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SUMMARY

While antibody titers and neutralization are consid-
ered the gold standard for the selection of successful
vaccines, these parameters are often inadequate
predictors of protective immunity. As antibodies
mediate an array of extra-neutralizing Fc functions,
when neutralization fails to predict protection, inves-
tigating Fc-mediated activitymay help identify immu-
nological correlates and mechanism(s) of humoral
protection. Here, we used an integrative approach
termed Systems Serology to analyze relationships
among humoral responses elicited in four HIV vac-
cine trials. Each vaccine regimen induced a unique
humoral ‘‘Fc fingerprint.’’ Moreover, analysis of
case:control data from the first moderately protec-
tive HIV vaccine trial, RV144, pointed to mechanistic
insights into immune complex composition that
may underlie protective immunity to HIV. Thus,
multi-dimensional relational comparisons of vaccine
humoral fingerprints offer a unique approach for the
evaluation and design of novel vaccines against
pathogens for which correlates of protection remain
elusive.

INTRODUCTION

Although over 80 vaccines, covering more than 20 diseases,

have been licensed in the United States, vaccine design efforts

against persisting infections, including malaria, tuberculosis,

and HIV, continue to fail. These setbacks have driven a shift
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from empirical vaccine design approaches to rational vaccine

development strategies that consider pathogen life cycle, path-

ogen structural information, and immunological correlates of

protection. However, the immune correlates for most globally le-

thal pathogens have yet to be defined, complicating vaccine

design efforts. Prospective immunogens are frequently chosen

based on measures of antibody (Ab) titer and neutralization,

regardless of their mechanistic effects in immunity. However,

for most clinically approved vaccines, titer and neutralization ac-

tivity alone do not account for protective immunity (Pulendran

and Ahmed, 2011). Instead, protective immunity is often observ-

able in the absence of neutralization, and accumulating evidence

across a spectrum of vaccines has suggested a critical role for

extra-neutralizing Ab functions such as Ab-dependent cellular

cytotoxicity (ADCC), Ab-dependent cellular phagocytosis

(ADCP), Ab-dependent complement deposition (ADCD), and

Ab-dependent respiratory burst (ADRB) in both protection from

and post-infection control of HIV (Barouch et al., 2015; Bourna-

zos et al., 2014; Hessell et al., 2007), influenza (DiLillo et al., 2014;

Jegerlehner et al., 2004), herpes simplex virus (HSV) (Kohl and

Loo, 1982; Kohl et al., 1981), Ebola virus (Warfield et al., 2007),

and malaria (Joos et al., 2010; Osier et al., 2014).

Following vaccination, Abs targeting an extensive array of epi-

topes with different affinities and Fc-effector profiles collectively

contribute to the formation of immune complexes that direct

antimicrobial functions via their constant domains (Fc). In addi-

tion to the rapid diversification of the antigen (Ag)-binding

domain (Fab), the Fc domain is also rapidly tuned during an im-

mune response, altering the affinity of Ab interactions with innate

immune receptors (e.g., Fc receptors and complement) ex-

pressed on all innate immune cells (Ackerman and Alter, 2013;

Chung and Alter, 2014). The diversity of Fc profiles, potential

Fab variants, and tissue-specific Fc receptor expression results
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Figure 1. System Serology Analysis

This Systems Serology platform allows for the broad characterization of the polyclonal extra-neutralizing IgG immune profile induced by vaccination. IgG was

purified from subjects enrolled in four different HIV vaccine trials (RV144, VAX003, HVTN204, and IPCAVD001). Six Fc-effector functions and 58 biophysical

measurements were assayed (complete list described in Table S1). All 64 parameters were collected to create an extra-neutralizing serological signature for the

four vaccine trials, using an array of unsupervised and supervised machine learning algorithms.

See also Tables S1 and S2.
in a flexible humoral immune response poised for the elimination

of pathogens via mechanisms beyond simple neutralization.

Hence, analytical approaches able to integrate diverse facets

of the humoral immune response will be critical to: (1) define un-

expected correlates of protection from infection in protection

studies or studies of natural disease resistance, (2) guide the se-

lection of promising vaccines/immunogens through principled

analysis of humoral immune profiles, and (3) define the relation-

ships between Ab populations and functions that point to mech-

anisms of protective immunity.

As a prominent example, the ability to select HIV vaccine can-

didates has been hindered by an inadequate understanding of

the immunological correlates of protection from HIV. However,

several clinical trials have been conducted, one of which

(RV144) demonstrated a modest level of protection (31.2%

reduction in the risk of infection) (Rerks-Ngarm et al., 2009),

potentially harboring clues that may guide future vaccine

development. This protection was observed in the absence of

neutralizing Abs, cytotoxic T-cell responses, and high Ab titers.

Univariate and multivariate logistic regression analyses linked

the reduced risk of infection with non-immunoglobulin (Ig)A Ab

responses targeting the V1V2 region of the HIV envelope and

ADCC activity (Haynes et al., 2012; Zolla-Pazner et al., 2014).

