 

(6.17) 

where U, is the same as in (As.2). In fact, it suffices to choose T, as follows. 
In the same manner as in the arguments before (As.~), by (6.15), (6.16), 
(4.2), (4.6a), and (4.12), we have II(V(t), D~(~~(t)+W(t)))(l,,,< U,+ 
Itl” C,(K, B, AH, /iE). Hence, if we choose T, E (0, To] so that 

(As.8) Uz+(T,)“C2(K,~,AH,AE)<Ul (<uo), 

we have (6.17). 
From now on, we use the followidng notations in the proof of 

Theorem 6.2: 

u(t) = (v(t), D;(uO(t) + w(r))); 

u’(f) = (V(t), D:(u”W + W(f))); 

Irk(t) = AZk(t, .) U’(t)); 

R’(t) = B’,(t, ., U’(t)); RO(t) = BO,(t, ., U’(t)); 
(6.18) 

v,=u,; v,=u,; h,(t) = J,f,(t) + F,(f, u(t)); 

h,-(t) = a,f,-(t) + F,(c u(f)) 

(k = 0, 1, . . . . n). Using these notations, we can describe (6.12) by (6.1). 
Let us check the conditions (A.6.1)-(A.6.5). 
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LEMMA 6.3. Assume that (A.l)-(AS) are valid. Let II,,, ul, f*(t) and 
fr(t) be the same as in Theorem 1.1. Let (v(t), w(t))EZ and let R”(t) and 
Rk( t) (k = 0, 1, . ..) n) be the same as in (6.18). Then, the present R&(t) and 
Rk(t) satisfy (A.6.2k(A.6.5). Furthermore, tf we put 

R:(t) = Alk(t, ., 0); R’sk(t) = (AEk)&, ., U’(t)); R’,(t) = B>(t, ., 0); 

G(t) = (&I, (t, ~9 U’(t)); RO,(t)=v,A”(t, .,O)+BO,(t, .,O); (6.19) 

RO,W = v,(A”), (t, .> U’(t)) + (BO,), (4 ., Wt)) (cf. (4.la)), 

then (A.6.1) is valid and 

kco {,i, (IR$I,-I,,,.,+ IR~IK--~,L-T,.T,,) 

+ IRk,L ],a,~, + IRksL-u-r,, r, 6 ‘GK 4 Am A,). 
I 

(6.20) 

Proof Since (6.17) is valid, (A.6.1) follows from (A.I) for I = 2, 3,4, and 
5. Applying Theorem Ap.3 to (6.19), we have (6.20) and (A.6.1) easily, 
which completes the proof. 

Now, we shall show that the present vo, vl, hp(r), and h,-(t) satisfy all 
the conditions in Theorem 6.1. 

LEMMA 6.4. Assume that (A.l) is valid. Let uo, u, , fn (t), and f,-(t) be the 
same as in Theorem 1.1. Let (v(t), w(t))EZ and let vo, vl, h,(t), and h,(t) 
be the same as in (6.18). Then, voeHK-l(52), v,~H~-‘(52), h,(t)e 
XKp3,‘( [0, T], 52), h,(t) E XK-3T”2( [0, T], P) and (6.8) and (6.9) are 
valid. Furthermore, 

v‘44==.M+1 for 26M<K-1, (6.21) 

where vM are the functions successively defined by (6.6). 

Proof By (1.2) and Lemma 3.1, we know that v. =ul E HK-l(Q) 
and v1 = u2e H”-‘(Q). For notational simplicity, we write Y’,M = 
Y’T~( [O, T], 52). Let us prove that 

F&t, U(t))E YK-‘,’ and F,(t, U(~))E YKP2,1. (6.22) 

If we get (6.22), by Theorem Ap.4( 1) and (1.3), we see that h,(t) and h,-(r) 
satisfy the desired properties except for (6.9). Recall the notations defined 
in (6.18) and (4.1). Since U(t)E YK-‘yl, applying (Ap.1) with N=K-2 
and M= 1 and Theorem Ap.3, we have that FQ,(t, U(t))E YK-‘*’ and 
F,(t, U(t))E YKp2*‘. Since II’v( YK-‘*‘, by (Ap.1) with iV=K-2 and 
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M = 0, we have also F,, (t, U(t)) E YK - ‘3’. Combining these facts, we have 
(6.22). 

Now, we shall prove (6.21) and (6.9). Put alk( t) = Ark( 1, ., D1no( t)), 
R’(t)=B~(t,.,D’u’(t)), and ~“(t)=~,A’~(t,~,D’u~(t))+BO,(t, .,~‘uO(t)) 

(k = 0, 1, . ..) n). By (1.1) and (4.1), we have 

a,{ai(P’(t, D'u'(t)))-Q~(f, o’UO(l))} 

=~,(~‘“(t)~~~o(t)+~v(t)~,~,uO(t))-F,(t,D1uo(t)); (6.23a) 

8, {v,W, o’u’(N + Qr(t, D’u”W} 

= v,Rll(t) d,8,u0(t) + R’(t) 8,8,11”(t) + 8’(t) d;u”(t) + F,(t, o’u”(t)). 
(6.23b) 

On the other hand, since 8: U’(0) = a: U(0) = (u,,,,+ , , Dku,) for 0 Q M< 
K-3 as follows from (6.18), (6.15), (4.2), and (4.6a), we have 

@r”P)(O) = (af”R’k)(0); (qwy(O) = (qT)(O); 

~f’F,(t, W))l,=o=~f’Wf, ~‘u”W)l,~o 
(6.24) 

for 0 GM< K- 3. Differentiating both sides of (6.23a) M times in t 
(O<M< K- 3), letting t =O, and using (6.6), (3.1), (3.3), and (6.24), we 
have (6.21) easily. Furthermore, differentiating both sides of (6.23b) M 
times in t (0~ M< K- 3), letting t = 0, and using (6.24), (6.21), (3.1), and 
(3.4), we see easily that (6.7) is valid, which implies that (6.9) is valid in the 
present case. This completes the proof. 

In view of Lemmas 6.3 and 6.4, we can apply Theorem 6.1(l) for any 
TE (0, T,). And then, we have Theorem 6.2(l). Since YK-ll,‘( [0, Y], Q) c 
XK-','( [0, T], 52) c A-*,'( [0, T], 52) as follows from the fact that 
K- 2 > [n/2] + 1 2 2, Theorem 6.2(2) follows from Theorem 6.1(2) 
immediately. 

