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1. INTRODUCTION

As is well known, the Neumann or third kind problem for a nonlinear
wave equation is written as follows:

()= 3 3,0,/ TE VD)

=1

=fo(t) in (0, 7) x 2;

(NW) Sy (8,u(r))/ T+ V(D) + a(u(r))

=fr(t) on(0, T)x I}
L u(0) = u, and 0,u(0)=u, in Q.

Here and hereafter, 2 is a domain in R”, its boundary I" being a C* and
compact hypersurface; x = (x, .., x,,) and ¢ denote points of R” and a time,
respectively; 0, =0,=0/0t and 0,=0/dx; (i=1, .., n); V u is the gradient of
u in x; v=(v{(x), .., v,(x)) denotes the unit outer normal to I" at xe I" (for
the sake of simplicity, we assume that v, (x)e CP(R") below). The local
existence in time of classical solutions to (N.W) was proved by the first
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author [7]. The first equation of (N.W) is quasilinear, but the boundary
condition is fully nonlinear. This full nonlinearity causes the derivative loss
which breaks down the usual iteration process. And also, the boundary
condition of the linearized problem does not satisfy the so-called uniform
Lopatinski condition. The difficulties of solving (N.W) come from these
facts essentially and we must construct the iteration scheme with the
greatest care.

In the present paper, we shall prove the local existence theorem in time
of classical solutions to the following mixed problem for second-order
systems:

0Zu(1)—8,(P'(1, D'u(1))) + Qq (1, D'u(1))=fo(t)  in(0, T)xL;
(N) < v,Pi(t, D'u(t)) + Q (¢, D'u(2)) = f (1) on (0, T)xT;
u(0)=u, and d.u(0)=nu, in Q.

Here and hereafter, u=‘(u, ..., 4,,) denotes an m-vector (‘M means the
transpose M); P', Qq, and Q[ are m-vectors of nonlinear functions in ¢, x,
and D'u=(d,u,V,u,u) of the forms: P'=%P!,.,P ) and Q,=
(Qvis s Qum) (i=1,.,n, V=0 and I'); the summation convection is
understood such as the sub- and superscripts i, j take all values 1 to n; the
functions are always assumed to be real valued.

Such a problem (N) belongs to a physically reasonable problem, typical
if not the most general. In fact, if we put m=1, P'=0,u/./1+ |V, u|?
Q. =0, and Q,=a(u), then (N.W) is described by (N). Another important
example is a model for a three-dimensional nonlinear elastodynamical
equation with some applied surface force which is not dead load, in which
the unknown is actually 3-vector valued (cf. [1]). This will be treated in
Section 8 below.

(N) was already treated and the local existence theorem was proved by
the first auther and G. Nakamura [9]. But, the order of Sobolev spaces in
which solutions exist was not best possible. After the works [7,9],
T. Kato [2] treated also mixed problems of the same type as in (N) in his
abstract framework. And, when m =1, the nonlinear functions P’, Q, and
Q- do not depend on ¢ and J,u, and f (1) =0; applying his abstract theory
to (N), he gave some improvements of the results due to [7] regarding the
minimal order of the Sobolev spaces in which the solutions exist. Our pur-
pose in the present paper is to give the same improvements as in Kato [2]
when m>1, where the nonlinear functions depend on ¢ and d,u, and
f-(t) #0. Our approach below is concrete and elementary and different
from Kato’s in [2]. Another advantage of the approach in the present
paper is that some hyperbolic—parabolic coupled system containing a
model for a higher dimensional nonlinear thermoelastodynamical equation
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as a physical example can be handled in a similar fashion, which will be
published elsewhere.

One of the essential points of solving (N) lies in the simple reduction of
(N) to some “hyperbolic—elliptic” coupled system for unknown u and 9, u.
This reduction was first developed by the first auther [7]. The same
reduction was used in [9,2] and will be also used in the present paper
(cf. Sect. 4 below).

Now, let us introduce our assumptions. Throughout the present paper,
it is assumed that the spatial dimension n > 2, because the case when n =1
was already treated by the second author [3]. Let ug,, u,, and u,,,,
denote independent variables corresponding to é,u,, d,u,, and u,, respec-
tively. Here and hereafter, the sub- or superscripts i and j (resp. subscripts
a and b) refer to all integers 1 to n (resp. 1 to m). Put U= (ug,, u,,, ,, 12)-
The first assumption is that

(A1) the P, =P (,x,U) and Q,,= Q.. x,U) are in
Be([—Ty, Ty] x Q2 x D(U,)) and satisfy the condition:

(*) P;(t, X, 0)=QV0(19 X, 0)=0 fOI' (ta X)E [—TO’ TOJXQ'

Here and hereafter, U, and T, are given positive constants; the subscript
V always refers to Q and I'; D(Uy) = {Ue R"*?™| |U| < U,}. The condi-
tion (*) guarantees that the composed function P! (¢, x, U(x)) and so on
belong to L*(Q2) for each ¢ provided that U(x)e L*2). When Q is
bounded, we need not assume (*). But, in the present paper, we consider
where 2 is bounded and unbounded.

Put

Al =0P, [du, By =00 v, /Oy,

A*=(4%), B% =(B%,,) (k=0,1,..,n,n+1), (1.1)
where A* and B% are m x m matrices and the subscripts @ and b denote the
row and column, respectively. The second assumption is that

(A2) 'A7=A4"and 'A"°=A4" on [~ T,, To] x 3 x D(U,);
'B9=B% and 'B'.+ B'.=0 on [ —T,, Ty] x I"x D(U,).

Roughly speaking, the final assumption in (A.2) means that the boundary
condition does not contain oblique derivatives. In fact, when m=1, Q,
does not depend on J,u by the condition: '‘B}-+ B'-=0.

The third assumption is that

(A.3) there exist positive constants §, and &, such that (4Y(s, -, U(-))
0,¥, 0v) + (Br(t, , U(-)) 8;v, v) = 8, IvlT — 8o IvlI§ for €
[~To, Tol, ve H*(R2), and U(x)e H™'(2, D(U,)).
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Here and hereafter, H°(G) denotes the usual Sobolev space on G of order
s with norm ||-||, ; and for any function space S equipped with norm |-|
we denote a product space Sx --- xS and its norm simply by S and |-|,
respectively; we write |||, o=-l, and ||-|; ;= <->,; the (,)and (, >
denote the usual inner products of L*(Q2)= H%Q) and L¥(I')=H%I),
respectively; H = '(2, D(U,)) = {u € L™(R2)| [(V, u(x), u(x))| < U, for
xe€2}. Assumption (A.3) is stronger than the assumption that the 47 are
strongly elliptic. But, many important physical examples satisfy (A.3).
The fourth assumption is that

(A4) v, (x)Br(t,x,U)=0for (t, x, U)e [— Ty, To]x I x D(U,).

Assumption (A.4) means that the operators B’ do not contain the normal
derivative of u on I
The final assumption is that

(A5) {—vi(x) A%t x, U)y+2B%t, x, U)} £-E = 0 for (1, x,U) €
[— Ty, To]lxI'x D(U,) and &€ R™.
Here and hereafter, £ -n=¢,9,+ -+ +¢&,,n,, for any m-vectors £ and 7 in

R™. Assumption (A.5) is one of the conditions in order that the energy of
the corresponding linear problem to (N) does not increase (cf. Majda

[4, p. 145]).

Let J and X be an interval of R and a Hilbert space, respectively. By
C*(J, X) and Lip(J, X) we denote the set of all X-valued functions which
are in C* and Lipschitz continuous in J, respectively. Put

X-MJ,G)= (ﬁ CN(J, H-*M-N(G)).

N=0

The purpose of the present paper is to prove

THEOREM 1.1. Assume that n>2 and (A.1)(A.5) are valid. Let K be an
integer =[n/21+3 and let uy, v, fo(t), and £(t) satisfy the following
conditions:

weHYQ), ueHKY(Q),
fo(eX*2%[0,To1, 2), f()eX* >"*([0,T,1,T); (1.2)
0F g (1) e Lip([0, T, ], L*(2));
o7 (1) e Lip([0, T, 1, H'*(I")); (1.3)

uo, uy, f,(¢), and £,.(t) satisfy the compatibility condition of
order K—2 (this notion will be defined exactly in (3.4) of
Sect. 3 below); (1.4)

(u,(x), D,uo(x)) e H=(Q, D(Uy))  (Dyu=(V,uu)).  (LS5)
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Let B be a positive constant such that

g ll &+ g 1 — 1+ ol k- 2.0,r0.761 F+ <Fr k-2 17210, 701

+esssup |07 'fo(1)o+esssup K37 (1) D1, <B,  (16)

t1e [0,Tp] te [0,To]

where the || x_1.0.10.791 A4 <* Y k_2.1/2.10.75) @re norms of X*~>°([0, 7,1, Q)
and XX-2VX([0, T,1, I'), respectively, which will be defined in Section 2
below. Then, there exist a short time T >0 and a constant A >0 depending
essentially only on K and B such that (N) admits a unique solution u(t)e
X%O[0, T, Q) satisfying the properties: |u|x o 0r1<A and D'u(t)e
H>Y(Q, D(U,)) for te [0, T).

Remark. Since K= [n/2]+ 3, by Sobolev’s imbedding theorem we see
that the present solution u(¢)e C*([0, T) x 2). And, as was stated in [2],
this order seems to be the best possible to get C? solutions. In [7,9], it
was assumed that K> [#/2]+ 8. To get our improvement, K> [n/2] 4 3,
we treat the problem in a more delicate fashion than in {7, 9] and need
some new results on the linear hyperbolic theory obtained by the first
auther [8]. The uniqueness of solutions in X*°([0, T], Q) and the
existence of C*-solutions were already proved in [7, 9]. Hence, we shall
prove the existence of solutions in X*°([0, 7], 2) only. Below, K will
always refer to an integer > [n/2] 4+ 3.

The present paper is organized as follows. In Section 2, basic notations
are given. In Section 3, the compatibility condition for (N) is defined. In
Section 4, the iteration scheme for solving (N) is defined. In Sections 5 and
6, as preparations for proving the convergence of our iteration scheme, we
give some results on the linear hyperbolic and elliptic theories. In
Section 7, we prove Theorem 1.1. In Section 8, we give two examples con-
taining (N.W) and the three-dimensional nonlinear elastodynamics. In the
Appendix, we give some estimations of nonlinear terms and supplementary
lemmas used in the text.

Below, (k.h), (Ap.h), Theorem k.h, and Theorem Ap.h will always refer
to the formula (k.h) in Section k, the formula (Ap.h) in Appendix,
Theorem k.h in Section k, and Theorem Ap.h in the Appendix, respectively.

2. NOTATIONS

In this section, we explain our basic notations. For any k-vector
v=(vy, .., v;) and multi-index a=(a,,.., ;) we put v*=0v{---v¥ and
|¢| =a, + --- +a,. For differentiations, we use the symbols: J,=
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1y s 0); D10%0=(010%0,, .y 10%0,); DDMu = (910%0; j + o] S L+ M,
j<L); D*v=D*D%; D¥v=D°D™y. Put

0]l o, = sup | D% o(x)|;
xe

|v|oo,L,T=8up{|DLU(t5 X)‘ | (t’ X)G [_T’ T)XQ}

Let L=(J, X) be the set of all X-valued functions which are measurable in
J and bounded everywhere in J in the strong topology of X, where J and
X are an interval of R and a Hilbert space, respectively. Put Y**(J, G) =
L*(J, H*(G)) and for L>1, Y**(J,G)={u(t)e X“~1(J,G) | dMu(t)e
L*(J, H-**=M(G))nLip(J, H-**~"~-YG)) for 0SKM<L-—1}. Note
that Y-S YL~ M+ M and XLsc X2~ M+ M for 0 < M < L. As the norms
of Y5(J, G), we use the following:

[tlo,5,0,6 = sup llo()l5,65
ted

L1 M M
10 0)() — (0, o)) L 45— pr—
0l r6=10lorsss6t Z sup : bl AL

M=0 t,ts;sl ,t—S!
for L>1.
If v(¢) e X**(J, G), then
L
Y sup 107 v s po= 0l Ls e
M=0 teJ

Hence, we also use |-|,,,s as the norms of X**(J, G). Put |v|, ,=
{vlrss0 and v, ,;=vl,, . For the matrix-valued functions, we use
the same notations to denote their differentiations, norms, and so on.

We use the same letter C to denote different constants depending on the
same set of arguments. C(---) denotes a constant depending essentially on
the quantities appearing in the parentheses. In particular, by using the
subscripts /=1, 2, ..., we distinguish the important constants. For example,
C.,C,, Ci(-+), Cy(--), and so on.