Follow-up analyses identified additional features of the humoral

immune response associated with protection, including the pref-

erential induction of IgG3 responses, which coordinated multiple

Ab effector functions, including ADCC and ADCP (Chung et al.,

2014b; Yates et al., 2014). However, in the correlates analysis,

although many Ab assays were initially considered, the identifi-

cation of immune correlates in RV144 was constrained by the

selected assays that deeply interrogated neutralization and Ab

specificity but profiled only a limited set of Fc features, including

only a few Ab subclasses/isotypes (IgG, IgG3, IgA) and a single

function, ADCC.

Here, we aimed to consider more integrative and network-

oriented relationships between a broader array of polyclonal

Ab features and functional properties associated with vaccine
regimens and outcomes. As an initial test of this approach,

termed ‘‘Systems Serology,’’ we examined recent HIV vaccine

trials, including that of the moderately protective RV144 vaccine

ALVAC/AIDSVAX B/E (Rerks-Ngarm et al., 2009), two trials

that did not demonstrate efficacy in phase 2b trials, (VAX003;

AIDSVAX B/E [Pitisuttithum et al., 2006] and HVTN204; DNA/

rAD5 [Churchyard et al., 2011]), and one experimental phase 1

study designed to evaluate the prototype vaccine Ad26

vector (IPCAVD001; Ad26.ENVA.01) (Barouch et al., 2013a). A

battery of modeling techniques that emphasize co-variation

among measurements was applied to these data, revealing

features of vaccine–induced ‘‘fingerprints’’ that offer new in-

sights concerning polyclonal Ab immune responses elicited by

vaccines.

RESULTS

Systems Serology
Beyond their role in neutralization, Abs mediate a vast array of

additional functions via their Fc domains. Thus, a Systems

Serology approach was developed to broadly profile the extra-

neutralizing Ab activity of vaccine-induced polyclonal Abs (Fig-

ure 1). The initial platform interrogated six Fc-effector functions

(ADCC, ADCP, ADCD, and three Ab-dependent natural killer

(NK) cell activities (Figure 1). Linked to these six functions, 58 bio-

physicalmeasurementswere simultaneously captured, including

binding to Fcg receptors (FCGRs) and the relative abundances of

an array of Ag-specific Abs (Table S1) in 120 samples from four

HIV vaccine trials (see Supplemental Experimental Procedures).

Identification of Vaccine-Specific Signatures
Unsupervised hierarchical clustering grouped vaccine regimens

primarily by immunogen type (Figure 2; Table S2), including an

adenovirus (Ad) vector cluster composed of mixed HVTN204

(DNA/Ad5) and IPCAVD001 (Ad26) samples (Figure 2, cluster 1:

green and yellow, respectively) and a protein immunogen cluster

containing largely mixed VAX003 (protein alone) and RV144
Cell 163, 988–998, November 5, 2015 ª2015 Elsevier Inc. 989



Figure 2. Hierarchical Clustering of Vaccine Trial Profiles by Biophysical Properties and Functional Responses
Data were compiled for the four different vaccine trials. Each column represents the full Ab profile of an individual subject. Colored bars along the bottom

correspond to the vaccine trial for each subject. Ab properties are grouped by generalized features (Function, FcR affinity, Bulk IgG, IgG1, IgG2, IgG3, and IgG4),

indicated by the colored bars on the right. Specific features are listed in Table S2.

See also Table S1.
(poxvirus prime/protein boost) samples (Figure 2, cluster 2: blue

and red, respectively). While this clustering highlights the domi-

nant influence of immunogen type in directing distinct humoral

profiles, specific features driving this separation cannot be

clearly discerned.

To gain enhanced resolution on the key features contributing

to profile differences, a multidimensional combined feature

selection method (the least absolute shrinkage and selection

operator; LASSO) (Tibshirani, 1997) and partial least-squares

discriminant analysis (PLSDA) (Arnold et al., 2015; Lau et al.,

2011) were used. Focusing initially on RV144 and VAX003, which

shared the same protein immunogen but provided different effi-

cacies, as few as 7 of the 64 features accounted for 76% of the

variance across the two trials, driving nearly complete resolution

of the vaccine profiles (Figures 3A and 3B). Separation of the Ab

profiles was observed in the scores plot, with points representing

individual RV144 (red) or VAX003 (blue) vaccinees (Figure 3A).