Now, we shall prove (6.14). To do this, we shall prove that 

I4 2 l,O,[O, T] 6 C,W, B) + T”C,(K, b A,, /fE) 

+ T”C,(K, B, AH> A,) IzI:-l,o,co, T1. (6.25) 

If we get (6.25), we choose T and AH so that 

(As.9) T"C,(K, El, AH, A,) < 1; T”C,(K, B, AH, AE)< ;; 

(As.10) (&)*>2{C,(K, B)+ l}. 

Then, we have (6.14). 
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Below, we assume that (v(t), w(t)) E 2,. Note that M(K, T,) = 
C,(K, B, AH, A,) in the present case (cf. (6.20), (6.3)) and that T, depends 
only on K, B, A,, and nE (cf. (As.8)) in the present case. Applying (6.11) 
to (6.12), we have 

JW(~))CC’~~)I G (exp C,t)(E(R(t))Ca~-*~(t)ll~=~ 

+ CJ1’*(IW., Wl~-2,0,Co,~I 

+ IFA-, Wl;-2.1,co, T1 + 5’)) for TV [0, T], 
(6.26) 

where C, = C,(K, B, AH, A,) for 1 = 6 and 7 and we have used 
Theorem Ap.4( 1). In the same way as in the proof of (6.22), by (Ap.1) and 
Theorem Ap.3, we see easily that 

IFat-, W;-22,0,Co,T, + IFA., Wl;-2,1,co,T, G GW, B, A,, A,). (6.27) 

Here and hereafter, we use the fact that 

I%--2,l,[O,T] <C,(K, B)+A,,+A, (cf. (4.2), (4.7)). (6.28a) 

Thus, subsituting (6.27) into (6.26) and using (6.2) and (6.4), we have 

ll~Y1zwll:+~, Ilr*wI: 

< 5 Zk(t)+dO IIa;K-*z(t)ll~+(exp C6T) C,T1/*{Cs+B2}, (6.29) 
k=l 

where 

ZI(t)=d{(exp Gf) Il~f-*z(O)lli- Il~;“-*z(t)ll~}; 

Z*(l) =&uh-(~))C~;“-*z(~), a;“-‘zw1; 
Z3(t) = (exp C,t){(ZP(O) a,a;“-*z(t), a,a;“-*z(O)) 

+ ww0))C~;K-*z(0), r*zwl); 
d=&,+ {CM(K, T,))2/26, 

= C,(K 5, A,, AE) (cf. (6.3), (6.5), (6.20)); 

C,= C,(K 5, Am A,) for I= 6, 7, and 8. 

We shall estimate Zr (t) and jla;“- ‘z( t)ll & First, note that 

II(~K-l~)(Wl;~ GW, B) (cf. (6.13) and Lemma 3.1). (6.28b) 
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Since (exp C, t) - 1 < C, t(exp C, t) and since 

6 (6.30) 

wehaveeasilythatZ,(t)QTC,C,(expC,T)Cg(K, IEg)+CgTJz(:_,,,,Co,T,. 
Hence, if we choose T so that 

we have 

Z,(t)~M,+M2Tl~l:-,,,~o,r,. (6.31) 

Here and hereafter, for notational simplicity, we use the letter Mi (resp. 
M2) to denote various constants depending only on K and B (resp. 
K, B, AH, and A,). In a similar manner to the proof of (6.30), by (6.28b) 
we see that 

ML*,o,[o,T, GM, + TI~l:-u,,~o,r,. (6.28~) 

Now, we evaluate Zk(t) (k= 2, 3). Note (2.6b) and the fact that R’(t) = 
&(t, ., U(t)) in the present case. Since IIR’(t) - R’(O)11 m,l < M2 (T+ T”} as 
follows from Theorem Ap.7 and since IIR’(O)II,,, = I/&(0, ., ui, D~u,)ll,,, 
GM,, we have that IIR’(t)ll m , < M, + Mz T”. Here and hereafter, we use 
the fact that T” > Tp for any’p > E (because 0 -K T < 1). Substituting this 
estimate into (2.6b) and using (6.28c), we have 

J,(t)< (d,P) ll~;-2Wll:+W + T2E~214:-1,0,~,,,~,+ T’“M2. (6.32) 

Since R”(O) = A”(O, ., ui, Diu,) and R’(0) = B’,(O, ., ul, D~u,), by (ls), 
(26a), Schwa&s inequality, (As.1 l), and (6.28b), we have 

Z,(t)<M,. (6.33) 

Since, without loss of generality, we may assume that 0 <E < 4, 
combining (6.29), (As.ll), (6.31), (6.28c), (6.32), and (6.33), we have 

Il~;“-‘wll;+ (b/2) ll~;“-‘wll: 

GM,+T”M,+T”M, 14;-~,,,,C,,,T,. (6.34) 
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Now, we shall evaluate Ild~z(t)ll,-,-,+, for O<MGK--3 by using 
(5.4). To do this, we rewrite (6.12) as 

-al(A"(o~ '9 uI, DiUO) ajz(t))+Pz(t) 

=&f&)--;z(t)+pz(t)+H,(t) in Q, (6.35a) 

vJ”(O, -, Ul, D$,) a,z(t)+ B>(O, -, u1, Lqu,) cT,z(t) 

= a,f,(f) + H,-(t) on r, (6.35b) 

for every t E [0, T] where p is a constant determined below; 

H,(f)=F,(t> u(f))+H,,(t)+H,,(t); 

Ha, (1)~ ai(A’O(O, ‘3 UI, D~UO) a,Z(t)); 

H,,(t) = i &(Wk(t, ., u(t)) - A’k(O, ., u(o))) a,z(t)) 
k=O 

(80 = a,, U(O) = (u1, quo)); 

H,(t) = FAG u(t)) + H,, (2) + H,-,(t); 

Hr, (t) = {v,Aio(O, ., Ul, a,) + @-(O, .9 Ul, D$o)} a,z(t); 

Hn(f)= i (vl(Aik(t, ., U(t))-Aik(O, ., U(0))) 
k=O 

+ @-(k ', utt)) - @@, ', u(o))} 8,$(t). 