For any nonlinear function F(t, x, v), we write

(070%d"F)(t, x, v)(Wy, .y Wy)

dh . h
=m [(6, 0%F) (t, x, 0+ Y 0, w,)]

=1

; (2.1)

6= =6p,=0
(F)(t, x,v)=F(t, x,v) — F(t, x,0) = J.l (dF)(¢, x, Ov) vdb.
0

Note that (F), (z, x,0)=0 and F(t, x, v) = F(t, x, 0) + (F), (¢, x, v).

505/80/1-11
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Let R'(x) be m x m matrices of functions in #'(2) such that

v,(x) R'(x)=0 forxer. (2.2)

Finally, we find some bilinear forms S, (R)[v,w] on H'(Q)x H'(22) and
S, (R)[v, w] on H'(Q)x L*(2) such that

(RO, v, w) =S (R)[v,w]+ S, (R)[v,w]
for any ve H*(Q)and we H'(Q), (2.3)

where R=(R’, .., R"). These are used to define the first energy of the
linearized problem and to solve the elliptic boundary value problem by
using the well-known Lax-Milgram theorem. To get (2.3), first we prepare
some notations. Since I' is a compact and C* hypersurface, we may
assume that there exist a finite number of open sets G, in R”, positive num-
bers o,, and C* diffeomorphisms ¥, from G; onto G, for /=1, ..., p, such
that Gi={y=(y1, Y)ER"|YI=|(y1s s Yu_y)l <o, and |y,|<
6/}, 20 G,=¥({yeG)| y,>0}), and I'nG,=¥,({y€G;| y,=0}). Let
d,=(P,,..,D,) be the inverse maps of ¥, If we put Yi(y)=
(0@,/0x,)(¥,()) and J,(y")=I(Y];(¥',0), .. Y, (), 0))|, we have that
vi(x)=—Y;(y,0)/J,(y') and dI' . =J,(y')dy’ for x=¥,(y,0)eG,nT
where dI', is the surface element of I'. In particular, by (2.2) we see that

R(¥,(y,0) Yi(y,0)=0 for(y,0)eG; (24)

Let ¢,(x)e Cy°(G,) (I=1, .., p) be the partition of unity on I" and put
v, (¥)=0,(¥,(y))e CF(G,). By the change of variables x= ¥,(y) and
(2.4), we have

p n—1
Roxwy=Y T [ vy, 0)SHR ) 8v (', 0)-w(y,0) dy’,

I=14g=1

where 0)=0/3y,,v'(y)=v(¥,(y)) and S{(R, y')=R(¥,(y’,0)) Y{()',0)
J;(y'). If we put

SRy wI=Y 3 [ #ONSHR ) 0V () - 0,w(5)

I=14=1"R}

—S{(R, y') 0,V (y) 0,W'(y)} dy; (2.5a)

p n—1
SR wI=3 T ~[ (YN0 SHR y) ()W)

I=14=1

—(@,:(2)) ST(R, y') 0,¥'(p)-w(y)} dy, (2.5b)
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where R”. = {y=(y,, .. y») € R"| y, >0}, noting the formula

Roywy=3 T - = [ B SR YOV )W)

I=1qg=1

by integration by parts we have (2.3). Furthermore, by Schwarz’s
inequality, we have

1S (R)[v, w]| < C{i IRl oo,o} Ivils fiwl s (2.6a)

1=1

1S, (R)CY, wil| sc{i nR"uw,l} vl % lo- (2.6b)

i=1

The S,(R) and S,(R) are continuous bilinear forms on H(Q)x HY(RQ)
and H'(Q) x L*(Q), respectively.

3. CoMPATIBILITY CONDITIONS
In this section, we shall define the compatibility condition which the
u,, u,, f,(2), and f,-(¢) should satisfy in order that solutions to (N) exist.
To do this, first we shall prepare some notations. Let u(t) e X*°([0,T], Q).

Since P‘(t, D'u(z)) and Q,(t, D'u(t)) belong to X*~ %[0, T], 2) as
follows from Theorem Ap.3, we can write

OMPi(1, D'u) = (¥ P')(1, x, D'u) + Z Y PLY (1, x, D'u)
x (D;a,u)“l--~(Diafu)“h(afu) A..(@" ) (3a)
dMQy (1, x, D'u)=(3"Q,)(t, x, D'u) + 2 Y 0V (5, x, D'u)
x(D}ﬁ,u)“‘l (D‘@"u)“‘h(a2 ) (6"“u)”h (3.1b)
Here, Pf;;;,',”f,?h" and Q') g» are some nonlinear functions in ¢ x, and

D'w;o* = (at, ..., af) and B*= (B4, .., B}); a* and B’ are all multi-indices;
and the summation Y is taken over all (a*, 8*) such that

h
Y (ot +1B2)s=h. (32)
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Let us define u,,, ,, 0 < M < K- 2, successively by

Upr sz = (015)(0) + 3, {(3}"P')(0, (u;, Diug))} — (0 Qu) 0, (u,, D uy))
+ Z > [8,{Pus (0, - u;, Dlug)

X (Diul)“x (D uy) ) ()P
— Qo (0, uy, Diug)
X (Dhuy) - (DLuy) )" (w4 )P, (33)

Obviously, if u(z)e X*°([0, T], 2) is a solution to (N), then (6 u)(0)=
u,, for 0 < M < K For the later references, we give

LemMMA 3.1. Let B,ug,u,, and f,(t) be the same as in Theorem 1.1.
Then, u,, e HX="M(Q) and |uy, |l x < C, (K, B) for 2« M<K

Noting (3.2) and applying Theorem Ap.1 to (3.3), we can prove easily
Lemma 3.1 by induction on M. So, we may omit the proof (cf. [9,
Appendix 3]).

I u(t) e X5°0, T], 2) is a solution to (N), we see that
¥ (v P'(t, D'u(1)) + Q (1, D'u(1)}],o= (0M1)(0) on I' for 0SM<
K—2. Keeping this in mind, let us define the compatibility condition
for (N) as follows. We shall say that ug, u,, f,(¢), and f,(¢) satisfy the
compatibility condition of order K—2 if

v,(8YP')O0, (u,, Diug))+ (0 Q)O, (u,, Diuy))
+ Z 3 v, Pitei (0, uy, Dlug) + Q7 5(0,  uy, Dlug)]
x (DL u,) (D}, u,)*(u,) - (uh+1)”2=(0f"fr)(0) onlI” (34)

forOSM<K-2.

4. ITERATION SCHEME

Since the full nonlinearity of the boundary condition in (N) causes the
derivative loss which breaks down the usual iteration process, we use the
following simple reduction of (N) to a “hyperbolic—elliptic” coupled system
for unknowns u and J,u. Differentiate (N) once in ¢ and put d,u=v and
U(t)=(v(2), Dl u(t)). Then, using (1.1), we have
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(02v(1) —0,(A(t, -, U(r)) 8,%(t)+ A¥(z, -, U(t)) 8;%(t)) — Fq(t, U(1))
=0,f,(1) in (0, T)xQ,

v, 491, -, U(t)) 8,v(2) + B-(t, -, U(1)) ,9(¢) + BY(1, -, U(1)) 9,¥(2)
+F (1, U(t))=01,(1) on (0,T)xTr;

\v(0)=wu, and (0,v}{0)=nu, in Q,

(H)

R, N

where
B%.(t, -, U(t))=v,4"(t, -, U(t)) + BY(¢, -, U(1)); (4.1a)
Fo(r, U(t))= —Fq, (1, U(1)) + Fgu (1, U(1)); (4.1b)
Fou (1, U(1) = 04" (1, -, U(1)) v(1)
+ (0, P)(1, U(1))) — (3,Qo)(z, U(1)); (4.1¢c)
Foo (s, U(1)) = (dQo)(t, U(1)) D'v(2); (4.1d)
Fr(t, U@t) = {v, 4" *'(s,-, UW)) + BF (8, -, U(t)) } ¥(2)
+v,(0,P)¢, U(1)) + (6,Qr )2, U1)). (4.1¢)

And also, the original problem (N) can be rewritten as follows:
8,v(t)—0;(P'(1, U(1))) + Qg (2, U(2)) + Au(z)
(E) —f,(1)+ 4 <uo+j0' v(s)ds) in Q,
v Pi(t, U))+Qr(t, U(t))=f,(t) onTl

for all 1€ [0, T], where A is a constant determined in Theorem 5.3 below.

Below, we shall solve systems (H) and (E) for unknowns u(¢) and v(¢).
This simple procedure was first developed by [7, 9]. T. Kato [2] also used
this procedure in his abstract framework. In the proofs of [7, 9], problem
(H) was reduced to the zero initial data case, because of the compatibility
condition. Furthermore, somewhat rough linear theory on hyperbolic
mixed problems was used. These are the reasons why the assumption
K>[n/2]1+8 was needed in the original papers [7,9] (cf. remark after
Theorem 1.1).

Since (E) is still fully nonlinear with respect to u(r), we shall reduce (E)
to an equivalent problem (E) as follows. Below, u°(¢) will always refer to
a function in X*°(R, 2) such that

(0Mu®)0)=u,, InQfor0KM<K;
[D¥u®(¢)]lo < Co(K, B) forallzeR. (4.2)
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The existence of such a u°(z) is assured by Theorem Ap.5. Put
u(z)=u’(r) +w(z) and U°(t)=(v(¢), D' u’(t)). Then, noting that U°(0)=
(u;, D u,), we can rewrite (E) as equations for unknown w(z) as follows:

(EY pai[w()]=go(t) in Q and p,[w(t)]=gr(t) on I for all
te [0, T], where

pPa:[wl= —08,(4%(0, -, u,, Dl“o) ajw +A4"*+(0, -, u;, Di“o)w)
+ B, (0, ,u, Diug) 0,w+ BL 10, -, uy, Dlug) w+ Aw;
(4.3a)
Pr[w] = vi(Aij(Oa 5 Wy, D)lcuO) ajw + Am+ 1(05 5 Uy, D)l(uO)w)
+ BXI‘(O, 5 Uy, Di“o) alw + B;‘"+ 1(0, ‘s u]’ DL“O)W,

(43b)
8o(1) =G (1, V(2)) + Qo (1, ¥(2), w(2)) + G s (2, ¥(2), w(2));
(44a) -
Go: (1, V(1)) =fa (1) — 0,%(1) + 0,(P'(¢, U%(1))) — Qq (1, U1))
4] (v(s) = 0,0%s))
(note that u(r) = u + jo 9,u%(s) ds); (4.4b)

Gy (1, ¥(1), (1)) =8, {(A4°(t, -, U(1)) — 4(0, -, U°(0))) 8,w(?)
+ (A" (8, -, UN1)) = A" (0, -, U%(0))) w(1)}
— (Bo(t, » U°(1)) — By (0, -, U%(0))) 8,w()
—(BR (1, U(1)) = B (0, , U0))) w(r);  (44c)

Gas (1, ¥(2), w(2)) =0, {P'(t, U(1)) - P'(1, U%(1))
— AU, -, U(1)) 8,w(t) — A" (1, , U(1)) w(2)}
—{Qu(t, U(1)) — Qa (1, U%(1))
— By(t, -, U%t)) 0,w(t) — BGH (1, -, U%(1)) w(1)}; (4.4d)
gr()=G (5, ¥(1)) + G (2, v(2), W(2)) + G 15 (1, V(2), w(?));
(4.52)
Gr(, V() =1r()~vP'(1, U1)) — Q1(t, U(1)); (4.5b)
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Gra (8, ¥(), w(1)) = v, {(47(t, -, U(£)) — 4(0, -, U(0))) &, w(1)
(A"t UA()) — 4" 10, ,, U%(0)) w(n)}
+(Br(t,, U%1) — B0, -, U%(0))) 3,w(1)
+ (BTt UND)— BE1(0, , U0))) w(r);  (4.5¢)

Grs(t, v(2), w(t)) = v, {P'(z, U(t)) = P'(t, U°(1))
—A¥(t, -, U%1)) 0,w(t) — A"+ (1, -, U(1)) w(2) }
+{Qr(%, U(1)—Q(t, U%))
— Bi(t,-, U%1)) 8,w(t) — B} (1, -, U%(1)) w(2)}.