Differences between vaccine-elicited Ab profiles were largely

captured along the first dimension (LV1), which accounted for

the majority of the variance between the two trials (61%). The

corresponding loadings plot (Figure 3B) illustrates the contribu-

tion of the seven LASSO features, where the relative location

of an individual feature is associated with the corresponding

vaccine subpopulation in the scores plot (Figure 3A). Elevated
990 Cell 163, 988–998, November 5, 2015 ª2015 Elsevier Inc.
gp120-specific IgG3 levels, relative to other features (Figure 3B),

uniquely marked the RV144 vaccine profile (Figure 3A), as previ-

ously described (Chung et al., 2014b; Yates et al., 2014). By

contrast, the VAX003 Ab profile was associated with known in-

duction of higher total HIV gp140-specific Ab titers, dominated

by IgG4 (Chung et al., 2014b). However, additional novel features

were identified that associated with the non-protective VAX003

profile, including elevated total gp140-specific responses,

higher Ab-driven NK cell degranulation, and chemokine secre-

tion. This result suggests that differences in relationships be-

tween Ab features rather than the total Ab amountmay be essen-

tial for resolving ‘‘protective’’ from ‘‘non-protective’’ vaccine

profiles. Moreover, the scores plot highlights an unappreciated

level of heterogeneity among the RV144 vaccinees, with respect

to the magnitude of the IgG3 response, where 26% of the RV144

vaccinees exhibited a more highly skewed IgG3 response spe-

cifically across the second dimension, LV2 (Figure 3A).

When all four vaccine trials were analyzed simultaneously, 15

of the 64 features separated the vaccine profiles, accounting

for 57% of the variance. The first dimension (LV1) revealed a

similar separation as the hierarchical clustering analysis, sepa-

rating based on protein (Figure 3C, right) versus Ad-based

vectored immunization (33% variance), confirming the dominant

effect of immunogen type in directing humoral profiles. LV1
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Figure 3. PLSDA and LASSO Identify Unique

Combinations of Features that Differentiate

Vaccine Trial Ab Profiles

(A and B) In (A), the scores plot represents the

RV144 (red) and VAX003 (blue) vaccine profile

distribution for each vaccinee tested (dots) from

the LASSO and PLSDA. Remarkably, as few as

seven Ab features, listed on the loadings plot (B),

separated the vaccine profiles with 100% cali-

bration and 97% cross-validation accuracy. LV1

captured 61% of X variance and 72% of the Y

variance.

(C and D) In (C), LASSO and PLSDA of all four

vaccine profiles identified 15 Ab features (D) able

to discriminate between the distinct vaccine

regimens (red, RV144; blue, VAX003; green,

HVTN204; and yellow, IPCAVD001) with 84%

cross-validation accuracy. Together, LV1 and LV2

captured 57% of the X variance and 45% of the Y

variance, respectively.

See also Tables S1 and S2.
separation was strongly driven by gp41-skewed immunity, due

to gp41 being included in the Ad regimens but not included in

VAX003 and only partially included in RV144. Furthermore, Abs

targeting clade AE Ags (gp120 and V1V2) uniquely marked

RV144 and VAX003 profiles, as subjects were immunized with

clade AE-derived immunogens. Thus the Ag itself, rather than

the vector/immunization regimen alone, was a critical determi-

nant influencing vaccine-induced humoral profiles.

The second dimension identified additional features that

further split the vaccine profiles, accounting for an additional

24% of the variance, contributing to an unexpected grouping

and separation of RV144/Ad26 and VAX003/Ad5 profiles. This

separation was primarily related to differences in IgG3 subclass

and V1V2 levels, which scattered in multidimensional space

more closely with RV144 and Ad26 profiles (Figure 3D). There-

fore, markers previously associated with reduced risk of infec-

tion in RV144 co-segregatedwith the experimental Ad26 vaccine

trial, which used a vector similar to the ones used in regimens

recently shown to protect non-human primates from infection

through non-neutralizing polyfunctional Abs (Barouch et al.,

2015).

Thus, use of the LASSO and PLSDA, incorporating co-varia-

tion between features, identified key variables involved in classi-

fying vaccine regimens and provided enhanced resolution of

the specific Ab features associated with differentiating vaccine

profiles, objectively identifying novel correlates of Ab-mediated

protection.

Correlation Networks Highlight Distinct Humoral
Relationships
Next, we aimed to gain insights into relationships between

features contributing to differences among vaccine-induced

polyclonal profiles, adapting correlation network analysis tools

commonly used in the transcriptomics field. The resulting
Cell 163, 988–998,
network models revealed remarkably

different Ab co-regulation interactions

among the vaccine regimens, providing
novel insights into the specific Ab features that may contribute

to unique vaccine effector profiles.

VAX003 exhibited the most interconnected network,

comprising four dense subnetworks (Figure 4A). The most prom-

inent subnetworks included an unusual tightly tethered mixture

of IgG2 and IgG3 responses that are rarely co-selected (Chaud-

huri and Alt, 2004; Chaudhuri et al., 2007), pointing to the induc-

tion of a non-coherent poorly coordinated functional response

(Chung et al., 2014b). Interestingly, all Fc-effector functions

were connected to a third subnetwork consisting largely of

IgG1 and bulk IgG responses specific for a broad array of Ags

that was unexpectedly connected to the fourth IgG4 subnet-

work. IgG4 Abs have previously shown to compete actively for

immune complex occupancy, resulting in dampened Ab function

(Chung et al., 2014b). Thus, the VAX003 network exhibited linked

IgG1/IgG4 responses staggered next to a dense IgG2/IgG3

cluster, highlighting the peculiar subclass co-selection profiles

driven by the non-protective VAX003 strategy.

