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Abstract: For many spin-0 target nuclei neutron capture measurements yield information on level densities at the neutron 
separation energy. Also the average photon width has been determined from capture data as well as Maxwellian average
cross sections for the energy range of unresolved resonances. Thus it is challenging to use this data set for a test of 
phenomenological prescriptions for the prediction of radiative processes. An important ingredient for respective
calculations is the photon strength function for which a parameterization was proposed using a fit to giant dipole
resonance shapes on the basis of theoretically determined ground state deformations including triaxiality. Deviations from 
spherical and axial symmetry also influence level densities and it is suggested to use a combined parameterization for 
both, level density and photon strength. The formulae presented give a good description of the data for low spin capture
into 124 nuclei with 72<A<244 and only very few global parameters have to be adjusted when the predetermined 
information on ground state shapes of the nuclei involved is accounted for.
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1. Introduction

Since decades the shapes of heavy nuclei have been under intense investigation experimentally, as 
reviewed e.g. by (Raman et al., 2001) as well as in theoretical studies as presented e.g. by (Bohr and
Mottelson, 1975). A good knowledge of nuclear shapes including their dependence on energy and angular
momentum is of great importance for the understanding of nuclear fission and for respective model
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calculations. The experimental information on enhanced electric quadrupole (E2) transitions or moments 
indicates the presence of static quadrupole moments and thus the breaking of spherical symmetry in quasi all 
heavy nuclei away from magic shells. It was shown by (Ericson, 1960) that nuclear deformation influences 
nuclear level densities and a data compilation presented by (Dietrich and Berman, 1988) reveals its 
importance for the energy dependence of photon absorption in the region of the isovector giant dipole 
resonance IVGDR, which plays an important role for the extraction of electric dipole strength (E1). For low 
lying states of heavy nuclei also the breaking of axial symmetry has to be admitted, as shown by (Cline, 
1986), resulting from an analysis of heavy ion induced multiple Coulomb excitation based on rotation 
invariants as proposed by (Kumar, 1972). (Girod and Grammaticos, 1982), have pointed out the importance of 
triaxiality in calculations of fission barrier heights. 

Photonuclear reactions and other radiative processes influence schemes for the use of fission energy in 
everyday life  including the possibility to induce an accelerated decay of the waste produced in presently 
used fission reactors  and they have played a role in the cosmic element production. It thus seems justified to 
investigate the possible influence of the details of nuclear shapes including their triaxiality on the extraction of 
photon strength functions from IVGDR data as well as on nuclear level densities defining the final state phase 
space of nuclear reactions. The study presented here investigates 124 nuclides reached by neutron capture in 
spin-0 targets. It makes use of a Hartree-Fock-Bogoliubov (HFB) calculation presented by Delaroche et al., 
2010) which predicts not only E2-transition strengths to the first 2+-states and hereby quadrupole deformation 
reasonably well, but also the breaking of axial symmetry, i.e. the triaxiality parameter . These predictions, 
made for the even nuclei between the proton and neutron drip lines, can be used as basis for a global survey on 
radiative cross sections if introduced into parameterizations for the energy dependence of photon strengths as 
well as of nuclear level densities. Predictions made accordingly will be compared to average radiative widths 
at the neutron binding energy Sn, and of capture cross sections in the energy range of 30 keV, which are of 
special interest for simulations concerning the element production in giant stars. 