By using the method of successive approximations, we shall solve systems
(H) and (E)'. To do this, first let us introduce the spaces Z and Z, in which
all the functions in our iteration scheme belong. The space Z is the set of
all pairs (v(z), w(t))e Y*¥-29([0, T], Q) x YX¥=2%([0, T'], 2) such that

0Mw(0)=0 forOSM<K-3; Mv(0)=u,,, forOSM<K-2
(4.6a)
Vk_roro.r1SA4n  Wlk_22p0rS4e;  |Wlko32007r1S8E; (4.7)
(v(2), Diug(2))  and  (v(¢), Dy (u%(r)+ w(2)))e H* (2, D(U,))
for te[0,T]. (4.8)
Here and hereafter, 7, Ay Ag, and ¢ are constants determined below

which depend only on K and B essentially; U, is a constant e (0, U,) deter-
mined below. We assume that

(AS.1) 0<T<min(l, T,) and 0 <eg< L.

The space Z_. is the set of all pairs (v(t), w(t))eZ such that
v(t)e XX 1[0, T], Q), w(t)e X*~>*([0, T'], 2), and

o¥w(0)=0 forOSM<K-2; 0Mv(0)=uy.,, forOSKM<K-1.
(4.6b)

Our iteration scheme is defined as follows: For given p>2 and
(v?= Y1), w?~(1))e Z,, let us define v7(z) by a solution to the following
linear problem:
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(02vP(t)—8,(A4™(t, -, UP~(£)) 8,vP(1) + AY(t, -, UP (1)) 2,¥°(2))
=0,f,(1)+Fqo(t, UP (1)) in (0, T)xQ,;

v, AV, -, UP~ (1)) 0,v2(2) + B(1, -, UP~ (1)) 8,v%(¢)

< +By(t,, UP (1) 8,v7(1)

=0,0(1)—F (t, U (1)) on (0, T)xTl;

\V(0)=u, and (0,v°)(0)=u, in £,

(H)

P

where U? (1) = (v*~'(¢), D1 (u®(¢) + w? ~1(¢))). And, let us define w”(¢) by
a solution to the linear problem:

(E), par[w?(t)]1=84(1) in 2 and p [w”(:)] =g} () on I', where
g5(1) =Gy (1, V(1) + Gy (1, v2(1), WP (1)) + G s (1, ¥7(2), W2~ 1(D)).

To prove the convergence of our iteration scheme, we must prove that
there exist A, A, &g, and T such that

Z. is not empty; (4.9)
(vo(t), wP(t)) e Z,; (4.10)

VP—v2 Y oo 1+ IW = WP o5 ro. 1
<3 {l"pfl—vp_zh,o,[o,rj +wP ! —‘Wp—zlo,z,[o,r]}' (4.11)

We conclude this section by proving (4.9). Since D'uy,u, e H*~1(Q)
and K—1>=[n/2]+2, by Sobolev’s imbedding theorem we know that
|D(u,(x), Dlug(x))| =0 as [x| - co. By this and (1.5), we see that there
exists a U, e (0, U,) such that

I(uy, Dytg)ll oo,y < U (4.12)

Let (v(¢), w(¢)) satisfy (4.6a) and (4.7). Put U(r) = (v(t), D (u®(¢) + w(2))).
By Theorem Ap.7 with F(t, x, U)=U, (4.2), (4.6a), (4.7), and (4.12), we
have

WU o1 < ”(ulaD)lc“O)"oo,l+CTE|U|K—2,1,[0,T]
SU,+CTHCL,(K, B)+ A, + Ag) for te[0,T].

Here and hereafter, ¢ always refers to a fixed constant € (0, [n/2]+1—
(n/2)). Let U, €(0, U,) and choose T so that

(As2) U,+ CTHC,(K, B)+ Ay+A.) < U,.

Then, (v(1), D1 (u%t)+w(1)))e H™(Q, D(U,)) for te [0, T]. In the same
way, we see that (v(¢), D u°(z))e H*'Y(@, D(U,)) for te [0, T] provided
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that (As.2) is valid. Namely, under assumption (As.2), combining (4.6a)
(or (4.6b)) and (4.7) implies (4.8). Since |0,u°x_ ;.00 <C:(K, B) as
follows from (4.2), if we choose 4, so that

(As.3) A,=C,(K, B),
then (9,u°(t), 0)e Z.. From this, we have (4.9).

5. PREPARATIONS FOR SOLVING PROBLEM (E),

First, we shall state a unique existence theorem of solutions to the
following problem:

da,[Wl=hoinQand g [w]=h,onT,
where
goi[W]= —0,(¢"0,W+ q'W)+ qL0,w+ g5 'w+ Aw;
qriwl=v.(q70,w+qg'w)+qr0,w+q7" 'w. (5.1)

Here, A is a constant; ¢” = ¢¥(x), ¢’ = ¢'(x), ¢, = ¢',(x), and ¢,* ' =g’} '(x)
are m x m matrices of functions satisfying the following four conditions:

(A.5.1) The g% ¢’ q,, and ¢}*' are decomposed as follows: ¢”=
9%, +4%q = 4 +454) = §he+ s 4V = UL+ 40
where ¢, 4%, 4, 475 € B D), Giou, Gan, €B*THQ);
9%, q's, 4'rs, 475 € HX7(R); 45, 905 € HX2(Q).

(AS2) ‘¢"=¢" inQ.

(A.5.3) (q"0;w, 8, w)+ {q'r0,w, W) >0, w3 —J, w3 for we H*(Q).

(A54) v,q'-=0on I

First, let us discuss the uniqueness of solutions in H*(£2) and the exist-
ence of weak solutions in H!(2). Multyplying (5.1) by v and integrating
the resulting formulas over 2 and I, by integration by parts we have that
(90 [W1, V) + (qr[wlv>=g;[w,v] where q,[w,v]=(q"0,w,0,v)+
Sl (q)[w’ V] +Sz(4)[w, V] + (q:')aiw+q’(’)+ lwa V) + (qu, aiv) + <q7"+lwa V>.
Here, S;(q) (/=1,2) are the bilinear forms defined by (2.5) with R=
q=(qr - q7) and we have used (2.3). Applying Theorem Ap.4(2) with
e=min(6,/4 |¢7* ' w0, 1), we have that [{g}*'w, w)>|<(3,/4) Iwli+
C(1, 19% .0, T') W||3. Let y,, be a constant such that

n+1

Y 14lwot X 196100+ 197 o0 < Voo (5.22)
=1

k=1
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Then, using Schwarz’s inequality and (A.5.3), we see easily that there exists
au,=C(,,I,7,) such that

(qQZ [W], W)+ <qr[w]’w>
>(0,/2) Iwli+(A—po—0o) IWl§  for weH* Q). (53)

If we choose 4> 0 so that 4> uy+ d,, then the uniqueness of solutions in
H?*(2) to (5.1) is valid. By Schwarz’s inequality and (2.6), we see that
g,[w, v] is a continuous bilinear form on H'(2) x H'(£2). By (5.3), we see
that ¢,[w, w]>(d,/2) |lw||? provided that 1> pu,+3,. Since H*(Q) is
dense in H'(£), it follows from this inequality that ¢, is a coercive bilinear
form on H'(2)x H'(R). Hence, by the Lax-Milgram theorem, we have
the existence of weak solutions in H'(2) to (5.1). Furthermore, by the
usual method (cf. [5, Sect. 3]), we get the regularities of weak solutions.
Namely, we have

THEOREM 5.1.  Assume that (A.5.1)-(A.5.4) are valid. Let L be an integer
€[2, K]. Let yx be a constant such that

2 Ul k-1 + g8l )+ Y (195 o k-1 + g5l k1)
=1

i, j=1

n+1

+ Z (19500 oo,k -2 + 195w Hoo x—1+ lgbslx_2+ lghslx_ ) <7«

k=1
(5.2b)

Then, there exists a Ay>0 depending only on Ay, 6y, 8,, and I' essentially
such that for any A > A, and given ho e H-~%(Q) and h.e H*~**(I"), (5.1)
admits a unique solution we H*(Q) satisfying the estimate:

Wl < CK, vk, T, 8, 61, n,m, D){lhgll L2+ KD gpy) (5:4)

Remark. The detailed proof of Theorem 5.1 was given in [8, Sect. 3].
In [8, Sect. 3], it was assumed that g%.e H*~®/2(I"). Since gk=4g%_ +
gk e A%~ (Q)+ H¥~'(Q) in the present case, noting Theorem Ap.4(1)
and the fact that I" is compact, we have that &g%Dx_2<
C{lg% o lw.x—1+ l1g%sll k—1}. From this, we can apply the result in
[8, Sect. 3] to the present case.

When the right members h,, and h, depend on 7, we use the following.

THEOREM 5.2. Assume that (A.5.1)-(A.5.4) are valid. Let 1. be the same
as in Theorem 5.1. Let T>0 and put J=1[0, T]. If ho(t) e X*~2°(J, Q) and
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h-(t)e XX-2V2(J,I'), then there exists a unique w(t)e X¥=%2(J, Q)
satisfying the equations:
goi[w(t)1=ho(t) inQ  and  q [wW(t)]=h (1)
on I for every te J. (5.95)

The main task in the proof of Theorem 5.2 is to show the dependence on
t of solutions w(#). Since the coefficients of ¢, and ¢, are independent of
¢ and since gg; and q, are linear operators, by using Theorem 5.1, we can
get the dependence on ¢ of solutions w(¢) easily. So, we may omit the
detailed proof of Theorem 5.2 (cf. [8, Sect. 37).

Our goal of this section is to prove

THEOREM 5.3. Assume that (A.1}-(A4) are valid. Let uy, u,, f,(2), and
fr(t) be the same as in Theorem 1.1 (1) Let (v(¢),w(t))eZ,. and let
Dais Pr-8a(t), and g, (1) be the same as in (4.3a), (4.3b), (4.4a), and (4.5a),
respectively. Then, there exists a A depending only on K and B such that there
exists a unique z(t)€ X*~>2([0, T], Q) satisfying the equations:

Po:[2(1)]=8o(1) inQ  and ~ prlz(t)]=gr(1)
on I for every te [0, T'] (5.6)

and the properties: (0¥ 2)(0) =0 for 0< M < K— 2. Furthermore, there exist
T, A, and &g depending only on K, B, and A such that

1Zlk—220071S 4 and |2k 33 7071S R (5.7)
(2) Let (v(t),w(t))eZ. Then, there exists a T depending only on
K, B, Ay, and A such that for the present A, the inequality
(4%(1, -, U(1)) 0,2, 0,2) + { B~ (1, -, U(1)) 0,2, 2
+Alzlg+ (BFH (e -, Uln)) 2, 2) + (A" (1, -, U(1))
+Bo(t,, U(1))) 0,2+ By (4, -, U(1)) 2,2) 2 (8,/2) lzll, (58)

is valid for te [0, T) and ze H*(Q), where U(t) = (v(t), D! (u°(¢) + w(1))).
To prove Theorem 5.3, we begin with
LEMMA 54. Assume that (A.1}-(A.5) are valid. Let u, and u, be the

same as in Theorem 1.1. Put U°=(u,,Dluy) and for k=1,.,n+1,
i=1,..,n V=Q, and I, set
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95, =4%0,-0);  g%=(4),(0,-, U°;
9 =A""10,,0);  gs=(4"""),(0,, U°);
9w =B3(0,-,0);  gle=(B})(0, -, U°); (59)
=95, +49%  ¢=q,+4%;
4y =4y + s

Then, the present ¢, q', and q% (k=1,..,n+1) satisfy (A.5.1}-(A.5.4).
Furthermore,

Z gl cox— 1+ 1950 k1)
=1

+ 2 (g5 ookt + g5k -1)

=1
n+1

+ Z (”qléoo look—2+ 1955l x—2

k=1
+ "qlzc"m o1t ||4’}s||K71)<C3(K, B). (5.10)
Proof. Noting (1.5), we see easily that (A.5./) follows from (A.l) for

[=2,3, and 4. Noting (1.5), (1.6), and (2.1), by Theorem Ap.3 we
have (A.5.1) and (5.10), which completes the proof.

Now, we shall estimate the right-hand side of (5.6).

LEMMA 5.5. Assume that (A.1) is valid. Let wy, u,, f5(t), and £(t) be
the same as in Theorem 1.1. Let (v(t), w(t))e Z.. Let g, (t) and g () be the
same as in (4.4a) and (4.5a), respectively. Then, the following two assertions
are valid.