If we define q” and q> by the same formulas as in (5.9) and qi =0 
(k = 1, . . . . n+l),qi=q”f’= 0, in the present case (6.35) is also described 
by (5.1). By Theorem 5.1 and Lemma 5.4, we see that there exists a ~1 
depending only on K and B such that (5.14) is also valid in the present 
case. Thus, we have 

lliyz(t)ll,-,-,a!& {Il~~+1fn(~)ll,-3-M+ <~;u+lfr(~)>K-~s,z~-M 

+ iia y+2Z(t)ll,-3-M+ Il(yZ(W-3-M 

+ Il~f”b(~, U(~)NK--~--M 

+IldfAb(~, u(f))ll,-,-,+ i (Il&%d)ll,-,-, 
k=l 

+ Il~;MHr&)li~-2-,d)~ (6.36) 
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where we have used Theorem Ap.4(1). The right-hand side of (6.35) is 
estimated as follows: 

Il&“‘F& U(t))lI,-,-,GM, + TM,; 

Il~f”W~, Vt))ll,-2s,,,GM, + TM,; (6.37a) 

ll~E”%Wl,~~-~~~~ ll$‘+‘Wl~~2-,; 

II~~bWll,~2-,Of, II~~+1~(~)ll~-2u,; (6.37b) 

II~~H,,(t)ll,-,-,~M,+T~2 MK-LO,CO,TI; 

Il~:H,,(t)ll,-,-,~M,+T~2 IRK-I,O,CO,TI. (6.37~) 

In fact, note that 

By (Ap.1) we see easily that Il(df’F,)(0)lIK-3-,,.,= IlJf’Fn(t)llK-3-MI,=,, 
< Mi. Thus, by (6.27) we have the first part of (6.37a). In the same way, 
we have the second part of (637a). Let F= (A”)i or (BF)i. Applying 
Theorem Ap.1 with k=2,S=K-2, L=K-2-M,r,=O, and r*=M, 
and using Theorem Ap.3, we have 

IIf’Kt -3 ~1, ~kuo)~f”+‘Wll,-2-M 

G W, lb1 IIK-2, IW~uoIL-22) II~f”+‘zWll~-2-w 

From this, (6.37b) follows immediately. Note (6.28~) and the fact that 
II(DK-*U)(0)IIO<M,. Applying (Ap.3) with U= U and u= a,z and 
using (6.28a) we have (6.37~). 

Substituting (6.37) into (6.36) and using (6.28c), we have 

ll~~~~~~ll,-,-,~~,+~,{lI~~+2~~~~llK-~3-~+ IIv+‘ZwllK-2-d 

+ TM2 + TM2 I4 K- l,o, co, rl for OiM<K-3. 

Repeated use of (6.38) implies that 
K-l 

1 lVf’%t)ll;-,-,<MM, +M, (Ila;“-‘WI:+ ll~;-2Wll:> 
M=O 

+ T2Mz+ T2M2 l~12,-,,o,co,~,~ (6.39) 

Substituting (6.34) into (6.39), we have 
K-l 

,c=, @%,K-I-MEOJ, ~M,+~“M2+T”M21zl~-,,o,Co,~3~ (6.40) 
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Since z E XK- lVo( [0, T], 52), we have 

Hence, recalling that M, = C(K, B) and M2= C(K, B, AH, /iE) and 
combining (6.40) and (6.28c), we have (6.25), which completes the proof of 
Theorem 6.2. 

7. A PROOF OF THEOREM 1.1 

First of all, we review the way of determining AH, A,, .sE, T,, and T. 
First, we choose A, > 0 so that (As.3) and (As.10) are valid. Hence, AH 
depends only on K and B. Second, nE is chosen so that (As.5) is valid. 
Hence, dE also depends on K and B only. Third, T, is chosen so that 
(As.8) is valid. Obviously, T, depends on K and B only. Because, /i, and 
AE have been chosen so that they depend on K and B only. Finally, cE and 
T are chosen so that 0 c Tc T, and (As.l), (As.~), (As.~), (As.~), (As.~), 
(As.~), and (As.1 1) are valid. Obviously, .sE and T depend only on K 
and B. 

Now, we shall prove (4.10) and (4.11). Noting the discussions in the final 
part of Section 4 (cf. (As.2)) and using Theorems 5.3 and 6.2, we have that 
there exists a pair (vP(t), wP(t)) E Z, satisfying (H), and (E),, which 
shows (4.10). 

Now, we shall prove that there exist T and Ed depending only on K and 
B such that (4.11) is valid. Below, 1 will always refer to the number deter- 
mined in Theorem 5.3 and for notational simplicity, we use the same letter 
M to denote various constants depending on K, B, /1,, and nE, except for 
determining T and E,. Since we already know that AH and AE depend on 
K and B only, note that M also depends on K and B only. In the course 
of the proof of (4.11), we use the following notations: 

up(t) = (v”(t), D:(uO(t) + w’(t))); 

z*‘P--(t)=Zqt)-ZP--(t) for z=vandw. 

First, by using (6.10) we shall prove that 

BY (H), and (H),-,, we have 
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a:Vp+‘(t)-a, i ‘4qt, .) Up--‘(t))akV ( k=O 

P.“-‘(l)) 

= h;(t) in (0, T)xQ; (7.2a) 

v,Av(~, ., up- l(t)) a,v fip-l(t)+B;-(t, ., up-l(t)) arvp9p-l(t) 
+BO,(t, ., UP-‘(t)) a,vp3p-l(t)=h;(t) on (0, T)x r; (7.2b) 

vp3p-1(o) = arVp7p-l(o) = 0 in Q, (7.2~) 

where 

h;(t)=F,(t, UP-l(f))-FQ(t, UP-~(I)) 

+ f: [(A’k(ty ‘? up-l(t))-A’k(t, ‘) up-‘(t))) akvP-l(t)]; 
k=O 

h;(t) = F,(t, Up- l(t)) - F,(t, UP-~(~)) 

+kgo [v,(A’k(t, ., up-‘(I))-kk(t, .) uyt))) 

+ (Bk,(t, -, uP-‘(f))-B>(t, ., up-2(t)))] akvP-l(t). 