2. Photon strength 
2.1 Photon absorption in the isovector giant resonance IVGDR. 

The splitting of the IVGDR in the lanthanide and actinide nuclei is obvious from the experimental photo-
neutron data compiled by (Dietrich and Berman, 1988): The extracted parameters of the Lorentz curves as 
fitted to the seemingly double humped total cross sections are consistent with the notion that these are 
deformed, i.e. non-spherical. Apparently a new analysis as performed by (Plujko et al., 2011), including new 
IVGDR data, closely follows the spirit of the older work and also considers only these nuclides  and about 
10 additional ones with A >72  to have no spherical symmetry. This is at variance to the findings of Raman 
et al., 2001, where it was shown that enhanced E2 transitions in nearly all heavy nuclei indicate a breaking of 
spherical symmetry. (Junghans et al., 2008, 2011), pointed out that the IVGDR shapes resembling a single 
Lorentzian curve should not be misinterpreted as a signature of sphericity but rather be analysed as a 
superposition of three such curves being separated by less than their widths. In this work it was shown that a 
small deviation from sphericity is likely to be accompanied by triaxiality, whereas in well deformed nuclei a 
small deviation from axial symmetry is expected  in accordance to the observations of (Cline, 1986; Wu et 
al., 1996; Andrejtscheff and Petkov, 1993). It was also shown, that a large number of the IVGDR data as 
compiled in the EXFOR data base are well described by a triple Lorentzian (TLO) given by 
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T k of the three IVGDR components at the energies Ek can be well parameterized by the expression 
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of Eq. 1. Generalizing a suggestion of (Bush and Alhassid, 1991), originally formulated for the three 
components of one nucleus, the spreading width for all nuclei with A > 72 is parameterized in Eq. 1 with the 
exponent 1.6 derived from hydrodynamical considerations and the proportionality factor obtained from a fit to 
more than 20 different nuclei. Junghans et al., 2008 and 2011, have also shown that Eq. 1 agrees to data not 
only in the range of the IVGDR, but also below, where the photon absorption excitation functions were 
determined e.g. by photon scattering. The situation in two more nuclei is shown in Figs. 1 and 2, for which 
(Plujko et al., 2011), have assumed spherical symmetry and extracted considerably larger widths as compared 
to Eq.1. This leads to an enhanced cross section at low E , where the parameterization as presented here 
apparently requires extra strength as depicted by the thin lines, which will be discussed in Ch. 2.4.   
                                                                                

                                                                                      

                  
    The fit of the centroid energies E0 resulted in an invariant mass meff = 855 MeV with liquid drop model 
parameters determined by fitting ground state masses as proposed by (Myers et al., 1977). The factor Z N/A 
in Eq. 1 corresponds to the TRK sum rule first proposed by (Kuhn, 1925). As outlined in (Beyer et al., 2011), 
additional E1 strength as discussed by (Gell-Mann et al., 1954), is mainly concentrated at higher energy. As 
the IVGDR dipole oscillation is fast as compared to quadrupole modes the splitting can be treated 
adiabatically by inserting mean deformation parameters 2 and  in the expression proposed by (Hill and 
Wheeler, 1953), for the axis lengths of a triaxial body and for the inversely proportional energies.  
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Whereas from experimental data the deformation 2 can be deduced for many nuclei near -stability the 
triaxiality parameter  is known for a limited number of nuclides only. This is why (Grosse et al., 2012), 
indicated the possibility to use the 2 and as predicted by (Delaroche et al., 2010); further work along these 
lines is in progress. Obviously the TLO approach considers a triaxial nucleus to be the general case with the 
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Fig.1 presents data for the IVGDR in 118Sn. Cross 
sections for ( ,n) taken from EXFOR and from 
photon scattering as obtained by (Axel et al., 1970), 
are compared to a TLO calculation shown as blue 
line. The magenta line indicates additional E1 
strength and the black line results from also adding 
M1 strength.  The black bars indicate the three pole 
positions corresponding to the triaxiality at low Ex. 

Fig.2 depicts the data for the IVGDR in 138Ba. 
Cross sections for ( ,n) taken from EXFOR and 
from a scattering experiment with quasi-
monochromatic photons ((Tonchev et al., 2010), 
blue ) are compared to a TLO calculation (blue 
line, cf. Fig. 1). Data from a bremsstrahlung 
experiment on 136Ba (red , (Massarczyk et al., 
2012)) are shown for comparison. The black bars 
indicate the triaxiality. 
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limits of vanishing  in the quasi-axial case of large 2, and of 2 tending to zero near magic shells (with  
becoming meaningless). As (Bertsch et al., 2007) have pointed out that the HFB calculations tend to 
overestimate 2 for the rare case of near magic nuclei; the axial deformation was reduced by a factor of 0.44 
for nuclei with magic neutron or proton numbers. Thus the combination of the HFB predictions to the TLO 
parameterization is global and allows extrapolations away from the valley of stability.  
  