(1) (8¥ga)0)=00n Q and (6Mg, )0)=0o0n I for OSM<K—2.
(2) ga(t)eX*~2%[0,T1, Q), g (t)e X*~2Y%([0,T], I'), and

182l k—2,0,00.71F 8rDx—21/20,7]
SCKB AL+ Co (KB, Ay) TAg+ C(K, B, Ay, A)ee.  (5.11)
Proof. First, we proof (1). Since (6*u®)(0)=u,, for 0S M<K and
(0¥v)(0)=u,,,, for OSM<K—1 as follows from (4.2) and (4.6b),
by (3.1) and (3.3) we have
07" {fa (1) — 0,¥(1) + 8,(P'(1, U(1))) = Qqo (1, U(1))}],_0 =0
onQfor0SKM<K-2,
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where U(t)=(v(t), D!u’(z)). We have also that aY{[f(v(s)—
0,u(s))ds}|,_o=0 on Q for 0S M <K—2. In the same way, it follows
from (3.1), (3.4), (4.2), and (4.6b) that 0¥ G (2, ¥(¢))|,_o=0 on I for
OSM<K-2 (cf (4.5b)). Since (0Mw)(0)=0 for OSM<K-2
(cf. (4.6b)), we see easily that 0¥ G, (s, v(2), w(?))|,_o=0 on £ for
O0SM<K~-2 if we just look at (44c) and (4.5c). Applying Taylor
expansion to (4.4d) and (4.5d), we can write

Gan 300, W) =2, [ (@ UONDm(1), Diw(0)
[ (@Qa)e, UO)DIw(, Diwir)) b (5122)
Gt ¥ w0 =v,{ [ (@0, UONDLw (), D)) |

+Jl (@*Qr)(t, UO)(D (1), D, w(1)) b, (5.12b)

where U(8) = (v(1), D1 (u°(z) + 8w(z))). Thus, by the fact that (0¥ w)(0)=0
on Q for 0< M < K—2, we see easily that 7 G 5 (1, v(t), w(1))],_o=0 on
Q2 for 0K M < K—2. Thus, we have (1).

Now, we prove (2). Applying Theorem Ap4(l), we see that
VP +Qrok-212.071SCIVP' +Qrlk_ 21107 Hence, by Theorem
Ap.3, (1.5), (1.6), (4.2), and (4.7) we see easily that |Gg, (-, V)ix_200,77F
CGri(5 V) k21101 SCK B, 4y). Applying (Ap.2) with u(t)=
(v(2), DLu°(z)) and v(¢)=2,w(¢) and so on and using (4.2) and (4.7), we
have that |G, (- ¥, W)l k_2.0,00.77+ |G ra(s % Wk _21 07 SCK, B, 44)
{TAg+¢g}. Applying (Ap.4) with u(t)= U(0) and v(t)=D'w(r) to (5.12)
and using (4.2) and (4.7), we have that |G (., v, W)lx_ 20077+
IGrs(s V. W)l k211071 SC(K, B, Ay, Ag)eg. Noting Theorem Ap.4(1)
and combining these estimations, we have (5.11), which completes the
proof.

Now, we prove Theorem 5.3. First, we choose 1> 0 so that (2} is valid.
Put U(t) = (v(z), DL (u°(t) + w(2))) for (v(z), w(z)) € Z. By (Ap.9), (4.2), and
(4.7), we see that

n+1

Z ”Am+l(t; ) U(t))||oo,0+ Z ”B’;)(t’ ‘s U(t))“oo0+ ||B7"+1(t5 B U(t))” 0,0
=1

k=1
SC {14+1Ulg 510} SC {1+ T(Co(K, B)+ A, + Ag)} (5.13)
for te [0, T]. Choose T>0 so that

(Asd) T{C,(K.B)+A,+A.}<1.
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If we put ¢'=A"*'(¢,, U(t)) and g = B% (¢, , U(1)) (k=1, ..,n+ 1), then
in the present case (5.2a) is valid for te [0, T] with y, =2C, (cf. (5.13)
and (As.4)). Hence, we can choose the constant u, appearing in (5.3) so
that y, is independent of K, B, A, A, g, and T. If A< py+ d,, then by
(5.3) we have (5.8).

Below, p, will always refer to the constant determined just now. Now,
we shall prove (1). Let ¢, ¢, and g% (k=1,..,n+1) be the same as
in (5.9). By (5.10), we put y,= C;(K, B) in the present case (cf. (5.2b)).
In view of Lemma 54, we can apply Theorems 5.1 and 5.2 with
yx=C3(K, B). Then, by (2) of Lemma 5.5 and Theorems 5.1 and 5.2, we
can choose a 4>y, + d, depending only on K and B such that there exists
a unique z(t)e X*~2%[0, T], 2) satisfying (5.6) for every te[0, T].
Furthermore, by (1) of Lemma 5.5, we see that p,; [872(0)]=0 in Q and
pr[6M2(0)]1=0 on I for 0K M < K—2. Hence, by (5.3), we have that
0Mz2(0)=0for OSM<K-2.

Finally, we prove (5.7). Differentiating (5.6) M-times in ¢ and applying
(5.4) with L=K— M, we have

10V 2(t) k- < Co(K, BY{ (10 8o ()l x—2-m+ <<5f”gr(t)>>xf(3/2)41w}
(5.14)
for te[0, 7] and 0< M < K—2, where we have used the facts that the
present y, and 1 depend on K and B only. Combining (5.14) and (5.11),
we have that |z|x_,, 071 S Co(K, B)Y{C (K, B, 4,)+ C,(K, B, 4,) T4,
+C (K, B, Ay, Ag) eg}. If we choose A, &g, and T so that

(As.5) Ap=Cy K B)}{C (K B, A,)+ Co(K, B, 4)+1};
(As6) C (K, B, Ay, Ag)eg<1;
(As7) TAp<ep<l,

then we have |z|x_ ;077 < Ag. Since 8Mz(t) = [§ 0¥ *'a(s)ds for
0<SM<K-3, we have 07 2(t) x| <[5 0¥ * 2(s)| x_y _ a ds. From
this, it follows that |z|x 3, 0.7 < T2k 22071 < TAp<eg (cf. (As.7)).
Hence, we have (5.7), which completes the proof of Theorem 5.3.

6. PREPARATIONS FOR SOLVING PROBLEM (H),

First of all, we give a unique existence theorem and energy inequalities
of solutions to a mixed problem corresponding to (H),. Let us consider the
equations:

R (D[v(1)]1=2a7v(t)—8,(R(1) 8,¥(t) + R¥(1) 9,¥(1))
=hg, (1) in (0, T)x£;
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RA()[v(£)1=v,R¥(t) 3;%(t) + R'(t) 3,%(t) + R%(t) 0,v(¢) (6.1)
=h,(2) on (0, T)xIr;
v(0)=vgand (0,v)(0)=v, . inQ.

Here, R*(t)=R*(t,x) and R*(t)=R*(t,x) (k=0,1,..,n) are mxm
matrices of functions satisfying the following conditions (A.6.1)-(A.6.5):

(A.6.1) The R* and R* are decomposed as follows: R* = R* + R and
R*=R* + RX where R* and R* e #%~Y([~T,, T,]1x ) and
R% and Rke YX-2Y([-T,, T,], Q) with some T, (T, T,].

(A62) 'R®°=R®and'R*=R"on[—-T,,T,]1xQ; 'R°=R° and ‘R’ +
R'=0on [-T,, T,]xT.

(A63) (RY(t)0,w,0;w)+ (Ri(t)d,w,w) =8, |w|]—d;wl§ for we
H*(Q)and te[-T,, T,].

(A.6.4) v.(x)R'(t,x)=0for (t,x)e[—T,, T;]xT.

(A6.5) (—vi(x)R°t,x)+2R%(t,x)) - €20 for (t,x)e[-T,, T,]
x I and £ e R™.

Following [8], let us define the energy norm E(R(t))[v(¢)] by
E(R())[¥(£)1=10,%(1)lI5 + (R¥(2) 9,¥(2), 0,¥(1))
+ 81 (RA())[¥(1), (1)1 +d [v(2)|I3. (6.2)

Here, S, (R (1)) is the bilinear form on H'(2)x H'(2) defined by (2.5a)
with R= R (t)=(RY?),.., R*(t)) and d is a constant determined as
follows. Let S,(R,(¢)) be the bilinear form on H'(Q)x L*(Q) defined by
(2.5b) with R=R(t). Let M(K, T,) be a constant such that

n n
5 {Z (IR |k vrs 4 RS k21t 1)
k=0 Ui=1

+IRY o k1,1 + IR k21071, Tl]} <MK, T)). (6.3)

By (2.3) and (A.6.3), we have

E(R))v()]+ S2(R(1))[v(1), v(1)]
2110, (NG + 01 IM(OIT + (d— o) IV(D)II5- (64)

Thus, by (2.6b), Sobolev’s imbedding theorem, and (6.3), we have
E(R(0)L¥(1)1= 10, ¥(0)I13+ (8,/2) Iv(DII3, (6.5)
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if we take d=0,+ {CM(K, T,)}?*/26, with some constant C. This is the
manner of choosing the constant 4.

To state an existence theorem of solutions to (6.1), we must define the
compatibility condition for (6.1). Let v,, .=V, ,{(x) (0OS<SM<K-3) be
functions defined successively by

Va2 =01"hg(0)+ 3 (&8, {(BFR)O) Var s+ (FFRUHO) )V as i}
k=0

(6.6)

If v(z) e XX~ 1°([0, T'], 2) is a solution to (6.1), obviously ¥ v(0) =v,, for
O0SM<K—1. And also, 0¥ R ()[v(1)]l,—0=(0Mh;)(0) on I for
0 < M < K-3. Hence, we shall say that v, v, hg(¢), and h(z) satisfy the
compatibility condition of order K— 3 for (6.1) if

M
Y (VAT RYY0) 0,V a1+ (3T R)N0) 0,V
k=0
+(07R)0) Vpr 41—k} =0¢"hp(0)  onl (6.7)
for 0 < M < K- 3. The following theorem is a key of solving (H),.

THEOREM 6.1. Assume that (A.6.1}-(A.6.5) are valid and let Te (0, T)).
(1) Let vy € H< 1(Q), v, € H*"%(Q), ho(t) € XK~*%([0, T1, Q), and
h-(1)e X¥~*VX([0, T], I'"). Assume that

0F *ho(1)eLip([0, T1, L*(R)); a7 *hp(1)eLip([0, T1, H"*(I'));

(6.8)
v, V1, ho(2), and h(t) satisfy the compatibility condition
of order K—3 for (6.1). (6.9)
Then, (6.1) admits a solution v(t)e X*~“°([0, T], Q) satisfying the proper-
ties: 0Mv(0)=v,, for 2< M<K—-1.
(2) Let v(1)e X>°([0, T], @) and put hg (1) = Ro(1)[¥(r)] and h,-(1) =

R, (t)[v(t)]. Then,
ID'v(1)llg < C{H(Dlv)(O)H(z)—i-'E (Ilhge ()15
+ <<hr(s)>>f/2)ds} for te[0,T], (6.10)

Where C=C(T1, M(K, Tl)’ 50, 61, n,m, F).
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(3) In addition to (2), we assume that v(t)e X*~1°([0, T, Q) and that
h,(t) and h (1) satisfy (6.8). Then,

E(R(1)[0F (1)1 < e“{ER)LIF ()], =0
+CI'2F(t))  for te[0,T],  (6.11)

where C=C(T,, M(K, T,), 8y, 6, n, m, I") and

F(r)=(D*~'v)(0)|I3+ |hﬂ|3(—3,0,[0,l] + (hr>3<_3,1/2,[0,z]
+ess sup |05~ hq(s)]15+ ess sup LOF2h,(s)»7 .

O<s<t O0<s<t

Remark. Theorem 6.1 was proved by the first auther [8]. In the proof
of [8], essentially all the coefficients of the operators R (¢) and R {t) were
defined for all te [ - T,, T, ] containing [0, T] strictly and (A.6.1)}-(A.6.5)
were valid for all te [—T,, T}

Our goal in this section is to prove

THEOREM 6.2. Assume that (A.1)-(A.5) are valid. Let uy, u,,f,(t), and
f(t) be the same as in Theorem 1.1. Let (v(t),w(t))eZ and put
U(t) = (v(t), DL(u°(¢) + w(2))). Let us consider the linear problem:

072(1)— 0,(A4™(¢, -, U(1)) 0,2(1) + A%(1, -, U(t)) 0,2(2))

=0 1f,(t)+Fu(t, Ut)) in (0, T)x,; (6.12a)

v, A1, -, U(1)) 0,2(t) + B'r(t, -, U()) 8,2(t) + BY(¢, -, U(2)) 0,2(t)
=0,1-(t)—Fr(s, UQt)) on (0, T)xT; (6.12b)
2(0)=wu, and (2,2)(0)=u, in Q, (6.12¢c)

where we have used the notations defined in (4.1). Then, the following asser-
tions are valid. (1) There exists a T, € (0, Ty] depending only on K, B, A,
and Ay such that for any Te(0,T,), (6.12) admits a unique solution
z(t) € X5~ 1%[0, T, Q) satisfying the properties:

(0Mz)(0)=u,,,, for OSM<K—L (6.13)

(2) If z()eX>™([0,T], R2) (I=1,2) satisfy (6.12), then z,(t)=
Z,(t) for te [0, T].