Extending the coefficients of the operators in (7.2a) and (7.2b) to the func- 
tions defined on [-- Tr, T,] in the same way as in the proof of 
Theorem 6.2 (cf. (6X), (6.16), (6.17), (6.18)) and applying (6.10) of 
Theorem 6.1(2), we have 

lvP.P- 1 
~~.o,co,~~~~~{lh~lo,o,~o,r,+ IhP,lo,I,CO,T,}, (7.3) 

where we have used the fact that (h$)0,.1,2,r0,T, < Clh~lo,l,ro,r, (cf. 
Theorem Ap.4(1)). On the other hand, applymg (Ap.5) and (Ap.6) with 
u,= Up-'(t) and u,=vP-‘(f) and so on to the first terms of h;(t), 
and (Ap.6) with N= 1, u,= Up-'(t) (1= 1,2), and u1 = u2 =akvP-‘(1) to 
the second terms of hP,( t), we have easily that 

Combining (7.3) and (7.4) implies (7.1). 
Now, we shall prove that 
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Considering the equations which w Pvp- l(t) satisfies and applying (5.4) with 
L = 2, we see easily that 

(7.7) 

where 

Iv,(f)= llGv,(t, v”(t))-G.,(t, vP-‘(Mrw~; 
ZvAf) = IIGdf, vP(t), wp- ‘(1)) 

- Gv,(c vP-‘W, ~~-~W)ll.wq for 1=2and3. 

Here, we have put J( V) = 0 for I’= 52 and = 1 for Y= r, and we have used 
Theorem Ap.4( 1). We shall prove that for all t E [0, T] 

If we get (7.7), substituting (7.7) into (7.6), we have (7.5). Since 
P’( t, x, 0) = Q V (t, x, 0) = 0, applying (Ap.5) and recalling that I depends 
on K and IEB only, we have (7.7a). Since ID~w~-~I~,~-~,~~,~,< 
lWP-*IK-,2[OT,~b as follows from (4.7) by (Ap.7) we have easily 
(7.7b). A&&kg (Ap.8) with u,= (vp+‘-‘(t), Df,(uO(t) + 0wP-l(t))) and 
u,=D~wP-‘(t) (I= 1,2) and A=.cE to (5.12) we have (7.7~). 

Combining (7.1) and (7.5), we have 

where Cl= C,(K, B, AH, A,) for I= 10 and 11. If we choose T and .sE so 
that 

(As.12) C,oK B, Am A,) 7-G f, C,, (K B, A,, A,)(T+ &El G $3 

then we have (4.11). 
Now, using (4.10) and (4.11), we shall prove the existence of a pair 

(v(t), w(t)) E Z satisfying (H) and (E)‘. By (4.1 l), we see easily that 
the sequences {vp} and (w”} are Cauchy in X’~“([O, T], a) and 
X0, *( [0, T], Sz), respectively. We can prove that these sequences are 
Cauchy in XK-2,0([0, T], 9) and XK-3*2([0, T], 52), respectively, by 
(4.10) and the following lemma. 
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LEMMA 7.1 (cf. [6, Lemma 2.2.71). If u E XN.‘( [0, r], Sz) (N being an 
integer > 1 ), then 

In fact, by Lemma 7.1 and (4.7), we have 

ID”D:(wP - ~~‘)lo,o,~o,T, 

<ClD;(w”- ~~‘)I~,~,:~‘~~*~(2/i~)(~‘~-*) for O<M<K-3. 

Since {w”} is Cauchy in X”s2( [0, T], Q), {wp} is also Cauchy in 
XKP3,*( [0, T], Q). In the same manner, we see that {vP}is Cauchy in 
XK- *,O( [0, T], 52). As a result, there exist v(t) E XK- **O( [0, r], Sz) and 
w(t)EX K-3*2([0, T], Q) such that 

lim Iv~--I~~~.~,~~,~~ = lim IwP--WI~-~,~J~,~~ =O. (7.8) 
P-m P-” 

Our next task is to prove that the present pair (v(t), w(t)) belongs to Z. 
To see this, we need 

LEMMA 7.2. Let J be a compact interval of R. Let L and M be integers 
such that L 2 1 and M> 0. Let the sequence {v”} be bounded in YLsM(J, 0) 
and Cauchy in X L- ‘T~(J, Q). Let A and v be a number and an element in 
XL- ‘,“(J, IR) such that 

lim IvP-vlL-l,M,J=O and Iv~IL,M,JG~ for all p. (7.9) 
P-m 

Then, VE YL*““(J, 0) and Ivl,,,,<A. 

ProoJ: In the same manner as in [4, p. 403 or [S, the proof of 
Lemma 5.41, we see that (7.9) implies that dfvP(t)+iY:v(t) weakly in 
HL+M--k(B) as p+co for O<k<L-1 and teJ, and that i?:v(t) is 
continuous in t E J in the weak topology of H”‘“-“(Q) for 0 <k < L - 1. 
From these facts, it follows immediately that afo( L”(J, HL+M--k(S2)) 
n Lip(J, HL+M-k-l (a)) for 0 <k G L - 1. Furthermore, we have 

I4 L,M,JG lim inf Iv~I~,~,~. 
p-00 

Hence, we have proved the lemma. 
Since (4.7) is valid for every VP(t) and wP(t), by (7.8) and Lemma 7.2, we 



QUASILINEAR HYPERBOLIC SYSTEM 187 

have that v(t)~ YK-l,‘([O, T], 52), we YK-2,2([0, T], Q), Iv[,_~,~,~~,~, 
G/i,, I~l~-~,~,r~,~, <nE, and l~l~-~,~,r~,~, <sE. Since (4.6a) is valid for 
every VP(~) and wP(t), by (7.8) we see that a;“w(O) = 0 for 0 < M< K - 3 
and a;“v(O) = u,,,,+ I for 0 GM< K- 2. Since (4.8) follows from (4.6a), 
(4.7), and (As.~), we obtain that (v(t), w(t)) E Z. 

Furthermore, letting p + co in (H), and (E), and using (7.8), (ApS), 
(Ap.6), (Ap.7), and (Ap.8), we see easily that the present v(t) and w(t) 
satisfy (H) and (E)‘. If we put u(t) = u’(t) + w(t), from the manner of 
deriving (E)’ from (E) we see that v(t) and u(t) satisfy (H) and (E). 