While less prominent clusters emerged in the RV144 network

model (Figure 4B), ADCP, ADCD, and ADCC were largely teth-

ered to a network of gp120-, gp140- or V1V2-specific IgG1

and/or IgG3 responses. The V1V2B-specific IgG3 response

was highly associated with the large IgG1 network, suggesting

that high IgG3 V1V2B-specific responses act as a critical surro-

gate of a coordinated IgG3 and IgG1 response. The total IgG

V1V2AE response was directly tethered to both ADCP and

ADCC, suggesting that this specific V1V2 response may play

an influential role in driving Ab functionality. IgG3 V1V2B and

IgG3 V1V2AE responseswere not directly correlated, suggesting

that these V1V2 responses may represent disparate humoral im-

mune responses rather than a single cross-reactive response.

Moreover, because depletion of IgG3 only results in 30% re-

duction in Ab functionality (Chung et al., 2014b), it is likely that

IgG3 responses may serve as a surrogate for a subpopulation
November 5, 2015 ª2015 Elsevier Inc. 991
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Figure 4. Correlation Networks of Vaccine-Trial-Elicited Humoral Immune Responses Probe Immune Complex Dynamics

(A–D) Correlation networks were generated for VAX003 (A), RV144 (B), HVTN204 (C), and IPCAVD001 (D). Each node (circle) represents either a biophysical

feature or an effector function. Nodes are connected with an edge (line) if they are significantly correlated. The different Ab isotypes are identified by different

colors as indicated. Edge thickness and color intensity of the connecting lines are directly proportional to statistical significance and edge weight, respectively

(thicker and brighter network interactions represent a stronger correlation). The size of each node is directly proportional to its degree of connectedness (i.e., the

number of features to which that node is connected).

See also Figure S1 and Tables S1 and S2.
of vaccine-induced IgG1 Abs that direct the polyfunctional Ab re-

sponses observed in RV144.

The HVTN204 (DNA/Ad5) network (Figure 4C) contained a

highly connected subnetwork, with multiple tethers to less

well-connected subnetworks of additional Ab subclasses. The

dominant subnetwork consisted of IgG1 Env- and V1V2-specific

responses, with ADCC, ADCD, and NK cell responses tightly

intercalated within the subnetwork, sandwiched between IgG1

and IgG3 responses. However, ADCP did not appear in the

network. This exclusion of ADCP suggests that Ad5 and/or

DNA may preclude the induction of phagocytic Ab responses,

which have been linked to protection from SIV acquisition

(Barouch et al., 2013b).

Conversely, the vaccine profile induced by the experimental

IPCAVD001 (Ad26) exhibited a nearly single, densely connected

network tethered to Ab functions and Fc-receptor binding activ-

ity (Figure 4D). The large network consisted of a tight grid of

related bulk IgG/IgG1 responses, while IgG2, IgG3, and IgG4

formed sparse external clusters, including a less functional, in-

terconnected IgG2/IgG4 cluster (Figure 4D, top right). The clear

linkages between Ab functions and IgG1 features, including an

IgG1 V1V2-driven ADCP response, further supports the potential

role of IgG3 as a surrogate of a highly effective, polyfunctional

IgG1 response.
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Overall, these statistically robust network analyses (Figure S1)

point to unique relationships between all features and functions

among the four vaccine trials. Identification of ‘‘desirable’’ Ab

networks delineating specific biophysical Ab feature/function

relationships that are associated with protective immunity may

help identify mechanisms underlying correlates, such as the as-

sociation of IgG3 and V1V2 features with reduced risk of HIV

infection by RV144.

System Serology Analysis of Interactions between

RV144 Surrogates of Reduced Risk of Infection

Systems Serology approaches can complement existing

methods for identifying predictive mechanism(s) of protective

immunity. While logistic regression involves stepwise evaluation

of strongly correlated individual variables, Systems Serology

approaches can additionally identify relationships between Ab

features that are predictive of protection. Toward this purpose,

we next examined RV144 profiles segregating with known

correlates of reduced risk of infection. Thus, we dissected two

Ab features (IgG/IgG3 V1V2), which were previously positively

associated with reduced acquisition in the RV144 case:control

analysis, in our cohort of uninfected vaccinees. Importantly,

IgA levels were also included in this analysis, due to their impli-

cated role as correlates of risk (Haynes et al., 2012). Profiles

were then compared between ‘‘responders’’ (top 33% for each
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Figure 5. Identification of V1V2high-Asso-

ciated Signatures within RV144 Vaccine

Responses

(A) RV144 vaccinees were classified within the IgG

V1V2AEhigh (blue) (top 30%) or IgG V1V2AElow (red)

groups.