 2.2 Electric dipole strength in and below the IVGDR 

     The multipole strength functions (E ) are related to the average photon absorption cross section in a given 
energy interval E by:    
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The strength functions  (E ) are supposed to be direction independent and they are thus used for excitation 
as well as decay processes relating photon scattering to radiative capture and photonuclear processes; see e.g. 
(Bartholomew et al., 1972). Using that f is directly related to the electromagnetic decay widths of the resonant 
levels R in the interval  one gets:  
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The quantum-mechanical weight factor geff will be discussed in the next chapter. DR denotes the average level 
spacing at the upper of the two levels connected by E  = ER Ef and its insertion assures that for constant 

the average resonance widths )(ER  decrease with increasing level density R =1/DR. Often such 
decay takes place between levels which are both excited states and there is no simple way to study them 
starting from target ground states. But the average quantity f is insensitive to details of the nuclear spectrum 
and it thus makes sense to approximate any electromagnetic transition strength of energy E  by f (E ) to be 
independent of the energies ER and Ef ; this assumption first made by (Brink, 1955) and published by (Axel, 
1962), is usually named Axel-Brink hypothesis. 
     As documented by EXFOR, photo-absorption and photo-dissociation data in the IVGDR region do not 
exist for all stable isotopes and photon strength results for energies below are even rarer. Results for energies 
below the neutron binding energy Sn were partly taken from photon scattering e.g. using the bremsstrahlung 
facility at the Dresden radiation source ELBE or the Duke laser backscattering set-
(Tonchev et al., 2010). Such data complement the information from photo-dissociation studies and a wide 
energy range is covered leading to improved predictions for the region below 7 MeV, which has special 
importance for radiative neutron capture calculations, as will be outlined in Ch. 4. When the photon 
absorption cross section is derived from elastic photon scattering one exploits the fact that at sufficiently large 
angles nuclear resonance fluorescence is much stronger than Thomson and Delbrück scattering by the nuclear 
charge. As in such a compound nucleus like process the compound resonances may also decay in inelastic 
channels a correction method was developed on the basis of statistical considerations by (Schramm et al., 
2011). It is based on the fact, that the electromagnetic strength is responsible for the absorption as well as the 
emission of photons, such that an iterative procedure can result in a self-consistent solution. A similar concept 
was already formulated previously by (Axel et al., 1970). 
     As depicted in Figs. 1 and 2 TLO also agrees to experimental data at low energies. This supports the sole 

 on the pole energies Ek  which is at variance to a scheme with  depending on the photon 
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energy E  and on the excitation energy Ex as proposed by (Kopecky and Uhl, 1990). This scheme introduces 
additional parameters to bring the low energy strength based on the single Lorentzian into an agreement to 
data below Sn. But such fits are specific for each nuclide and can thus not serve as basis for a global 
parameterization  similar to the ones as presented by (Plujko et al., 2011).  
  
2.3. Special considerations for odd nuclei 

     For even nuclei with spin J0 = 0 in the ground state and Jr in the excited level the geff  in Eq. 3 are identical 
to the quantum-mechanical weight factor, whereas for J0 
equality of the f  as used in Eqs. 3 and 4: Photon absorption into a mode  populates m members of a multiplet 
with m = min(2 +1, 2J0+1) and t 0r are equal for each member of the 
multiplet. The observed strength corresponds to the cross section summed over the multiplet and this can be 
described by an effective spin factor:   
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     Both conditions were shown by (Bartholomew et al., 1972), to be fulfilled in many heavy nuclei; they 
relate to the assumption of weak coupling between the odd particle and the mode . In the case of scattering 
by a target with non-zero ground state spin J0 the observed strength corresponds to the cross section summed 
over a multiplet as described with Eq. 5 and the statistical factor which would have to appear is 2 +1; in such 
nuclei the IVGDR is a triplet corresponding to =1 (or a doublet for J0 = ½). The TLO-calculations for odd-A 
nuclei as shown in Fig. 3 were performed on the basis of these considerations and they agree to the 
experimental data similarly well as is the case for even nuclei, as seen in Fig. 3 showing a comparison of data 
for 88Sr and 89Y in the IVGDR as well as below Sn. The similarity of the data in both regions is obvious. Here 
as well as in the other spin nonzero nuclei deformations and radii were obtained by averaging the respective 
predictions for the even neighbours by (Delaroche et al., 2010); complementary calculations for odd nuclei 
are of interest here.  