Now, we shall prove that a,u(t) =v(t) for all t E [0, r]. Since (v(t), 
Dku(t))E YK-2,1([0, T], Q), by Theorem Ap.3, we see that P’(t, U(t)), 
Q&t, U(t))E YK-2*0([0, r],Q)cX”-3’0([0, r],Q) and Qr(t, U(t))E 
YKe2, ‘( [0, T], Q) c XKp3,1([0, T], ~2) where U(t) = (v(t), Dku(t)). Since 
K - 3 2 [n/2] 2 1, differentiating (E) once in t, combining the resulting 
equations and (H), and putting z(t) = iT,u(t) - v(t), we have 

-&W(t, ., u(t))a,z(t)+A'"+'(t, .) cJ(t))z(t)) 

+BL(t,., U(t))a,z(t)+B”n+‘(t,., U(t))z(t)+Az(t)=O in&$ (7.10a) 

v,(AY(t, ‘, u(t))a,z(t)+A'"+'(t, .) U(t))z(t)) 

+B>(t,., U(t))a,z(t)+B”r+‘(t,., U(t))z(t)=O on r, (7.10b) 

for every t E [0, r]. Since z(t)c H’(R) for all t E [0, T], multiplying (7.10) 
by z(t) and integrating the resulting equations over Sz and I’, by integration 
by parts, we have that the left-hand side of (5.8) in Theorem 5.3 equals 
zero. Hence, we have that Ilz(t)ll: = 0 for t E [0, T], which implies that 
a,u(t) = v(t) for t E [0, T]. In particular, substituting a,u(t) = v(t) into (E), 
we see that u(t) satisfies the original problem (N). 

Finally, we shall prove that u(t) E XK,‘( [0, r], Q). Since v(t) can be 
regarded as a solution in X2,0( [0, r], Q) to linear equations (6.12) and 
since (v(t), w(t))EZ, by Theorem 6.2(l) and (2) we see that v(t)E 
XK- ‘s”( [0, T], a) (the uniqueness of solutions in X210( [0, T], 0) follows 
from (2)). Since a,u(t) =v(t), to get that u(t)EXK,‘([O, T], Q), it suffices 
to prove that u(t) E C”( [0, 7’1, HK(Q)). Let t and s be any points in [0, T] 
such that t#s. Putting U(t)=(v(t),Diu(t))and V(0)=0U(t)+(l-B)U(s) 
and applying Taylor expansion to (N) we can write 

-a,(q”a,(u(t) - u(s))) + du(t) - u(s)) = h, in 52; (7.1 la) 

V,q”a,(U(t)-U(S))+q’,ai(U(t)-U(S))=hr on r, (7.11b) 

where p is a constant determined below, 4” = 42 + 4t, 4>=4>, + 4’rsT 
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4% = A”(.$ .) O), q>, = B’,(s, .) O), s;=j:, (A”),(& .> f,‘(Q) de, 4-s = 
J:, Wh (s, .? V(0)) de, and 

hi2 = &2(t) -h(S) - (a,v(t) - a,v(s)) + p(u(t) - u(s)) + I’ + I, + I,, 

1, = a,(P’(t, ., U(t)) - P’b, ., U(t))) + Qn(s, ., U(t)) - Qn(r, ., U(t)), 

z, = a, 
( 

1’ A’qt, .) VW)(v(t) -v(s)) de 
0 > 

+L’ Ain+’ (t, .y Ve))(u(f) -u(s)) dOI, 

13 = -j-; (dQ,)(s, ., J’(Q)(u(t) - U(s)) de, 

h,=f,(t)-f,(s)+z,+Z,, 

1, = “I(P’(s, ., U(t)) - P’(f, ., U(t))) + Qr(s, ., U(t)) - Qr(t, -, U(r)), 

A'"++, ., v(e))de+l: B;++, ., w)) de w) -u(t)) 1 
+ 

[I 
V, d A~O(S, ., v(e)) de + ji B;(s, ., ww de 1 (V(S) - v(t)). 

If we put q’=qL=q;+‘=O (k= 1, . . . . n + l), (7.11) is described by (5.1). 
By Theorem Ap.3, (4.2), and (4.7) we have 

i (llq~ll co,K-1+ IkIbIIK-1) 
i,/=l 

for all t and SE [0, T]. Hence, in the present case, ym =0 and 
yK= C,,(K, B, /1,, /iE) for all t, SE [0, r] (cf. (5.2a) and (5.2b). Thus, 
there exists a p depending only on K, [Eg, /i,, and A, and independent of 
t and S E [0, r] such that we can apply (5.4) with L = K to (7.11). And 
then, we have 

II~~~~-~~~~II~~~~Il~,ll,-~+ <b>,-~~pJ 
for any t and s E [0, T]. (7.12) 

Let us estimate the right-hand side of (7.12). Since (v(t), w(t))eZ, we 
have that IIV(0)llK-,, IlU(t)l,sM for all t,sE[O, T] and 0&0<1. 
Noting (A.l)(*), by the mean value theorem we have that )lZ, (IKml, 
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1114)1K--l<MIt-sJ. By (Ap.1) with IV=0 and M=K-1, we have that 
llMlK-22, Il~,IIK-l~~~II~~~~-~~~~IIK--l+Il~~~~--U(~~II~-~~. And also, 
by (Ap.1) with N=O and M=K-2, we have that IIZ311K-2< 
M( Ilv(t) - v(s)II~-~ + Ilu(t) - u(s)llK- r}. Noting Theorem Ap.4(1) and 
substituting these estimations into (7.12), we have 

Il~~~~--u(~~ll~~~~llfn~~~-f~~~~ll~~* 

+ (<f,(t)-f,(s)))K-(,,,,+ It-4 

+ IlJ,v(t) - ~,v(s)ll,-2 

+ Ilv(~)-v(~)llK-l+ IlW-WIIK--1J 

for all t, s E [0, T]. Since v(t) E XK- ‘s”( [0, T], Q) and u(t) E 
YK--2,2( [0, T], 0) c C”( [0, r], HK- ‘(a)), by (1.2) and (7.13) we see that 
u(t) E C”( [0, T], HK(Q)), which completes the proof of Theorem 1.1. 