(3) Let (v(t),w(t))eZ,. Then, there exist T and Ay depending only
on K and B such that the solution 2(t) to (6.12) satisfies the estimate:

1zl k — 1,0,r0,71 < A p- (6.14)

505/80/1-12
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Now, we shall prove Theorem 6.2 by using Theorem 6.1. To do this, we
must extend the coefficients of the operators in (6.12} to functions defined
on a wider interval than [0, T]. As will be seen in Theorem Ap.6, there
exist V(1)e Y~ L%R, Q) and W(r)e YX¥ *%(R, Q) such that

v(t)=V(1) and w(t)=W(?) for te[0, T]; (6.15)

K—2
IVligk_10r < C(K) {lvll(l,o. o731+ Z ”(a,LV)(O)”lu 1 —L}
L=0

< C(K){4,+C, (K, B)}; (6.16a)

K—3
|W|K~Z,Z,R<C(K){lwu_z,z,[o_m D n(afw)(O)n“}

0

< C(K) Ay, (6.16b)

where we have used Lemma 3.1, (4.6a), and (4.7). Since we want to
substitue (V(¢), D! (u°(t)+ W(¢))) into nonlinear functions defined on
{]U] < Uy}, let us choose T, >0 depending only on K, B, 4, and A such
that

IV (), DLO(e) + Wt o1 < U, (<Uy)  for te[ =Ty, Ty],
(6.17)

where U, is the same as in (As.2). In fact, it suffices to choose T, as follows.
In the same manner as in the arguments before (As.2), by (6.15), (6.16),
(4.2), (4.6a), and (4.12), we have [(V(?), DL(u°()+ WD < U, +
[t|® C,(K, B, Ay, Ar). Hence, if we choose T € (0, Ty] so that

(As8) U, +(T,) Co(K, B, Ay, Ag)< Uy (<Up),

we have (6.17).
From now on, we use the followidng notations in the proof of
Theorem 6.2:

U(t) = (v(t), D (u®(t) + w(2)));
U'(t)= (V(1), D, (u°(1) + W(2)));
R (t)=A™(1, -, U'(1));
R(t)=B(t,, U'(t));  R%t)=B(t,-, U'(1));
Vo=U,; V=W, h, (¢) =8,f,(t) + Fg(t, U(t));
h(1)=010-()+F (s, U(r))

(6.18)

(k=0, 1, .., n). Using these notations, we can describe (6.12) by (6.1).
Let us check the conditions (A.6.1)-(A.6.5).
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LEMMA 6.3. Assume that (A.1)}-(A.5) are valid. Let uy,u,,fo(t) and
f,-(?) be the same as in Theorem 1.1. Let (v(t), w(t))€ Z and let R*(t) and
R¥(t) (k=0, 1, ..., n) be the same as in (6.18). Then, the present R*(t) and
RX(t) satisfy (A.6.2)-(A.6.5). Furthermore, if we put

RE(6)=A%1-0);  R5(1)=(4") (1, U(1)); R, (t)=Br(, - 0);
R(1)=(Bp): (1, U'(1));  R%(1)=v,4"(t, -, 0)+ BL(1,,0);  (6.19)
R5(6)=v, (A7), (&, U'(t) + (BPL (8, U'(1))  (cf. (4.1a)),

then (A.6.1) is valid and

n n
3 {z (R% |k 1o+ 1R k2o mrm0)

k=0 V=1

+1R’;|K_1,w,n+|R§|K_2,l,[_r,,ﬂ}<c3(1<,B,AH,AE). (620)

Proof. Since (6.17) is valid, (A.6./) follows from (A.l) for /=2, 3, 4, and
5. Applying Theorem Ap.3 to (6.19), we have (6.20) and (A.6.1) easily,
which completes the proof.

Now, we shall show that the present v,, v, h,(¢), and h.(¢) satisfy all
the conditions in Theorem 6.1.

LEMMA 6.4. Assume that (A.1) is valid. Let uy, u,, f,(t), and £-(t) be the
same as in Theorem 1.1. Let (v(t), w(t))e Z and let v, v,, hg(t), and h(t)
be the same as in (6.18). Then, voe HX"1(Q),v,e H*=%(2), hy(t)e
X520, T], @), hp(1)e X*">YX([0,T], I} and (6.8) and (6.9) are
valid. Furthermore,

Vy=Uuy., for 2<M<K—1, (6.21)

where v,, are the functions successively defined by (6.6).

Proof. By (1.2) and Lemma 3.1, we know that vo=u, e H* 1(Q)
and v,=u,e H¥"2(Q). For notational simplicity, we write Y™ =
Y&M([0, T, 2). Let us prove that

Fo(t, Ut)e YX-2°  and  Fp(t, Uit))e Y521, (6.22)

If we get (6.22), by Theorem Ap.4(1) and (1.3), we see that h,(¢) and h(¢)
satisfy the desired properties except for (6.9). Recall the notations defined
in (6.18) and (4.1). Since U(t)e Y*~*!, applying (Ap.1) with N=K—2
and M =1 and Theorem Ap.3, we have that F,, (¢, U(z))e Y520 and
F (:, Ut))e YX 21 Since D'v(¢t)e YX 2% by (Ap.1) with N=K—2 and
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M =0, we have also F, (1, U(t))e Y* ~2° Combining these facts, we have
(6.22).

Now, we shall prove (6.21) and (6.9). Put R*(t)=A*(1, -, D'u’(t)),
Ri(t)=B'(t,-, D'u’(z)), and R°(t)=v,4"(t, -, D'u’(t))+ B%(t, -, D'u’(¢))
(k=0,1, .., n). By (1.1) and (4.1), we have

0,{0:(P'(t, D'u’(1))) — Qq(t, D'u’(1))}
=0,(R"°(t) 07u’(1) + R¥(1) 0,0,u’(1)) — F (1, D'u’(2)); (6.23a)
0, {v,P(t, D'u’(1)) + Qr(t, D'u’(1))}
=v,RY(t) 0,0,u’(r) + R'(t) 8,0,u’(t) + R°(t) 8?u’(t) + F ~(1, D"u’(1)).
(6.23b)
On the other hand, since 0 U'(0) =02 U(0) = (uy,, ;, Dlu,, ) for OS M <
K — 3 as follows from (6.18), (6.15), (4.2), and (4.6a), we have
(@7 R*)(0)= (3} R*)(0); (3} R*)(0)= (8! R*)(0); (624)
OV F (1, U)o =0"F (1, D'u(1))], _o '
for 0< M < K—3. Differentiating both sides of (6.23a) M times in ¢
(0< M < K-3), letting t=0, and using (6.6), (3.1), (3.3), and (6.24), we
have (6.21) easily. Furthermore, differentiating both sides of (6.23b) M
times in ¢ (0 < M < K—3), letting 1 =0, and using (6.24), (6.21), (3.1), and

(3.4), we see easily that (6.7) is valid, which implies that (6.9) is valid in the
present case. This completes the proof.

In view of Lemmas 6.3 and 6.4, we can apply Theorem 6.1(1) for any
Te(0, T,). And then, we have Theorem 6.2(1). Since Y*~%([0, Y], Q) c
X572%[0,T], 2)c X>°([0,T],2) as follows from the fact that
K—2>[n/2]14+122, Theorem 6.2(2) follows from Theorem 6.1(2)
immediately.

Now, we shall prove (6.14). To do this, we shall prove that

121 % _ 100071 S Cs(K, B)+ T°Cy(K, B, Ay, Ap)
+ T°Cs(K, B, A}y, Ag) 12| % _ 10,10, 77- (6.25)
If we get (6.25), we choose T and A4, so that
(As9) T°CuHK B, Ay, Ag)< 1, TCs(K, B, Ay, Ag) <5,
(As.10) (44)*=22{Cs(K,B)+1}.
Then, we have (6.14).
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Below, we assume that (v(¢),w(s))eZ,. Note that M(K, T,)=
C;(K, B, A4, Ag) in the present case (cf. (6.20), (6.3)) and that T, depends
only on K, B, 4,,, and A (cf. (As.8)) in the present case. Applying (6.11)
to (6.12), we have

E(R())[0*2(1)1 < (exp Con) (BRI 2]l -0
+CT(|Fg (- U x— 20,0013

HIFrG U s+ BY)}  for 1e[0, T,
(6.26)

where C, = C/(K, B, Ay, Ag) for [ = 6 and 7 and we have used
Theorem Ap.4(1). In the same way as in the proof of (6.22), by (Ap.1) and
Theorem Ap.3, we see easily that

Fo( Ulk_sorory+ Fr(s Ok 21101 <Cs(K B, Ay, Ag).  (6.27)

Here and hereafter, we use the fact that

Ul k21,007 S Co (K, B)+ A+ Ag (cf. (4.2), (4.7)). (6.28a)

Thus, subsituting (6.27) into (6.26) and using (6.2) and (6.4), we have

67~ z(n)ig+ 6, 107~ *2()I3

3
< Y L(t)+ 80 105 22(t)|1 23+ (exp Cs T) C,; T*{Cy + B}, (6.29)
k=1

where
I, (t)=d{(exp Cet) |05 2(0)I5 — 107~ *2(N)5};
L(1)=S,(Rr()0F 22(r), 05 *2()];
I;(t) = (exp C1){(RY(0) 8,05 ~2z(r), 8,05 ~*2(0))
+81(R(0))[0F~?2(0), 05~ *2(0)1};
d=38y+ {CM(K, T\)}*/25,
=Co(K, B, Ay, Ag) (cf. (6.3), (6.5), (6.20));
C=C(K,B, A,, Ag) for /=6,7,and8.

We shall estimate I, (¢) and |85~ 2z(¢)||3. First, note that

I{D*~12)(0)]|2< C4(K, B) (cf. (6.13) and Lemma 3.1). (6.28b)
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Since (exp Cqt)— 1 < Cgt(exp Cgt) and since

105~ *2()II5— 195 ~*2)(0)5 |

<|[ 105 OB < T apory  (630)

we have easily that 1, (1) S TC¢Cy(exp CsT) Cs (K, B)+ Co T |2l%_ o [0.77-
Hence, if we choose T so that

(As.11) Co(K, B, Ay, Ap) Co(K, B, Ay, Ap)T<L; Co(K, B, Ay, Ag)T
<1,

we have

11(1)<M1+M2le|3<_1,o,[0,r]~ (6.31)

Here and hereafter, for notational simplicity, we use the letter M, (resp.
M,) to denote various constants depending only on X and B (resp.
K B, A4, and Az). In a similar manner to the proof of (6.30), by (6.28b)
we see that

|z|§<«2,0,[0,T]<M1+ leli(Al,O,[O,T]' (6.28¢)

Now, we evaluate I, () (k=2, 3). Note (2.6b) and the fact that R'(t) =
B'.(1, -, U(t)) in the present case. Since | R(¢) — R'(0)|| »,, < MZ{T+ T¢} as
follows from Theorem Ap.7 and since | R'(0)| ., = | B%(0, -, uy, Diug)l|
< M,, we have that |R'(1)|l .., <M, + M,T". Here and hereafter, we use
the fact that T°> T” for any p=¢ (because 0 < T<1). Substituting this
estimate into (2.6b) and using (6.28c), we have

L(1)<(8,/2) 0¥ 22(e)7+ M, + T2£M2|z|§<_1,0,[o,rj + T%M,. (6.32)
Since RY0)= A4Y(0,-,u;, D'uy) and RY(0)=B%(0,-u,, Dluy), by (1.5),
(2.6a), Schwarz’s inequality, (As.11), and (6.28b), we have

LM, (6.33)

Since, without loss of generality, we may assume that 0<e¢<3,
combining (6.29), (As.11), (6.31), (6.28c), (6.32), and (6.33), we have

105~ '2()I5 + (61/2) 105 *2()lIF
SMy+T°My+ T°M, 212 6 0.1 (6.34)
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Now, we shall evaluate 0¥z(¢)|x_,_» for 0SM<K—-3 by using
(5.4). To do this, we rewrite (6.12) as

_ax(Au(Os Uy, D)lc“O) 6]1([)) +,Ltl(t)
=0,f0(t)— 22(t) + pz(t) + Hg(t)  in, (6.352)

V,A'/(O, 5 Uy, D}c“O) ajz(t) + B'I'(O’ 5 Uy, D)lcuO) 611(1)
=af-(t)+Hp (1) onT, (6.35b)

for every te [0, T] where p is a constant determined below;