            
2.4 Photon strength of other character than isovector electric dipole  
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Fig 3: TLO predictions (blue continuous curve) 
for the IVGDR in 88Sr (top) and 89Y, the poles 
of which are indicated in black. The measured 
cross sections of photo-neutron production 
taken from EXFOR are shown in red (+). 
Photon absorption as derived from scattering 
data is depicted in black ( , (Schwengner et al., 
2007)), ( , (Benouaret et al., 2009)) and orange 
( , (Datta et al., 1973)). The TLO-calculations 
for 89Y were performed on the basis of the 
considerations related to Eq.5 and they agree to 
the experimental data similarly well as is the 
case of 88Sr. 
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     The height of the low energy tail, of special importance for predictions of the average radiative width and 
thus for the radiative capture cross section, is nearly proportional to the IVGDR width and does not strongly 
depend on its deformation induced splitting. But this splitting plays an important role in the adjustment of the 
width, if it is done by a fit to the data for a single nucleus. Such local fits performed with only one Lorentzian 
instead of using a close triplet result in a rather high dipole strength tail at small energy. In an article on the 
Parameter Library RIPL-3 by (Capote et al., 2009), an explicit photon energy dependence of the IVGDR 
damping width was introduced as modified Lorentzian (MLO). Such a modification may result in a 
description of the data in the low energy tail without accounting for strength of other character than isovector 
electric dipole. The literature on photon scattering in this energy range has recently be reviewed by (Grosse 
and Junghans, 2013), and the following components have been found to be considered:  
    
  b. Electric dipole strength resulting from coupling low energy E2 and E3 modes;  
  c. Magnetic spin flip strength;  
  d. Collective orbital magnetic strength (scissors mode, strong in deformed nuclei);  
  e. Very low energy excitations (mainly M1, if resulting from orbital rearrangement).  
 
Fragmented parts of the electric dipole strength outside of the IVGDR have attracted much interest, and also 
for magnetic modes interesting results were reviewed recently by (Heyde et al., 2010). High resolution photon 
scattering data as e.g. published by (Endres et al., 2009), show spectral details related to nuclear structure 
effects, which are especially significant in near magic nuclei; weak components are likely to be hidden in the 
experimental background. In the region of unresolved compound nucleus resonances a numerical averaging 
has to be applied in the derivation of the complete strength. In Figs.1 and 2 phenomenological approximations 
to data indicating the presence of strength not belonging to the IVGDR are shown as thin lines.  
 
3. Level densities   
3.1 General remarks   
 
    Level densities in heavy nuclei can be calculated microscopically and in phenomenological models as listed 
by (Capote et al., 2009). The latter are usually based on thermo-dynamical considerations shown to be 
justified e.g. by (Bohr and Mottelson, 1975). In a multi-particle system like a nucleus of sufficiently high 
temperature t x)) is mainly proportional to the nuclear entropy S. 
(Ericson, 1960), has pointed out, that for Fermionic systems a critical temperature tc = 0.567 o exists, below 
which a condensation into pairs, i.e. Bosons, reduces the entropy from S t and changes the equation of 
state. The energy shift related to pairing is A- 0 = 12 A-1/2. The level 
density parameter ã is expected to rise linearly with the number of constituents A, but surface effects are 

2/3

s in the review by (Svirin, 2006). There also 
the impact of shell effects is discussed in terms of those already known from a liquid drop model fit to ground 
state masses. The respective table originating from (Mengoni and Nakajima, 1994), is available from (Capote 
et al., 2009). An energy dependent reduction of the shell correction Wo taken from there is introduced by a 

 A-1/3 and one gets S = 2a t with  
   
                       (6) 
 