8. APPLICATIONS OF THEOREM 1.1 

8.1. An Application to Nonlinear Wave Equations. Let us consider the 
following scalar equations: 

a:u(t)-a,(a’(t,o’u(t)))+b,(t,D’u(t))=f,(t) in (0, T) x8; (8.la) 

v,a’(t, o’u(t)) + bA& d,u(l), u(f)) =fAf) on (0, T)xr; (8.lb) 

40) = %I, a,u(o) = u1 in Q. (8.1~) 

Let all the functions considered in this paragraph be scalar valued. Let 
wo, w,, and w,+] be independent variables corresponding to functions 
a,~, a,~, and U, respectively. Put W=(wo, w,, w,+,), W’=(w,, w,+~), 
D(U,)= {WE w+*1 1 WI < U,}, and D’(Uo)={W’~R21 IW’I<U,}. We 
make the following assumptions: 

(A.8.1) The nonlinear functions a’ = a’(& x, W) and b, = b,(t, x, W) 
are in GV’( [ - To, To] x 0 x D(U,)) and b,= b,(t, x, W’) is 
in @“( [- To, To] x fi x D’( U,)). Furthermore, a’(t, x, 0) = 
b,(t,x,O)=Ofor (t,x)~[-7’~,T,]xQ. 

(A.8.2) (iJa’/aw,)(t, X, W) = (da’/lawi)(t, X, W) for (t, X, W) E [ - To, To] 
xi2xD(Uo). 

(A.8.3) There exists a constant 6 >O such that C;,= r (da’/aw,) 
(6-T w5i~,~w12 for (t,x, W)E[--T~, T,]xsTxD(U,) 
and [=(tl ,..., ~,)ER”. 
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(A.8.4) -v,(x)(aa’/aw,)(t, x, W) + 2(ab,/aw,)(t, x, IV’) 20 for (t, X)E 
[--To,To]xI’,)WI<U,, and Iw’I<U,. 

Remark. (1) Assumption (A.8.2) can be replaced by the condition 
that there exists a function p(t, x, IV) E Ba( [ - T,, T,] x 0 x D( U,)) such 
that a’ = ap/aw,. 

(2) In the scalar operators case, (A.4) implies that Qr does not 
contain the derivatives a,u, . . . . a,u of u. Thus, in the present case, it is 
assumed that 6, depends only on t, x, U, and 8,~. 

Since we can easily check that the original assumptions (A.1 )-(AS) are 
valid under (A.8.1 k(A.8.4), applying Theorem 1.1 implies 

THEOREM 8.1. Assume that (A.8.1 )-(A.8.4) are valid. Let K be an integer 
> [n/2] + 3. Zfu,, uI,fn(t), andfr(t) satisfy (1.2)-(1.6), then there exist T 
and A > 0 depending on K and I5 only such that (8.1) admits a unique 
solution u(t) E J?‘( [0, T], Q) satisfying the conditions: IuI K,O, co, T, Q A and 
IW(~)ll Co.1 < U, for t E [0, T]. 

If we put a’= a,uj,/m, b, = 0, and b,= a(u), (N.W) can be 
described by (8.1). We can easily check that the present a’, b,, and b, 
satisfy (A.8.lt(A.8.4). Thus, (N.W) admits a local solution. As another 
important boundary condition in (N.W), we can consider the case 
b,= a(u) + c(a,u), where c(0) = 0 and c is a nondecreasing function in 8,~. 
This boundary condition describes the effect of the dissipation on the 
boundary. 

8.2. An Application to Three-Dimensional Elastodynamics. If the 
undeformed state D of a three-dimensional, homogeneous, isotropic, hyper- 
elastic material has not any stress in it, the equation of motion describing 
its small displacement u(t, x) = t(~l (t, x), u,(t, x), ug (t, x)) under the action 
of the body force b = ‘(6, (t, x, u), 6, (t, x, u), b, (t, x, u)) and the pressure is 
described by (N) with n = m = 3. And then, P’, QV, fn(t), and f,(t) are 
defined as follows (cf. [ 1, Chap. 1 I): 

(P', P2, P3) = p - ‘V,+ . C(E); Qn = b(t, x, u) - b(t, x, 0); 

Qr= -pC(det V,$)(VA)* v(x)- (det V,x)(V,x)* v(x)1 + D(t, x, a,~); 
(8.2) 

b(t) = b(t, x, 0); fr(t) =p(det V,x)(V,x)* v(x). 

Here, x = ‘(xi, x2, x3) = ‘x; v(x) = t(v, (x), v,(x), v3 (x)) = ‘v(x); 0 = x + u; 
p is a constant describing the pressure density of r; p is a positive constant 
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describing the mass density of 52; M*=‘(M-‘); D(t,~,a,u)=~(o,(t,x,a,u), 
D2(t, x, a,u), D3(t, x, a,u)) is a 3-vector of functions in a”( [ - T,, r,] x 
ax (U’= (2401, u 02, ZQ~)E R3 I IU’J < U,}) such that (aZI,/&,) is a 3 x 3 
nonnegative detinite matrix and D(t, x, 0) = 0, which describes the effect of 
the dissipation on r, 

E = (E,) = i(‘(V,+) . (V,4) - Z3) (Z3 being the 3 x 3 identity matrix); 
C(E) = (i?(E)) is a 3 x 3 symmetric matrix called the second Piola- 
Kirchhoff stress tensor having the following properties: 

,E( E) = A( trace E) I, + 2pE + o(E) as [El ‘0; (8.3a) 

A and ZI are Lame constants satisfying the conditions: 
pu>O and Iz+p>O; (8.3b) 

there exists a stored energy function w(E) such that 
C!‘(E) = (i?w/i?E,)(E). (8.3~) 

Note that E is a real symmetric matrix. As was seen in [9, Sect. 31, we 
have easily from (8.3~) 

Azb = aP:/aujb = s,,(aw/aE,,)(E) + i (a%/aE,aEjh)(E) 4kadhb, (8.4) 
k,h= 1 

where Pi= t(Pf, Pi, Pi), tik. = akdo, and 6, are Kronecker’s delta sym- 
bols, i.e., 6,, = 1 and dub = 0 for a # 6. Since E, = E,, if we put A” = (.4 zb), 
we see by (8.4) that ‘A”= A . ji Substituting (8.3a) into (8.4) and using 
(8.3c), we have 

(8.5) 
i,J,o,b = 1 

where cii = i(a,u, + a,u,). According to the result due to Simpson and 
Spector [ 10, Corollary of Theorem 63, it follows from (8.3b) and (8.5) that 
there exist positive constants c0 and c1 such that 

, J~_,~~A~b(o)ajub(X)a,u~(x)dx 
1 1 I 

2Cl IIvII:-co llvllf for v E H’(Q). 