(B) LASSO identified a profile of 16 features that

differentiated the two groups with 100% calibration

and 80% cross-validation accuracy. The loadings

plot (right panel) illustrates the features that sepa-

rated IgG V1V2AEhigh or IgGV1V2AElow responders.

Together, LV1 and LV2 captured 33% of the X

variance and 94% of the Y variance, respectively.

(C), the same analysis was repeated for RV144

vaccinees classified as IgG3 V1V2high/IgG3V1V2low,

with 92% cross-validation and 100% calibration

accuracy.

(D) LASSO identified a signature of ten features that

best separated these two groups. Together, LV1

and LV2 captured 39% of the variance in X and

84% of the variance in Y, respectively.

See also Tables S1 and S2.
correlate of reduced risk) (Rerks-Ngarm et al., 2009; Zolla-Paz-

ner et al., 2014) or ‘‘non-responders.’’ The IgG V1V2 responder

profile (Zolla-Pazner et al., 2014) was driven by 16 features (Fig-

ures 5A and 5B), including elevated V1V2 responses and a poly-

functional Fc-effector profile linked to higher Ab-dependent NK

cell degranulation (i.e., CD107a and interferon g [IFNg] expres-

sion), ADCP, and ADCC. Conversely, the non-responders ex-

hibited elevated gp120-specific IgA and increased binding to

FCGR2B, the sole inhibitory Fcg receptor, both features that

have been previously associated with antagonism of Fc-effector

activity (Tomaras et al., 2013; White et al., 2014).

Similar analysis of the IgG3 V1V2 correlate of reduced risk

pointed to ten Ab features that distinguished responder/non-

responder profiles (Figures 5C and 5D) marked by increased

broad Fcg receptor binding among responders—particularly to

activating FCGR2A, involved in ADCP, and to FCGR3A, critical

for NK cell degranulation and chemokine secretion. Surprisingly,

IgA was not selected as a negative predictor of the IgG3 V1V2

responder profile. These findings confirm that IgG V1V2 (Fig-

ure 5A) responders exhibit a balanced polyfunctional profile,

while IgG3 V1V2 responders (Figure 5B) possessed Abs selec-

tively enhanced for binding to FCGR2A, associated with

ADCP, that has been linked to protection in nonhuman primates

(NHPs) (Barouch et al., 2013b).

Defining Integrative Signatures of Protective Humoral

Immune Profiles in RV144

Finally, to assess whether our approach could provide enhanced

resolution of mechanism(s) of potential reduced risk of infection

in the RV144 trial, we next analyzed data from the case:control

study (Haynes et al., 2012). Specifically, data characterizing

distinct Ab subclass levels targeting multiple vaccine Ags and
Cell 163, 988–998,
functions comparable to those included

in our original profiling data were included

in the analysis. PLSDA using data from all

cases and controls separated placebos

from vaccinees, as expected, along LV1
(Figure 6A). In contrast, PLSDA of vaccinees alone was unable

to separate the 40 infected from the 201 uninfected vaccinees

included in the case:control analysis (Figures S2A and S2B).

Similarly, network analyses showed only modest differences be-

tween vaccinated cases and controls (Figures S2C and S2D),

likely related to the fact that it is unclear which uninfected vacci-

nees were actually exposed and protected.

To address this complication, we defined groups representing

extreme profiles based on known correlates of risk (Haynes

et al., 2012). Given that the IgG3 and IgG V1V2 levels were highly

correlated (Figure S3), we elected to focus on the IgG V1V2 and

IgA relationship due to the intriguing relationships found for these

two parameters in the non-case:control data (Figure 5A). Two

sets of samples were identified: (1) a region containing the great-

est ratio of uninfected:infected vaccinees was classified as the

‘‘low-risk’’ group (Figure 6C, blue box; percentage difference =

28%, p = 0.0088), and (2) the area that contained the lowest

ratio of uninfected:infected vaccinees was classified as the

‘‘risk’’ group (Figure 6C, red box; percentage difference =

�26%, p = 0.0003). As expected, the lowest frequency of infec-

tions was observed in the IgG V1V2high/IgAlow region of the plot,

and the highest frequency of cases was observed in the IgG

V1V2low/IgAhigh group. PLSDA analyses clearly separated these

two groups (Figure 6D), with the low-risk group largely associ-

ated with features (Figure 6E positive loadings) that mark high

IgG responses against the V1V2A scaffold as well as the V1V2-

169K scaffold, corresponding to Ab responses against the viral

variant able to evade the vaccine response among the infected

vaccinees (Rolland et al., 2012).