(Ignatyuk et al., 1993) have shown that the paired superfluid phase can be characterized with a smooth 
transition at tc and that ac and Ec are obtained by inserting tc for t in Eq. 6, which can be solved e.g. iteratively. 
As another effect of pairing the effective energy is corrected for a condensation energy Eb = 1.5 ac 0²/ ² ; by 
selecting n an additional difference between even (n=0) and odd (n=1) nuclei is introduced. Using Table 1 in 
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(Svirin, 2006), the entropy is given as a function of t, tc and ac as well as the determinant d resulting from the
fixing of energy and nucleon numbers. In both phases the level density for small J is given by
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From ad-dd hoc considerations (Svirin, 2006), derived the enhancement factor for rotational degrees of 
freedom for triaxial nuclei, which is the last term in Eq. 7
allow a posteriori an account for respective uncertainties. The product x y z effectively compensates the
spin dispersion term ³³ in the denominator in Eq. 7. All these parameters k are determined by the moments
of inertia of the nucleus, which are assumed to be given by the axis ratios; rigid rotation and a sharp nuclear 
surface is assumed here. It should be pointed out, that the level density in the 124 nuclei under study is
determined by only one additional constant ; the shape parameters from HFB-calculations as already
discussed in relation to the IVGDR splitting have an influence on the k and thus on of up to 30%. As the
shape parameters are available from calculations extrapolations into domains away from stability can be based 
on this global parameterization. This clearly is an advantage over the fits applied usually, which minimize the
deviations from data locally, i.e. for each nuclide separately. In Fig. 4 only one global parameter = 1/8 = 2-3

is applied which, according to (Bohr and Mottelson, 1975), may be related to a level density reduction due to
additional symmetry constraints in each of the 3 axes.

4. Radiative neutron capture
4.1 Average photon widths

The radiative capture of neutrons is of special interest to simulate isotope production e.g. in nuclear power 
plants and for network calculations of astrophysical processes. The good agreement of the low IVGDR energy

nuclear deformation suggests to use the corresponding photon strength function also for other electromagnetic
processes like radiative neutron capture. To test the influence of dipole strength functions on radiative neutron 
capture over a wide range in A the investigation of only even-even target nuclei has the advantage of relying
on a large sample with the same spin. For the s-wave capture by spin 0 nuclei the schematic approximation by 
(Feshbach et al., 1947; Hughes et al., 1953) yields the cross section:

         )()½,()12(2),( 22 EJEn RREnR     (8).

Here any -dependent neutron strength enhancement is neglected. The effect of Porter-Thomas fluctuations in
the region above separated resonances is reduced by averaging over a large number of neutron resonances R 

R; it was neglected. By replacing by 1 in Eq. 5 and summing over all final states ff f = [0, Sn+ER]

Fig. 4: Average level distances 1/ in nuclei
with 75<A<245 as observed in neutron capture
by spin 0 target nuclei. Data (red +) compiled
by (Ignatyuk, 2006), are compared to the
prediction presented in Ch. 3 (blue line).

A
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R the average photon width is given by (Bartholomew et al., 1972), to be:
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The factor MtMM accounts for the number of magnetic sub- -decay in comparison to the
indicates the average in both 

R f. As long as the validity of Eq. 9 is not limited by additional open channels it is obvious,
that the slope of the capture cross section vs. EnE is mainly determined by the neutron wave length. The
absolute size of is proportional to the product of level density and photon strength such that the
predicted cross section is most sensitive to ff near E 3-4 MeV. It was pointed out by (Kopecky and Uhl,
1990) that strength information can be extracted from capture data directly by regarding experimental average
radiative widths, as shown in Fig. 5. Following Eq. 9 these are proportional to the photon strength and depend
in addition only on the ratio MtMM . In principle, MtMM as well as the average radiative width EE ) would 
depend on a change in the spin distribution of (A,ExEE ) in the energy range reaching from Ef to EREE . As
indicated in Eq. 9, it is assumed here that for = 1-transitions from JRJJ = 1/2+ to JfJJ = 1/2 and Jf JJ = 3/2 the 
quantum-statistical part of MtMM is 3.