Hg (t)=Fqo(t, U(t))+Hg, (1) + Hg, (1);
Hg ()= ai(Alo(O, s Uy, Di“o) d,2(1));
Hp, ()= 2": a3,((4™(1, -, U(2)) — A™(0, -, U(0))) 0,z(z))

k=0
(0o=10,, U(0) = (u,, D}uy));
Hr()=F (1, Ut))+Hp (1) + Hp, (2);
Hp (t)={v,4°0, -, u;, D ug) + B%(0, -, u;, DLug)} 0,2(¢);
Hp,(t)= i {v.(4*(1, -, U(t))— A™(0, -, U(0)))

k=0

+B’;‘(t’ K] U(’))“Bl;'(o’ ‘> U(O))} akz(t)'

If we define ¢ and ¢'- by the same formulas as in (5.9) and ¢5=0
(k=1,.,n+1),gi=q%+"'=0, in the present case (6.35) is also described
by (5.1). By Theorem 5.1 and Lemma 5.4, we see that there exists a p
depending only on K and B such that (5.14) is also valid in the present
case. Thus, we have

loMz( k1 <M {10Y oDk s_m+ <<aﬁu+lfr(t)>>x—(5/2)—u
F10M* 22 g s_p+ 1072l k3 nr

+10MF o (t, Ut x—3— m

2
+IOYFr(t, UtWlk—2— s+ X (107 Hou ()l k—3_ae

k=1

IO H (Dl x_2_m)}s (6.36)
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where we have used Theorem Ap.4(1). The right-hand side of (6.35) is
estimated as follows:

108 Fa(t, Ut x5 e <M1+ TM;

10} F (6, UtWlix—2- py S M+ TM,; (6.37a)
10 Ho (Dl k-5 <M 107 2 k2 me5
10F Hry (Dl k2 g <M 107 2()l k2 ur5 (6.37b)
N0 Hoy (Nik_s_ pySM+TM, 1zl k— 1,010, 715
10 H () k-2 S M+ TM, |zl k— 1,0,10, 77 (6.37¢)

In fact, note that

Haﬁan(t)”K~3—M< ”(aﬁwFQ)(O)”K—3—M+J.O ||ay+ng(S)”KA3~M ds.

By (Ap.1) we see easily that (07 Fo)(0)llx—3- =10 Fo () x—3_ali=o
< M,. Thus, by (6.27) we have the first part of (6.37a). In the same way,
we have the second part of (6.37a). Let F=(4"), or (BY),. Applying
Theorem Ap.l with k=2, S=K—2,L=K—-2—M,r,=0, and r,=M,
and using Theorem Ap.3, we have

IF(0, - wy, Diug) 87 ' 2(t) k-2 pr
SC(K [y [l x—2, Dol x—2) 10V * '2(E) k= 2 ar-
From this, (6.37b) follows immediately. Note (6.28c) and the fact that
1(DX=2U)0)|o < M,. Applying (Ap.3) with u=U and v=0,z and

using (6.28a) we have (6.37c).
Substituting (6.37) into (6.36) and using (6.28¢c), we have

0¥ 2 k-1 e <M+ M {1072 k3 s+ 187 2Dl 5 ae }
+TM2+TM2 |Z‘K—l,0,[0,T] fOI‘ OSMSK_3.

Repeated use of (6.38) implies that

k-1
> o 10M 2o e S M+ M {1107 2(0) 15+ 105 *2(0)l1 3}

M=0

+T°M,+T°M, |Z|12(-1,0,[0,T]' (6.39)

Substituting (6.34) into (6.39), we have

K—-1
z |a:”z|(2),l(—1—M,[o,T]<M1 +T°M,+T°M, |Z|i~l,0,[0,T]' (6.40)

M=0
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Since ze XX~ ([0, T], ), we have

K-1

2 _ M2 2
|Z|K¢1,0,[0,T]_ Z |0} Z‘O,K-I—M,[O,T]+‘z|K—2,0,[0,T]‘
M=0

Hence, recalling that M,=C(K,B) and M,=CK B, Ay, A;) and
combining (6.40) and (6.28¢c), we have (6.25), which completes the proof of
Theorem 6.2.

7. A PRroOOF OF THEOREM 1.1

First of all, we review the way of determining A, Ag, &g, T,, and T.
First, we choose A, >0 so that (As.3) and (As.10) are valid. Hence, 44
depends only on K and B. Second, A4, is chosen so that (As.5) is valid.
Hence, A, also depends on K and B only. Third, T, is chosen so that
(As.8) is valid. Obviously, T, depends on K and B only. Because, A4 and
A g have been chosen so that they depend on X and B only. Finally, ¢, and
T are chosen so that 0 < T< T, and (As.1), (As.2), (As.4), (As.6), (As.7),
(As.9), and (As.11) are valid. Obviously, ¢z and T depend only on K
and B.

Now, we shall prove (4.10) and (4.11). Noting the discussions in the final
part of Section 4 (cf. (As.2)) and using Theorems 5.3 and 6.2, we have that
there exists a pair (v°(¢), w’(¢))e Z, satisfying (H), and (E),, which
shows (4.10).

Now, we shall prove that there exist T and ¢, depending only on K and
B such that (4.11) is valid. Below, A will always refer to the number deter-
mined in Theorem 5.3 and for notational simplicity, we use the same letter
M to denote various constants depending on K, B, 4, and 4, except for
determining T and &.. Since we already know that A, and A4 depend on
K and B only, note that M also depends on K and B only. In the course
of the proof of (4.11), we use the following notations:

UP ()= (v7(1), D5 (w(1) + w?(2)));

27" Y(t)=z"(t)—2""(t) for z=vandw.
First, by using (6.10) we shall prove that

V22" 0.0y SMT{Y 2P 72 g 1o+ WP M2 2 00 oy} (1)

By (H), and (H),_,, we have
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o2vrrI(1) - <Z U”“l(t))ékv”*”“(t))

=h%(1) in (0, T)x £ (7.2a)
v, AY(t, -, UP N (2) 0v7 P~ (1) + Bir(t, -, UP~ (1)) 8,v7 7 (1)

+ BY%(t, -, UP (1)) ,v" 7~ 1) =h{(1) on (0, T)xI; (7.2b)
v Y 0)=20,v/7~1(0)=0 in Q, (7.2¢)

where

h2 (1) =Fo(t, UP~ (1)) = Fo(t, UP~2(1))

+ i (4™, UP~ (1) = A™(t, -, UP72(1)) 8v” (DT

k=0

h2()=F (1, UP~ (1)) = F (1, UP~%(1))

+ Y DA%, U7 (1) — A%(1, - UP2(1))

k=0

+ (Bt - UP~N1))— B(1, -, UP3(0))] 0,v2 (1),

Extending the coefficients of the operators in (7.2a) and (7.2b) to the func-
tions defined on [~T7,,7,] in the same way as in the proof of
Theorem 6.2 (cf. (6.15), (6.16), (6.17), (6.18)) and applying (6.10) of
Theorem 6.1(2), we have

|vo P~ lll,O,[O,T] SMT{|hg o0, c0.m1+ lh’Ho,l,[o,T]}’ (7.3)

where we have used the fact that <hf >, (0,r3<CIh%lo1, 0,77 (cf
Theorem Ap.4(1)). On the other hand, applying (Ap.5) and (Ap.6) with
u,=U?~(t) and v,=v”~/(t) and so on to the first terms of h{(z),
and (Ap.6) with N=1,u,=U?"'(t) (I=1,2), and v, =v,=03,v"" 1(t) to
the second terms of h{(¢), we have easily that

[h%10.0.c0, 77 + W% 10,1, g0, 77
SM{v" 2?72 oo+ WP~ 1”’—2|0,2,[0,T]}- (74)

Combining (7.3) and (7.4) implies (7.1).
Now, we shall prove that

p—1 - —ip—
WP 2 ot ry SM{V?P 7Y o ro.r1 +H (THe) WP~ P72 5 10.m}. (7.5)
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Considering the equations which w”?~!(z) satisfies and applying (5.4) with
L =2, we see easily that

3
WP 2= )l <M Y, {Tae()+In(D)}, (7.7)

k=1

where
I ()= Gy, (¢, v2()) — G, (1 vp_l(t))”J(V);
Ly (D) =Gy, (2, v2(1), w2~ (1))
— Gy (t, vV ), W2 ()i sy for [=2and3.

Here, we have put J(V)=0 for V=0 and =1 for V=TI, and we have used
Theorem Ap.4(1). We shall prove that for all 1€ [0, T']

I () <SMWV2P Yot 10173 (7.7a)
I,(1)< M{T|wp”’p72|0,2,[o,r] +ég |Vp’p‘1|o,1,[o,rj}; (7.7b)
T ()< Meg (W "2 205 o+ V22 oo} (7.7¢)

If we get (7.7), substituting (7.7) into (7.6), we have (7.5). Since
Pi(t, x,0)=Q, (¢, x,0)=0, applying (Ap.5) and recalling that 1 depends
on K and B only, we have (7.7a). Since ID;w”“zlo,K_uo,T] <
jw? =2 k-32071Seg as follows from (4.7), by (Ap.7) we have easily
(7.7b). Applying (Ap.8) with u,=(v?*'~!(¢), D! (u°(¢)+ Ow”~(¢))) and
v,;=D'w?~ (1) (I=1,2) and 4 =¢, to (5.12), we have (7.7c).

Combining (7.1) and (7.5), we have

p—1 P —
|v/? |1,0,[0,T]+|wpp l|o,2,[o,T]

< {C10T|Vp_1’p_2|1,0,[o,rj| + Ci(T+eg) |Wp'l’p~2|0,2,[0,r]}5

where C,=C/(K, B, Ay, Ag) for /=10 and 11. If we choose T and ¢ so
that

(As.12) Cio(K, B, Ay, Ag) T<5, C (K, B, Ay, AT +eg)< 3,

then we have (4.11).

Now, using (4.10) and (4.11), we shall prove the existence of a pair
(v(2), w(t))e Z satisfying (H) and (E). By (4.11), we see easily that
the sequences {v”} and {w”} are Cauchy in X“°([0,7],Q) and
X%4[0, T], R2), respectively. We can prove that these sequences are
Cauchy in X*-2°[0,T], Q) and X*-3>%([0, T], Q), respectively, by
(4.10) and the following lemma.
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Lemma 7.1 (cf. [6, Lemma 22.7]). If ue XV°([0, T], 2) (N being an
integer =1), then

|DMu|0,0, 7S C(N, T) |“](1),6,([A({/ITV]) |u|$VA:’(§,AE()),T]

for any integer Me [0, N].

In fact, by Lemma 7.1 and (4.7), we have

N .
|DMDX(W’J —w7)o0, [0, 73

<SCID2 (WP —w?)| L ME=D(A ) ME=D  for OSKM<K-3.

Since {w”} is Cauchy in X%*([0,7],Q), {w?} is also Cauchy in
XX=3%([0, T], Q). In the same manner, we see that {v”}is Cauchy in
XX-29([0, T], 2). As a result, there exist v(t)e X¥~2°([0, T], Q) and
w(t)e XX *2([0, T], Q) such that

lim va_v|K72.0,[0,T]= lim lwp—w|1<—3,2,[0,r]=0- (7.8)
p—=© p— @

Our next task is to prove that the present pair (v(¢), w(¢)) belongs to Z.
To see this, we need

LEMMA 7.2. Let J be a compact interval of R. Let L and M be integers
such that L>1 and M >0. Let the sequence {v*} be bounded in Y“M(J, Q)
and Cauchy in X“~“M(J, Q). Let A and v be a number and an element in
XL-LM(] Q) such that

lim |0 —v|p_ a0, =0 and 0P| L g <A forallp. (79)

p—

Then, ve Y=M(J, Q) and |v| p ;< A

Proof. In the same manner as in [4, p. 40] or [8, the proof of
Lemma 547, we see that (7.9) implies that 8%v”(¢t) — d%v(¢) weakly in
HY*M-%Q) as p— oo for 0<k<L-1 and teJ, and that d*v(t) is
continuous in te J in the weak topology of H-*#~¥(Q) for 0OSXk<L—1.
From these facts, it follows immediately that 0%v(t)e L=(J, H-+¥~%(Q))
N Lip(J, H-* ¥ ~*=1(Q)) for 0 <k < L — 1. Furthermore, we have

[0l L g, s <limoinf [07], 5 .
p—>

Hence, we have proved the lemma.
Since (4.7) is valid for every v”(¢) and w”(¢), by (7.8) and Lemma 7.2, we
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have that v(z)e YX~2°([0, T], 2), w(t) e Y*~>2([0, T, 2), |¥| x_1.0.r0.71
SAg, Wik_22.071S<AE, and |W| g5 5 10 71 < €g. Since (4.6a) is valid for
every v#(¢) and w”(z), by (7.8) we see that 0 w(0)=0 for OSM<K-3
and 0¥v(0)=u,, ., for 0SM<K—2. Since (4.8) follows from (4.6a),
(4.7), and (As.2), we obtain that (v(z), w(z))e Z.