Correlation networks further pointed to distinct profiles be-

tween the two groups. Three subnetworks were observed in the
November 5, 2015 ª2015 Elsevier Inc. 993



low-risk case:controls—an independent small network of IgA

features and two larger linked clusters, including (1) all IgG3 fea-

tures and (2) IgG responses tethered to Ab functional features

(Figure 6F). These two clusters contained a single link between

an IgG3 response and IgG response directed at the same

V1V2C scaffold, which was linked to all other V1V2 scaffold re-

sponses. Again, this suggests that the IgG3 response may be a

surrogate of a highly functional IgG1 response more directly

involved in modulating Ab functionality. Conversely, the risk

group exhibited five clusters (Figure 6G), of which four were small

groups that appeared to form relationships independent of all the

IgG3 features. One of the small clusters, separate from IgG3 and

all functions, included several IgGV1V2 responses, highlighting a

unique structure of the humoral response among the risk group.

By contrast, all IgG3 features were tightly interconnected and

directly tethered to IgG features and the primary ADCC and

neutralization results but not to the secondary ADCC features.

These findings indicate a mis-coordinated IgG/IgG3 V1V2

response largely separate from Ab function in the vaccinees

who went on to become infected, whereas IgG/IgG3 V1V2 re-

sponses were well integrated within the network profile in vacci-

nees with reduced correlates of risk (i.e., IgG V1V2high/IgAlow).

Even though many of the desirable features—in particular,

poly-functional responses identified in Figure 5—were not avail-

able for analysis, these data highlight the IgG V1V2 responses

that likely drive protective immunity.

DISCUSSION

Because the humoral immune response consists of waves of B

cell responses that progressively induce higher affinity, broadly

targeting, and functionally enhanced complexes of Abs poised

to eliminate a pathogen, we aimed to develop a multivariate

approach that could capture the complexity of interactions

between Abs at unprecedented depths. The Systems Serology

approach described here not only identified features reported

in previous correlates analyses, including elevated IgG3 re-

sponses in RV144 (Chung et al., 2014b; Yates et al., 2014) and

Ab binding to V1V2 (Zolla-Pazner et al., 2014), but also pointed

to largely indirect connections between V1V2 IgG or IgG3 re-

sponses and Ab function (ADCC, ADCP, and ADCD) in vaccinees

(Figure 4B) and the low-risk RV144 case:control samples (Fig-

ure 6F). Instead, vaccine-specific IgG1 responses were largely

directly tethered to Ab function (Figure 4B). This suggests that

the IgG3 ‘‘protective’’ signatures may either represent a surro-

gate of an effective Ab response or only contribute in combina-

tion with multiple other Ab features (e.g., IgG1) to induce antiviral

activity. Along these lines, while depletion of IgG3 Abs from

RV144 vaccinees resulted in a significant loss of ADCP and

ADCC activity, the activity was not completely depleted with

the removal of this subclass of Abs (Chung et al., 2014b), sug-

gesting that IgG3 Abs alone do not mediate the activity in poly-

clonal R144 sera and that function was also mediated by Abs

remaining in the depleted purified IgGs. Therefore, the induction

of IgG3 responses in RV144 may mark the coordinated produc-

tion of highly functional IgG1 responses that may be functionally

enhanced through altered IgG1 glycosylation, known to impact

Fc-receptor affinity (Chung et al., 2014a), rather than subclass
994 Cell 163, 988–998, November 5, 2015 ª2015 Elsevier Inc.
selection differences alone (Chung et al., 2014a; Hristodorov

et al., 2013). Thus, together with the IgG3 Abs, these IgG1 Abs

may form highly functional immune complexes that are able to

rapidly and effectively clear the virus or infected cells.

Interestingly, while vaccine-induced IgA responseswere asso-

ciated with enhanced risk of infection (Haynes et al., 2012), IgA

emerged as an antagonist of the IgG V1V2 (Figures 5A and 5B)

response but not the IgG3 response in the PLSDA analyses

(Figures 5C and 5D). Furthermore, IgA responses were not con-

nected to any of the subnetworks containing functional re-

sponses identified in the network analyses, suggesting that IgA

responses may serve as a marker of a deregulated or less func-

tional humoral immune response rather than a direct antagonist

of protective humoral immune responses. Thus, while it is certain

that pre-incubation of Ag with IgA monoclonal Abs may prevent

IgG1 and IgG3 monoclonal Ab binding (Tomaras et al., 2013), it

does not appear that these responses were directly co-induced

(Figure 6). Moreover, given that the infected vaccinees exhibited

both the lowest and the highest levels of IgA responses (Fig-

ure 6B), it is unlikely that IgA responses directly contributed to

impaired humoral immune protection. Likewise, monoclonal

therapeutics generated as IgAs exhibit potent cytotoxicity and

clearance of tumor targets through Fca receptors expressed on

effector cells (e.g., neutrophils and macrophages) (Black et al.,

1996; Dechant and Valerius, 2001) and have been recently linked

to protection from simian-HIV (SHIV) challenge (Watkins et al.,

2013). Thus, future studies may aim to define the vaccine strate-

gies that most effectively co-select a highly functional blood IgG

response and a highly effective IgA response that may collec-

tively prevent infection at the portal of entry.