4.2 Maxwellian averaged cross sections

A test on an absolute scale of level density predictions and of the photon strength as presented before can be
obtained by applying Eqs. 8 and 9 to experiments on neutron capture. Concentrating on Maxwellian averaged
cross sections (MACS) the following expression holds:
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The folding of experimental cross sections as well as those given by Eq. 8 with a Maxwellian distribution of 
neutron energies is straightforward as pointed out by (Käppeler et al, 2011). This work analyses nuclide 
abundance ratios and concludes that the relevant reactions are likely to happen at approximately kT = 30 keV.
At such temperatures the capture rates are sufficiently small such that -decays back to the valley of stability
are at least as fast as the accretion of neutrons. In red giant (AGB) stars radiative neutron capture takes place
starting at A and a stepwise formation of heavier nuclei up to A by this slow s- .
Data measured at respective neutron beams have been collected and tabulated as MACS by (Dillmann et al.,

Fig. 5: Average total radiative widths (green +) as
compiled by (Ignatyuk, 2006), in comparison to the
prediction by Eq. 9 for the TLO photon strength 
(lower blue line). The upper line depicts the impact 
of the additional components listed in Ch. 2.4.

A
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2010), covering many heavy nuclei. These data are free of effects resulting from strong resonances and thus
can be considered a good representation of capture in the region of overlapping resonances. For several
actinide nuclei equivalent data were compiled by (Pritychenko et al., 2010), and uncertainty bars were derived 
from their scatter. By only regarding the radiative capture by spin-zero targets effects related to ambiguities of 
spin cut off parameter and angular momentum coupling are suppressed, but still the data vary by about 4
orders of magnitude in the discussed range of A and are well represented by the TLO-parameterization used 
here together with a schematic ansatz for (A, ExE ), as is obvious from Fig. 6.

5. Conclusions

The splitting of the IVGDR in the nuclei with 72<A<244, for which respective data exist, is well described 
knowing the deformation and triaxiality from the calculations of Delaroche et al., 2010. One parameter for the
width and one for the centroid energies suffice for a satisfactory description of the resonance shape especially
near the maximum of the cross section. There is no need for a strong deviation of the energy integrated
strength from the classical dipole sum-rule (TRK). The widths vary smoothly with A and Z and are
considerably smaller than those extracted by (Dietrich and Berman, 1988; Plujko et al., 2011). Thus a 
reduction of the damping width with photon energy is not needed to fit the photon strength data existing for 
the IVGDR tail in a number of nuclei. This results from the TLO description using three poles, and constitutes
the main influence of the triaxiality on the photon strength determination. Using the literature study presented 
by (Grosse and Junghans, 2013), on experimental photon scattering data it appears that magnetic and isoscalar 
electric dipole strength increases the radiative capture cross section by less than 25% only, such that the
additional parameters for these small strength components are of reduced interest. The radiative neutron
capture cross sections depend not only on the photon strength but in a similar amount also on the level density 
in the excitation region reached by the first photon emitted after capture. A good fit to experimental average
radiative widths as well as to MACS of neutron capture by even nuclei results from the combination of the 
TLO photon strength and a scheme proposed by (Svirin, 2006) to predict level densities in triaxial nuclei. 
Here one additional parameter has to be fixed by regarding data on level distances at Sn. An effective pairing 
energy shift and a shell correction energy are used which were taken from (Mengoni and Nakajima, 1994), as
available in RIPL-3 in 2014 for a large number of nuclei as described by (Capote et al., 2009). Further 
investigations are needed concerning this point and others influencing level densities and their excitation
energy dependence. Eventual anomalies in exotic nuclei as well as those near to closed shells need special
attention.

As shown in this paper, neutron capture cross sections in the energy range of overlapping resonances are
well parameterized by the triple Lorentzian photon strength (TLO), when this is combined to a scheme for the

Fig. 6: Maxwellian averaged cross sections as
compiled by (Dillmann et al., in 2010) (red +) 
in comparison to the prediction on the basis of 
Eq. 10 and the TLO photon strength (lower
blue curve). The effect of other photon strength
components is shown by the upper curve.

A
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prediction of level densities in nuclei of reduced symmetry, e.g. triaxial ones. The fact that for 124 spin-0 
target nuclei with 72<A<244 the ratio of experiment over prediction is close to 1 albeit only a very small 
number of free parameters is needed  combined to quantities already determined independently  establishes 
the importance of triaxiality on photon strength and on radiative capture for neutrons. Thus this ansatz may be 
considered a very good starting point for network calculations in the field of nuclear astrophysics and 
especially for the element synthesis in the s- and p-processes. As it works up to actinide nuclei it is equally 
applicable for the numerical simulation of nuclear power systems and the transmutation of radioactive waste. 
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