Furthermore, letting p — oo in (H), and (E), and using (7.8), (Ap.5),
(Ap.6), (Ap.7), and (Ap.8), we see easily that the present v(¢) and w(z)
satisfy (H) and (E). If we put u(z)=u’¢)+w(¢), from the manner of
deriving (E)' from (E) we see that v(z) and u(z) satisfy (H) and (E).

Now, we shall prove that d,u(t)=v(¢) for all re[0, T]. Since (v(z),
Dlu(t))e YX~2X[0, T], 2), by Theorem Ap.3, we sec that P(z, U(1)),
QQ(ta U(t))e YK_2,0([0’ T]’ Q)CXK73’0([O’ T]’ Q) and Qf(t’ U(t))e
YX-24[0, T], Q)< XX~ >Y[0, T], Q) where U(t)=(v(z), D.iu(t)). Since
K—3>[n/2]=1, differentiating (E) once in f, combining the resulting
equations and (H), and putting z(¢) = d,u(t) — v(¢), we have

—0,(A4%(t, -, U(1)) ajz(t)+A""“(t, -, U(8) z(1))

+ BL(t, -, U(t)) 0,2(t) + Byt (1, -, U(1)) 2(t) + Az(t) =0 inQ; (7.10a)
v (A47(1, -, U(1)) ajz(t)+A'"+1(t, -, U(t)) z(¢))

+ Br(t, -, U(1)) 0,z(t) + B (¢, -, U(r)) 2(r) =0 onl, (7.10b)

for every te [0, T]. Since z(t)e H*(R) for all 1 € [0, T], multiplying (7.10)
by z(¢) and integrating the resulting equations over £ and I, by integration
by parts, we have that the left-hand side of (5.8) in Theorem 5.3 equals
zero. Hence, we have that ||z(¢)]|3=0 for re [0, T], which implies that
d,u(t)=v(z) for te [0, T]. In particular, substituting d,u(s) = v(¢) into (E),
we see that u(z) satisfies the original problem (N).

Finally, we shall prove that u(t)e X*°([0, T], Q). Since v(¢) can be
regarded as a solution in X>°([0, T], Q) to linear equations (6.12) and
since (v(¢),w(?))eZ, by Theorem 6.2(1) and (2) we see that v(¢)e
XX-1910, T], Q) (the uniqueness of solutions in X>°([0, T'], Q) follows
from (2)). Since &,u(t) =v(t), to get that u(¢t)e X*°([0, T], £2), it suffices
to prove that u(t)e C°([0, T, H¥(R)). Let ¢ and s be any points in [0, T']
such that ¢ #s. Putting U(¢) = (v(¢), D1u(z)) and V(8)=0U(1)+(1—0) U(s)
and applying Taylor expansion to (N) we can write

—0,(¢"0,(u(t) —u(s))) + p(u(r) —u(s))=h,  in&;  (7.11a)
v,q"8,(u(t) ~u(s)) +¢7-0:(u(t) —u(s))=hr onl, (7.11b)

where u is a constant determined below, ¢”=¢% + 4%, ¢ =g +q'rss
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g% =4%(s5,,0), G, =Br(5,,0)  q5=[o(4")i(s V() db, qprs=
[6 (B1)i(s, - V(0)) db, and

h, =15 () — 15 (s) = (0,v(1) = 0,¥(s)) + plu(r) —u(s) + [, + L + I,
1, =0,(P'(t, -, U(t)) = P'(s, -, U(1))) + Qals, - U(1)) = Qa1 -, U(2)),

=, ([ 4%, VO ~v(s) )
0
+ A4  V@)a) — ) d0),

L= —[ (@dQa)s, » VONU(®) - U(s)

hp=f(t)—{ (s)+ 1, + L5,
I4= vl(Pl(S’ ) U(t))'—P‘(ta R U(t))) +Ql"(sa E) U(t))—QF(t’ " U(t))s

I= [v, jl A (s, . V(6)) df + jl B+ (s, -, V(6)) do] (u(s) — u(?))

[ fA’°(s,,V(0))do+f Br(s,,V(B))d()] (v(s) — ¥(1)).

If we put ¢'=¢q5=¢3"'=0 (k=1,..,n+1), (7.11) is described by (5.1).
By Theorem Ap.3, (4 2), and (4.7) we have

Z g%l x— 1+ g% k- 1)

ihy=1
n

+ Z (1950 oo,k -1+ 1grs k1) SC (K, B, Ay, Af)

for all ¢+ and se[0,7T]. Hence, in the present case, y,=0 and
Yx=Cp(K, B, Ay, Ag) for all ¢,se [0, T] (cf (5.2a) and (5.2b). Thus,
there exists a u depending only on X, B, A,,, and A, and independent of
t and Se [0, T] such that we can apply (5.4) with L=K to (7.11). And
then, we have

lu(e) —u(s) x < M{lhollx 2+ Khr D32}
forany tand se [0, T]. (7.12)
Let us estimate the right-hand side of (7.12). Since (v(¢), w(¢))e Z, we

have that |[V(0)||x_ 1, U xk—1 <M for all 1,se[0,T] and 0<O<1.
Noting (A.1)(*), by the mean value theorem we have that |1, x_,,
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k- SM|t—s|. By (Ap.1) with N=0 and M =K—1, we have that
Il k=2 sl k-t S M{NV(E) = V(s)l k-1 + [lu(t) —u(s)l x—,}. And also,
by (Ap.l) with N=0 and M=K-2, we have that |I;|x_,<
M{|Iv(2)—v(s)| x_, + [u() —u(s)l x_,}.- Noting Theorem Ap.4(1) and
substituting these estimations into (7.12), we have

lu(t) —u(s)| x < M{Ilfo (1) —fo () x 2
+ LI () —fr(5) Dk a3y + 11—
+ 10,¥(¢) — 3, v(s)ll k-2
+ Iv(2) = ¥($) | ko + llu(t) —u(s)l k1 }
for all 1 se [0, T]. Since v(r) e XX '%[0, T],R2) and wu(t) e

Y5=22([0, T], 2)= C%[0, T], HX}(R)), by (1.2) and (7.13) we see that
u(t)e C°([0, T], H*(2)), which completes the proof of Theorem 1.1.

8. APPLICATIONS OF THEOREM 1.1

8.1. An Application to Nonlinear Wave Equations. Let us consider the
following scalar equations:

0lu(t)—0,(a'(t, D'u(1))) + bo(t, D'u(t)) =fo(1)  in (0, T)xQ; (8.1a)
v, a'(t, D'u()) + b (1, 0,u(t), u(t))=fr(t) on (0,T)xTI; (8.1b)
w0)=u,, 0,u(0)=u, inQ. (8.1c)

Let all the functions considered in this paragraph be scalar valued. Let
wo, w,, and w,,, be independent variables corresponding to functions
O,u, 0;u, and u, respectively. Put W= (wy, w, w,, ), W' =(wg, Wpi1)s
D(Uy)={WeR"*?| |W|<U,}, and D'(Uy)={W'eR? |W'|<U,}. We
make the following assumptions:

(A.8.1) The nonlinear functions a’'=a'(ts, x, W) and b, =b,(t, x, W)
are in B°([—T,, Tyl x2xD(Uy)) and bq=b,(t,x, W’) is
in B°([—To, Tyl x @ x D'(Uy)). Furthermore, a'(t, x,0) =
b,(t,x,0)=0for (t, x)e[—T,, Tyl x Q2.

(A.8.2) (0d'/ow )(t, x, W)= (da’/ow)(t, x, W) for (t, x, W)e [~ T,, T,]
x 2 x D(U,).

(A.8.3) There exists a constant 6>0 such that X0, -1 (0d'/ow))
(t,x, W) &:£,201¢1> for (1, x, W)e [~ T,, To]l x 2 x D(U,)
and é= (Cl’ eeey én) € Rn'
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(A84) —v,(x)(0a'/dwy)(t, x, W)+ 2(0b/Owo)(t, x, W') 20 for (1, x)e
[=T,, Tolx I, |W| < U,, and |W'| < U,.

Remark. (1) Assumption (A.8.2) can be replaced by the condition
that there exists a function p(t, x, W)e B=°([ — T, To] x 2 x D(U,)) such
that a' = dp/ow,.

(2) In the scalar operators case, (A.4) implies that Q, does not
contain the derivatives 0,u, ..., d,u of u. Thus, in the present case, it is
assumed that b, depends only on ¢, x, u, and J,u.

Since we can easily check that the original assumptions (A.1)}-(A.5) are
valid under (A.8.1)-(A.8.4), applying Theorem 1.1 implies

THEOREM 8.1. Assume that (A.8.1)~(A.8.4) are valid. Let K be an integer
2[n/2]1+3. If uy, uy, fo(t), and f(2) satisfy (1.2)—(1.6), then there exist T
and A>0 depending on K and B only such that (8.1) admits a unique
solution u(t) e X*°([0, T1, Q) satisfying the conditions: |u| o o.77< A and
| D'u(t)) ., < Ug for te [0, T].

If we put a'=08,u/\/1+|V, u|% by=0, and b,.=a(u), (N.W) can be
described by (8.1). We can easily check that the present a’, by, and b,
satisfy (A.8.1)-(A.8.4). Thus, (N.W) admits a local solution. As another
mmportant boundary condition in (N.W), we can consider the case
br=a(u)+ c(0,u), where ¢(0) =0 and ¢ is a nondecreasing function in J,u.
This boundary condition describes the effect of the dissipation on the
boundary.

8.2. An Application to Three-Dimensional Elastodynamics. 1If the
undeformed state Q of a three-dimensional, homogeneous, isotropic, hyper-
elastic material has not any stress in it, the equation of motion describing
its small displacement u(z, x) = "(u, (¢, x), u,(2, x), u5(¢, x)) under the action
of the body force b="(b, (¢, x, u), b, (¢, x, u), b5(z, x, u)) and the pressure is
described by (N) with n=m=3. And then, P', Q,, f, (), and f(¢) are
defined as follows (cf. [1, Chap. 1]):

(PLPLPY)=p V.6 -Z(E);  Qo=b(s, x,u)—b(z, x,0);

Q= —pl(det V. )(V.d)* v(x) — (det V, x)(V,x)* v(x)] + D(¢, x, 0,u);
(8.2)

fo(0)=b(s, x,0);  fr()=p(det V. x}(V.x)* v(x).

Here, x="(x, x5, X3) = x5 v(x)="(v;(x), v2(x), v3(x)) = V(x); b=x+u;
p is a constant describing the pressure density of I'; p is a positive constant
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describing the mass density of Q2; M*='(M '); D(t,x,0,u)="(D,(1,x, 0,u),
D,(t, x, d,u), D4(t, x, 0,u)) is a 3-vector of functions in B*([ — Ty, To] x
Q x {U" = (ugy, gy, tp3) ER?| |U'| < U, }) such that (0D,/0uy,) is a 3x3
nonnegative definite matrix and D(¢, x, 0) =0, which describes the effect of
the dissipation on [

al¢ls 62¢1, a3¢1
V.b=|0,9,,0,0,,0:9, for &="(¢,, 42, ¢3);
al¢3’ 02¢3’ a3¢3

E=(E;)=3('(V,9)-(V.0)—1I;) (I, being the 3x3 identity matrix);
Z(E)=(ZYE)) is a 3x3 symmetric matrix called the second Piola—
Kirchhoff stress tensor having the following properties:

2(E)= A(trace E) I, + 2uE + o(E) as |E| -0 (8.3a)

A and pu are Lamé constants satisfying the conditions:
u>0and 1+ pu>0; (8.3b)

there exists a stored energy function w(E) such that
2Y(E) = (Ow/OE ) E). (8.3c)

Note that E is a real symmetric matrix. As was seen in [9, Sect. 3], we
have easily from (8.3¢c)

3
Al = 0P, [0up =0, (0W/OE,)E)+ 3, (9*W/OE4OE;)(E) $rabrs,  (84)

kh=1

where P'="'(P}, P}, P}), ¢y,= 0., and S, are Kronecker’s delta sym-
bols, ie., d,,=1 and d,,=0 for a#b. Since E,=E,, if we put A7 =(4Y,),
we see by (8.4) that 'AY= A4 Substituting (8.3a) into (8.4) and using
(8.3¢c), we have

3 3 2 3
Y, A%(0) 6jvb6,-va=’1<z 53) +2u Y (&) (83)

irab=1 Lj=1

where &;=73(0,v,+0,v,). According to the result due to Simpson and
Spector [10, Corollary of Theorem 6], it follows from (8.3b) and (8.5) that
there exist positive constants ¢, and ¢, such that

3
Y[ A%0)30,(0) 0, (x) dx
,ab=1

e vit—colvlly  for ve H'(Q).