Protection from infectious diseases like HIV will likely require

the targeted containment of viral replication/dissemination at

the site of infection. Along these lines, HIV is transmitted across

mucosal barriers, where FcgR2-expressing monocytes/macro-

phages are abundant (Brown and Mattapallil, 2014; Zigmond

and Jung, 2013). Moreover, ADCP activity was present in the

RV144, VAX003, and IPCAVD001 networks (Figure 4) but was

not observed in the HVTN204 network (Figure 4C) that was

highly skewed to the elicitation of NK-cell-mediated activities.

Conversely, ADCP was tightly tethered within the RV144 and

IPCAVD001 networks (Figure 4), was enhanced in the high

V1V2 IgG3/IgG1 RV144 vaccinees (Figure 5), and was previously

associated with protection in NHP (Barouch et al., 2013b). Thus

these results raise the possibility that ADCPmay represent a crit-

ical function, within polyfunctional Ab profiles, that is required for

protection from mucosal transmission.

Beyond HIV, these vaccine-profiling approaches have broad

applications and can aid in vaccine design efforts against

many of the deadliest global pathogens for which immune corre-

lates of protection have yet to be elucidated. For example, recent

clinical evidence suggests that Abs present in Ebola-virus-

infected convalescent immune sera contribute to improved

clinical outcomes in infected patients (Kreil, 2015; Lyon et al.,

2014); and, recently, vesicular stomatitis virus (VSV) vaccination

has been shown to drive robust humoral immune responses

(Regules et al., 2015) that provide protection from infection

(Henao-Restrepo et al., 2015). However, the specific mecha-

nism(s) by which Abs provide protection remains unclear. Yet,



A

C

D

F G

E

B

(legend on next page)

Cell 163, 988–998, November 5, 2015 ª2015 Elsevier Inc. 995



a non-neutralizing monoclonal Ab, 13c6, has been shown to pro-

vide protection from infection in an Fc-dependent manner (Olin-

ger et al., 2012), suggesting that non-neutralizing Ab functions

contribute to antiviral immunity. Thus, similar to the application

of Systems Serology for the evaluation of HIV vaccine re-

sponses, the application of a Systems-Serology-guided dissec-

tion of natural humoral immune profiles that emerge in Ebola

virus survivors and vaccinees may provide insights into the

immunological correlates and mechanisms of protection that

may help guide future vaccine efforts.

Thus, in this article, Systems Serological profiling provides a

novel approach for the dissection of four HIV vaccine regimen

profiles at unprecedented depths and a framework for dissecting

the immune profiles that segregate with previously defined

correlates of risk in efficacy studies. Systems Serology

complements traditional multivariate approaches aimed at

defining independent predictors of vaccine efficacy, aiding in

the identification of Ab function/feature relationships that track

with protective humoral immune profiles. Accordingly, these

relational tools provide an additional powerful method for

comparing the immune profiles of different vaccine groups/out-

comes to provide greater mechanistic insights underlying the re-

lationships of features that may contribute to immune control.

While this analysis included 64 humoral features, many other fea-

tures can be collected, including measures of neutralization, af-

finity, Fc glycosylation, and so forth. Moreover, these techniques

may be expanded to examine the protective/immunopatholog-

ical role of Abs in non-infectious disease settings, including ma-

lignancies and/or autoimmunity, as well as how Abs may differ

among gender, ethnicity, and age. Thus, this study lays the

groundwork for the evaluation, deep characterization, and com-

parison of polyclonal vaccine profiles for many future vaccines,

for which correlates of protective immunity are still elusive.

EXPERIMENTAL PROCEDURES

Vaccine Samples

RV144 (Rerks-Ngarm et al., 2009): plasma samples from 30 vaccinated sub-

jects at week 26 (2 weeks after the final vaccination) were provided by the Mil-

itary HIV Research Program (MHRP). RV144 case:control study data were pro-

vided by the RV144 study team. Serum samples from 30 vaccinated subjects

at month 30.5 (2 weeks after the final vaccination) were provided by the Global

Solutions for Infectious Disease (GSID). HVTN204 (Churchyard et al., 2011):

Serum samples from 30 vaccinated subjects at 2 weeks after the final vaccina-

tion were provided by the National Institute of Allergy and Infectious Diseases

(NIAID) HIV Vaccine Trials Network (HVTN). IPCAVD 001 (Barouch et al.,

2013a): Serum samples from 30 vaccine subjects at 2 weeks after the final
Figure 6. Defining Novel Signatures of Protection in the RV144 Case:C

(A) The PLSDA shows the distribution of all case:control data, including all infecte

101 humoral features (described in Table S3). LV1 accounted for 68.1%of all varia

4.5% of the variance.