505/80/1-13 
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Thus, by the mean value theorem we see that there exist positive numbers 
6,) 6,, and U, such that 

i j A~,(U(x))a,o,(x)(3,u,(x)dx~6, IIvII:-~o IIVIG (8.6) 
r,l,a,b= 1 R 

where dII = 6, + uti. If we put BirRb = aQ,Jauib, then Bgab = -paR,la4ib. 
From this we can easily check that Bkab + BLb, = 0 and v,B’,,, = 0 for 
a, b = 1,2, 3. Since (a~,/&+,,) is nonnegative definite, the rest of the condi- 
tions of (A.2) and (A.5) are valid. If Ip( is very small, then from (8.6) and 
similar arguments from the last part of Section 2, it follows with positive 
constants &, and S; that 

,,i-, (A~b$(U(.))a,ub,aiu,)+ i (&ab(eF u(-))aiub9ua) 
I 9 . r,a,b= 1 

2s; llvll:-~b Ilvll; for v E H2(a) and V(x) E HCO~‘(~, D( U,)). 

These facts imply that (A.1 )-(A.5) are valid if I pi and U,, are small. 
According to Theorem 1.1, we can conclude that, if the pressure and the 
displacement are very small in the initial state, we get a local existence 
theorem of solutions to the three-dimensional elastodynamics when the 
applied surface force is the pressure. Unfortunately, for another important 
traction boundary condition which is not dead load, i.e., Qr= 
(detV,4) I(V,+)* VI b,(g) (cf. Cl, p. 21]), it seems that our theorem 
cannot be applied, because the condition ‘BI, + B’, = 0 is not satisfied in 
this case. 

APPENDIX 1: SOME ESTIMATIZS OF NONLINEAR TERMS 

In this appendix, we summarize the estimations of a product of functions 
and composed functions by Sobolev norms. In the same way as in the 
proof of Theorem 7.1 of Mizohata [S], by using Sobolev’s imbedding 
theorem we have 
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THEOREM Ap.1. Let ri, . . . . rk (k > 2) and S be nonnegative real numbers 
and L a nonnegative integer such that S > n/2 and S 2 r, + .. ’ + rk + L. Zf 
U,E H’-“(Q), then the product n u, of u,, . . . . uk belongs to HL(SZ) and 
Ill-hll.~ C(k LH-Ill~,IIs--r,. 

Applying Theorem Ap.1, we easily have the following two theorems. 

THEOREM Ap.2. Let J be an interval of Iw. Let L and M be integers such 
that L,M>OandL+M>n/2. Zfu,(t)EZL*M(J,Q) (l=l,...,kandZ=X 
or Y), then their product ~U,E ZL*M(J, a). Furthermore, when Z = X, 
IPL ITI uAt)ll,< C(k L W II IPLul(t)llMfor tE J. 

THEOREM Ap.3. Let J, L, and M be the same as in Theorem Ap.2. Let 
F(t,x, u)&P(Jx~x {lul <u,,}) such that F(t, x, 0) = 0. Let u(t, x) E 
ZL*M(J, a) (Z= X or Y) such that Ilu(t m,o< u0 for all t E J. Then, 
F(t, x, u(t, x)) E ZLsM(J, Q). Furthermore, when Z= X, IIDLF(t, x, u(t))ll, 
,<C(L, M, F){l+ II~L~Wll,}L+M-’ lIDLu(t)l 

Remark. When u,, u, and F do not depend on t in Theorems Ap.2 and 
Ap.3, all the assertions are valid if we put L = 0 and ZL*M(J, 52) is replaced 
by H”(SZ). 

Now, we give several estimations of nonlinear functions used in the 
text. Below, J= [0, T], G(t, x, u)~?P(Jxfix (lul <u,}), and H(x, U)E 
9FysIix {lul a+#}). 

(Ap.1) Let M and N be integers 2 0 such that K- 2 < 
N+M<K- 1. If u(t)EZ”“(J, a), v(t)EZNsM(J, 8) (Z=X or Y), and 
Ilu(t o3 0 < u0 for t E J, then G( t, ., u(t)) v(t) E ZNvM(J, s2). Furthermore, 
when Z’= X, 

IPNW, .> u(t)) 4t))ll a,., G 

CM NH1 + lI~N~(N,~ N+“-l IIDNu(t)llA4 lPN4t)llw 

for t E J. 
(Ap.2) Let u(t) E.X-~.‘(J, 0) such that Ilu(t m 0< u. for all 

teJ and v(t)EXK-2,1(J,Q). Put Z(t)= {G(t,.,u(t))-G(O,.,u(O))}v(t). 
Then, Z(t)EXK-22,‘(J, Q) and 14K-2,1,JGCK I~lK-22,1,J){TI~IK-22,~,~+ 
l4K--3.1,J~. 

(Ap.3) Let v(t)EXKP2,‘(J, 0) and let u(t) and Z(t) be the same as in 
(Ap.2). Then, Z(t) E XKP2,‘(J, Q) and 

VI,-3.1.5~ CW, l4~-22,1,~) Tl4~-2,0,~ 

+ CW, II(~K-2w)l11) IVIK--3,OJ. 
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(Ap.4) Let u(t) and u(t) be the same as in (Ap.2). Put 
Z(t)=G(t, .,u(t))o(t)u(t). Then, Z(~)EX~-~,~(J,SZ) and (I(,-,,,,,d 
WC 14Kp2,1,J) MK-2,LJ IUIK--3,LP 

(Ap.5) Let N=O or 1. Assume that H(x, O)=O. If u,EZZ~~~(Q) and 
ll~~llm,O~~o for 1=1,X then IIH(.,u,)-H(.,u,)ll,6C(K, ll~~ll~-~, 
llU2IIK--2) lb-~2IlN. 

(Ap.6) Let N=O or 1. If u,, u,~ZZ~-*(52) and IIu,JI~,~<u~ for 
I= 1, 2, then 

IlW., uIh -W., ~2b,II,~CK lb~ 11~27 Ib2llc2) 

x {ll”*-~*IIN+ IIU2llK-2 Il%-~*lIN~. 

(Ap.7) Let u,(t) and u,(~)EJ?~~,~(J,SZ) for 1= 1,2. Assume that 
Ibr(~Nl m,O < u,, for t E J and I = 1,2 and that ui (0) = u*(O). Put Z(t) = 
Zi(t)ui(t)-Z2(t)u2(f) whereZ,(t)=G(t,+,u,(t))-G(O,.,u,(O)). Then, 

III o,I,J~W, I~IIK--z,w b21~-2,1,~) 

x {mh-~2lo,1,J+ b2IO,K-*,.I Iu, -~2lo,1,J. 