505/80/1-13
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Thus, by the mean value theorem we see that there exist positive numbers
04, 09, and U, such that

) fAZb(U(X))5,vb(X)5,va(X)dx?51IIVIIf—5oIIVII§ (8.6)

1°Q

for ve H'(R2) and Ue H*™'(2, D(U,)).
If we put (det V. ¢)(V.0)* v(x)="(R,, R,, R;), we see easily that

Ri=v($2033—$32023) + V2 (P32013 — 612033) + V3($12023 — $22013),
Ry=v($23031 — $33021) +V2(S330 11 — 613831) + V3(1362, — $23611),
Ry=v($2103— 03102) +v2(d31612— 61:1832) + V3 (#1162 — $2:612),

where ¢,=0,+u,. If we put B}, =0Q,/0uy, then By, = —piR,/0¢,.
From this we can easily check that B, + B',,=0 and v, By, =0 for
a,b=1,2,3. Since (0D,/0uy;) is nonnegative definite, the rest of the condi-
tions of (A.2) and (A.5) are valid. If | p| is very small, then from (8.6) and
similar arguments from the last part of Section 2, it follows with positive
constants &, and 9} that

3 3
Y (A%(U(-)) 0,05, 000+ Y <Bira(s U(-)) 8,05, v

4, J,a,b=1 nLa,b=1

=68, [vIIZ =66 VG for ve H*(R)and U(x)e H®'(Q, D(U,)).

These facts imply that (A.1)-(A.5) are valid if |p| and U, are small.
According to Theorem 1.1, we can conclude that, if the pressure and the
displacement are very small in the initial state, we get a local existence
theorem of solutions to the three-dimensional elastodynamics when the
applied surface force is the pressure. Unfortunately, for another important
traction boundary condition which is not dead load, ie, Q=
(det V. ¢) [(V.0)* vIb(d) (cf. [1, p. 21]), it seems that our theorem
cannot be applied, because the condition 'B'.+ Bi-=0 is not satisfied in
this case.

APPENDIX 1: SOME ESTIMATES OF NONLINEAR TERMS

In this appendix, we summarize the estimations of a product of functions
and composed functions by Sobolev norms. In the same way as in the
proof of Theorem 7.1 of Mizohata [5], by using Sobolev’s imbedding
theorem we have
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THEOREM Ap.l. Let ry,.., r, (k=2) and S be nonnegative real numbers
and L a nonnegative integer such that S>n/2 and Szr,+ --- +r,+ L. If
u,€ HS="(8), then the product [1u;, of u,, .., u, belongs to HY(Q) and
ITTu Nl < Cle, LY Tty Ml s — -

Applying Theorem Ap.1, we easily have the following two theorems.

THEOREM Ap.2. Let J be an interval of R. Let L and M be integers such
that L M>20 and L+ M>n/2. If u/(t)e Z“M(J, Q) (I=1,.,.kand Z=X
or Y), then their product [u,e Z“"(J, Q). Furthermore, when Z=1X,
DX TT uy(2)ll 4 < Clk, L, M) TT | D uy(2)1] o1 for teJ.

THEOREM Ap.3. Let J, L, and M be the same as in Theorem Ap.2. Let
F(t, x,u)e B(J x Q x {|u| Suy}) such that F(t,x,0)=0. Let u(t,x)e
ZEM(J, Q) (Z=X or Y) such that |u(t)l| o o<uo for all teJ. Then,
F(t, x, u(t, x)) e Z-M(J, Q). Furthermore, when Z=X, | D F(t, x, u(t))|l »
SC(L, M, F){1 + | D u(t)]l p } = * M~ 1 1D ()] 4s-

Remark. When u,, u, and F do not depend on ¢ in Theorems Ap.2 and

Ap.3, all the assertions are valid if we put L =0 and Z*~*(J, Q) is replaced
by H™(Q). ‘

Now, we give several estimations of nonlinear functions used in the
text. Below, J=1[0, T], G(¢, x, u) e BX(J x 2 x {|u| Suy}), and H(x,u)e
B=(Qx {|ul Suo}).

(Ap.1) Let M and N be integers >0 such that K-2<
N+M<K—-1 If u(t)eZ¥M(J, Q) v(t)e ZVM(J,Q) (Z=X or Y), and
lu(O)l 0,0 Suo for ted, then G(t, -, u(t)) v(t)e ZVM(J, Q). Furthermore,
when Z =X,

IDMG(t, -, u(t)) o() e <
C(M, N){1+ 1D u(t) } VM= 1 DYu(t) g 1D 0(2)] pe

for teJ.

(Ap.2) Let u(t)eX*~*Y(J,Q) such that [u(t)]0<u, for all
teJ and v(t)e XX-21(J, Q). Put I(t)={G(t, -, u(t))— G(O, -, u(0))} v(t).
Then, I(t)e X*~>'(J,Q) and |I|K—2,1,J<C(K’|uIK—2,1,J){T|U|K—2,1,J+
|U|x—3.1.1}-

(Ap.3) Let v(t)e X¥~2%J, 2) and let u(r) and I(z) be the same as in
(Ap.2). Then, I(t)e X¥=2°%J, Q) and

g3, C(K, |u|K—2,l,J) Tv|g_2,0,s

+ C(K, 1(D*~*u)(0)ll,) 1] x —3,0,.-
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(Ap4) Let u(z) and v(+) be the same as in (Ap.2). Put
I(tYy=G(1, -, u(t)) v(t) v(z). Then, I(t)e XX~>'(J, Q) and g 210S
C(K, |ulK72,l,J) [Vlk 21010 k=310

(Ap.5) Let N=0 or 1. Assume that H(x,0)=0. If u,e H* () and
lullwo<uy for 1=1,2, then |H(-u)—H(, u)lly<CK fluglix 2,
ez |k~ 2) Ny —ua |l -

(Ap.6) Let N=0 or 1. If u,,v,e H* 3(Q) and |u,|,.0<u, for
I=1,2, then

IH(-, uy)vy— H(- u3) 05|y < C(K, g | g 25 luallx—2)

x oy =valiw+ 02l x—2 g — w2l v}

(Ap.7) Let u,(t) and v,(t)e X*~2'(J, Q) for [=1,2. Assume that
N (1) .0 Sup for teJ and I=1,2 and that u,{0)=u,(0). Put I(r)=
I (t) v, ()= I,(2) v, (1) where [,(¢)= G(t, -, u,(t)) — G(O, -, u,(0)). Then,

10,105 CK, |uy| k21,05 142l k—2.1.4)

X {T|vy— 03015+ 021020 11y _uZIO,l,J}'

(Ap.8) If u;,v,€ H*"2(Q), lujll o 0<tp, and v llx_,<4<1 for
/=1, 2, then

VH(-, uy) vy 0y — H(-, uz) 030514
SCK, lluyll g2 14zl k- 2) A{”ul — ||y + v, —02“1}-
(Ap.9) Let u(z) be the same as in (Ap.2). Then, |G(t, -, u(1)) .0 <

Ci+CyTu|g_2,, for teJ, where C,=sup{|G(t, x,u)| |(t,x)eJx L,
lu| <uo} and C,=sup{]d,G(t, x, u)| + |dG(2, x, )| | (1, x) € T x Q, |u| Suo}.

All the assertions can be easily checked by using Theorems Ap.1, Ap.2,
and Ap.3. So, we may omit their proofs.

APPENDIX 2: SUPPLEMENT TO THE TEXT

Here, we summarize several facts which play important roles in the text.

THEOREM Ap.d. (1) There exists a constant C=C(I')>0 such that
Kup12<Clull, for all ue H'().
(2) For any >0, there exists a constant C(e, I') such that {uMi<
e lull} + Cle, ') |u)|§ for ue H'(Q).
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Proof. When Q = {x = (x,, .., x,) € R"| x,, >0}, we know Theorem Ap.4
very well (cf. [5, Proposition 3.6]). Hence, using the partition of unity
near I, we have Theorem Ap.4 immediately.

THEOREM Ap.5. If u,, € HX=M(Q) for 0S M<K, then there exists a
v(1)e X5UR, Q) such that (6 v)(0)=u,, in Q for OS M <K and

K
IDXo( N < C(K) Y, Nuplix—ne  Sfor teR.
M=0

Proof. Using the Fourier transform, we shall prove the theorem. Using
Lions’ well-known method of extending functions defined on € to whole
R", we know that there exist v, € HX~¥(R) such that v,,(x)=u,(x) on
Q and |[va 1k rr < Cllttas | x— o Where C is independent of u,, and v,, and
|-]|. are the norms of Sobolev spaces of order r over R". Put

K—1
B, &)=Y (exp/—1(L+1)(1+E1%)"1) arndn(E)L+ 18172,
LN=0
where #, are the Fourier transforms of v, ; the a, y are constants satisfying
the linear algebraic equations:

K—1
Z («/—1(L+1))MCILN=(§MN fOI' M,N=0, 1,...,K_1
L=1

(Opar=1and d,,,=0for M #N).

Obviously, (8¥9)(0, &) =15,,(£). Put v(f, x)=real part of the inverse
Fourier transform of #(z, &) with respect to £. By Parseval’s formula we see
easily that the v(z, x) has the desired properties,which completes the proof
of Theorem Ap.5.

THEOREM Ap.6. Let T>0 and let L and M be nonnegative integers. Let
u(t)e YEM([0, T, Q). Then, there exists a v(t)e YEM(R, Q) such that
v(t)=u(t) for te [0, T] and

L—1
10l L a. & < C(L, M){|ul 1 pr,ro, 77+ Y 1Y u(OM Ly arw )
N=0
Proof. By our definition of L®(J, X) (cf. Sect. 2), 07u(0) exist and
e HE+*M-M(Q) for 0K N< L— 1. By employing the same arguments as in
the proof of Theorem Ap.5, we can find z(r)e X“* (R, Q) such that
oV z(0)=0"u(0) for OKN<L—1 and
L—1

ID*2(Np<CL) X 107wl Lsn—n  for teR
N=0
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Put z,(t)=u(?) for 0< < T and = z(¢) for t <0. Then, we see easily that
2, (e YEM(=o0, T], 2) and

AT S RS 7 PV X & el FAV R TR S
L1

< |ul g ar.r0,17 + C(L) Z 0Y (Ol £ 4 ar - w-
N=0

Put a, =2* and choose b, so that Y52} (—a,)b,=1for I=0,1,.,L—1
If we put

v(ty=2z,(t) fort<T and

L—1
= Z kaI(T—-ak(t—T) fOrt>T,

k=0
then we see easily that v(z) has the desired properties, which completes the
proof.

THEOREM Ap.7. Let F(t,x, U)e B°([0, T]x Qx {|U| < U,}) and let
u(t)e YX~21([0, T], 2) such that ||u(?)|l o< U, for all te [0, T]. Then,

IF(t, - u(t)) — FO, -, u(0))l s S C(K, |l - 2.1. 0.7 T+ C(e)T°}

for te [0, T, where ¢ is a constant in (0, [n/2]+1—(n/2)).
Proof. Since F(t,- u(t)) — KO, -, u(0)) = F(z, -, u(t)) — F(O, -, u(¢)) +
F(0, -, u(t)) — F(O, -, u(0)), we have
IECt, - ulr)) — FO, -, u(0)] o s
S CF){t(1 + ()] o,1) + Nlu(t) — u(0)]| oo, 1 }-

Let ¢ be a number such that ¢=1+ [#/2] — (n/2) — o > 0. Since
e(1+[n2])+(1—¢e)2+[#/2])=1+(n/2)+ 0, by Sobolev’s imbedding
theorem and a classical interpolation inequality, we have
lu(r) — w(O) o,y < Cllu(#) — u(0)ll (ny2) 41 46
< Cllu(t) = u(O)|Gopay 4 1 10(2) = 40Nl £y 42
<Ct* luh:,[n/z]+1,[0,T](2'uIO.[n/2]+2,[0,T])17€
SCtlulg_ 2110775

Nu(t, M oot S Clutlo 2142, 00,71 S Cltdl k- 2.1, 00,77

Here, we have used the fact that K> [n/2]+ 3. Combining these estima-
tions, we have the theorem immediately.
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