(Ap.8) If uI, u,~ZZk-~(52), 11~,)1~,~~u~, and Il~,ll,-~<d < 1 for 
1= 1,2, then 

IIW., %I 01 u1- w.5 u2) hU2ll I 

GCW, IIuIIIK-~, II~2II~-2U~ll~1-~2Il,+Il~1--2111~~ 

(Ap.9) Let u(t) be the same as in (Ap.2). Then, IlG(t, ., u(t))\\ “o,o 5 
C, + C2Tl4,-2,1,, for TV.& where C,=sup{IG(t,x,u)J l(t,x)~.ZxQ 
IuI <uu,} and C,=sup(la,G(t, x, u)l + IdG(t, x, u)l I(t,x)~lx~, I4 <uo}. 

All the assertions can be easily checked by using Theorems Ap.1, Ap.2, 
and Ap.3. So, we may omit their proofs. 

APPENDIX 2: SUPPLEMENT TO THE TEXT 

Here, we summarize several facts which play important roles in the text. 

THEOREM Ap.4. (1) There exists Q constant C= C(T) > 0 such that 
<~>1,2~CIl41 for all ~~fwo 

(2) For any E >O, there exists a constant C(E, r) such that ((u))i< 
8 Il4:+CwT ll4l;for u~H’(Q). 
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Proof. When 0 = {x = (x1, . . . . x,) E R” 1 x, > 0}, we know Theorem Ap.4 
very well (cf. [S, Proposition 3.61). Hence, using the partition of unity 
near r, we have Theorem Ap.4 immediately. 

THEOREM Ap.5. If ulCIe HKpM(SZ) for 0 < M< K, then there exists a 
u(t)~X~~~(R,!2)suchthat (~~u)(O)=u,inQforO6M<Kand 

Proof: Using the Fourier transform, we shall prove the theorem. Using 
Lions’ well-known method of extending functions defined on D to whole 
R”, we know that there exist u,,,,. E H K-M(R) such that u,,,,(x)=u~(x) on 
0 and Ilu,+,II;(-,,,< Cllu,IIK-, where C is independent of uM and uM and 
11. I(; are the norms of Sobolev spaces of order r over R”. Put 

K-l 

ti(t, t)= C (exp fl (L+ l)(l + IQ*)“*t) a,,fi,(tl)(l+ Icl12)-N’2, 
L,N=O 

where GN are the Fourier transforms of u,; the aLN are constants satisfying 
the linear algebraic equations: 

K-l 

L;l (fl(L+ 1))“a,N=6,N for M, N=O, 1, . . . . K- 1 

(6 MM=1 andd,,=OforM#N). 

Obviously, (af”i?)(O, t)=fi,(<). Put u(t, x)=real part of the inverse 
Fourier transform of fi(t, 5) with respect to 5. By Parseval’s formula we see 
easily that the u(t, x) has the desired properties,which completes the proof 
of Theorem Ap.5. 

THEOREM Ap.6. Let T> 0 and let L and A4 be nonnegative integers. Let 
u(t) E YL3M( [0, T], Sz). Then, there exists a u(t) E YL,M(lR, l2) such that 
o(t) = u(t) for t E [0, T] and 

L-l 

I4 L,M.IW~C(~,M)(IU(L,M,CO,T,+ c Ila~u(o)I~L+M~N~* 
N=O 

Proof: By our definition of L”(J, X) (cf. Sect. 2), aru(O) exist and 
E HL+ M- “(a) for 0 < N< L - 1. By employing the same arguments as in 
the proof of Theorem Ap.5, we can find z(t) E XL+ “‘*‘(lR, Sz) such that 
arz(O) = aru(O) for 0 <N < L - 1 and 

L-l 

Il~"z(t)llM~c(L) c Ila;"@)liL+M-N for ~EIW. 
N=O 
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Put z1 (t) = u(t) for 0 < t < T and = z(t) for t < 0. Then, we see easily that 
z,(t) E Y”,“(( - co, T], Q) and 

lz,IL,M,(-oo,T~~I~IL,M,~O,T,+lZIL,M,(~~co,~] 
L-l 

G I4 L,M,[O,T]+C(L) 1 Il+40)IIL+M-N. 
N=O 

Put uk = 2k and choose bk so that C,“:,’ ( -a,)‘b, = 1 for I= 0, 1, . . . . L - 1. 
If we put 

v(t)=zl(t) fort< T and 
L-l 

= c bkz,(T-ak(t- T) fort>T, 
k=O 

then we see easily that v(t) has the desired properties, which completes the 
proof. 

THEOREM Ap.7. Let F(t, x, U) E 93’“( [0, T] x a x (1 UI < U,}) and let 
u(t) E Y K-2,1( [0, T], Sz) such that Il~(t)ll,,~ < U,for all t E [0, T]. Then, 

for TV [0, T], where E is a constant in (0, [n/2] + 1 - (n/2)). 

Proof: Since F(t, ., u(t)) - F(0, ., u(0)) = F(t, ., u(t)) - F(0, ., u(t)) + 
F(0, ., u(t)) - F(0, ., u(O)), we have 

IIF(G .9 u(t)) -40, .7 4O))ll Co.1 

Let G be a number such that E = 1 + [n/2] - (n/2) - CJ > 0. Since 
E( 1 + [n/2]) + (1 - .s)(2 + [n/2]) = 1 + (n/2) + 6, by Sobolev’s imbedding 
theorem and a classical interpolation inequality, we have 

Ildt) - 4O)ll m,l~ClI~(~)--U(O)lI(,,*)+I+, 

G ~Il~~~~--u(~~ll~n,2]+1 Il4tw4O)ll~~;,+* 

~~~“l~I~,~n,2,+~,~o,r,~~I~lo,Cn,2,+2,C0,T]~1~E 

<Cl” MK-2,1,[0,7-]; 

Ilu(t, .)I1 co.1 G C140.[n/2]+2,[0,T] ~Cl4,-2.1,~0,7-,~ 

Here, we have used the fact that K> [n/2] + 3. Combining these estima- 
tions, we have the theorem immediately. 
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