(B) Further insights into the distribution of IgA gp120, IgG V1V2, and IgG3 V1V

differences in feature distribution among the infected and uninfected vaccinees.

(C) The scatterplot, in the central panel, represents the bivariate distribution o

distributions for unidimensional reference. The blue and red dash-lined boxes rep

risk, blue) or the highest ratio of cases:controls (high risk, red).

(D and E) LASSO and PLSDA identified nine features that split low- and high-risk

LV2 captured 70.4% of the X variance and 30.1% of the Y variance, respectively

(F and G) Correlation networks were generated for both the low-risk (F) and high

See also Figures S2 and S3 and Table S3.
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vaccination were provided by Dan Barouch. Detailed descriptions of each vac-

cine are included in the Supplemental Information.

Purifying Bulk IgG

IgG was purified from all vaccine plasma and serum samples using Melon Gel

columns according to the manufacturer’s instructions (Thermo Scientific), and

the concentration was calculated using a human IgG ELISA kit (Mabtech).

Ab-Functional Profiling

The following assays were performed to functionally profile the Fc-effector

functions of all vaccine Abs. In order to assess ADCP, a THP-1-based

ADCP assay was performed as previously described (Ackerman et al.,

2011). ADCC was assayed using a modified rapid fluorescent ADCC

(RFADCC), as previously described (Gómez-Román et al., 2006); (Chung

et al., 2014b). ADCD was assessed via the measurement of complement

component C3b deposition on the surface of target cells. Ab-dependent

NK cell degranulation and cytokine/chemokine secretion were measured us-

ing the CEM-NKr CCR5+ T-lymphoblast cell line pulsed with vaccine-specific

gp120 (60 mg/ml), as previously described (Chung et al., 2014b). Detailed

methods of each functional assay are described in the Supplemental

Information.

Ab Biophysical Profiling

The following assays were performed to assess the biophysical profile of

each of the vaccine Ab samples. Ab affinity for FCGRs was determined using

surface plasmon resonance as previously described (Chung et al., 2014a),

while a customized Luminex isotype assay was used to quantify the relative

concentration of each Ab isotype to a panel of HIV-specific Abs. Detailed

methods of each of these profiling tools are included in the Supplemental

Information.

Identification of Vaccine-Specific Signatures with LASSO and

PLSDA

The minimum signature of Ab features and functional parameters useful

for differentiating vaccine groups were identified using the LASSO method

(Tibshirani, 1997) and implemented using MATLAB software (version 2014a,

MathWorks). PLSDA (Arnold et al., 2015; Lau et al., 2011) assessed the predic-

tive ability of LASSO-selected biomarkers for classifying vaccine groups.

A detailed description of validation and quality control for this analysis is

included in the Supplemental Information.

Network Interactions

Networks were constructed based on the pairwise correlation coefficients be-

tween all biophysical features and functional responses. Edges between no-

des are weighted using significant correlation coefficients, rij , after correcting

for multiple comparisons (Benjamini-Hochberg q value < 0.05, testing the hy-

pothesis of zero correlation) as follows:

Aij = raij

with a= 6.

To assess the significance of the variable groupings observed in the

network, we calculated the network clustering coefficient for the original
ontrol Data

d and uninfected placebos as well as infected and uninfected vaccinees using

nce, separatingmost placebos from the vaccines, while LV2 only contributed to

2 levels were analyzed using histograms demonstrating unique multi-modal

f IgA gp120 and IgG V1V2 in the vaccines and is framed by the histogram

resent quadrants within the data that constitute the fewest cases:controls (low

profile separation with 97.8% accuracy in cross-validation. Together, LV1 and

.

-risk (G) groups.



network and for 100 randomized networks. Random networks are generated

by randomly swapping edges while preserving the degree of all nodes (de-

gree-preserving edge shuffle) (Figure S2).

RV144 Case:Control Study Data Processing

RV144 case:control study data included results from 281 patients, including

101 Ab features and functional parameters. Specific features used within

this analysis are documented in Table S3. Subjects were categorized into

four groups including: placebo infected, placebo uninfected, vaccine in-

fected, and vaccine uninfected for all analyses. Because IgG3 and IgG

V1V2 levels were highly correlated (Figure S3), vaccinees were classified

based on their IgG V1V2 and IgA levels. A high-risk or low-risk group was

defined as the region of the IgG V1V2 versus IgA plot that contained the few-

est cases or the fewest controls, respectively, in a mutually exclusive manner.

The percentage difference between infected versus uninfected vaccinees

was defined as

P=

�
Ir
It
� Ur

Ut

�
3 100;

where, for any given region, r, the percentage of infected people, Ir, over the

infected population, It, was calculated, as well as for uninfected individuals.

The enriched region, with the highest P was defined as the high-risk group,

whereas the region with the lowest P was defined as the low-risk group.

Fisher’s exact test was used to estimate the significance of the enriched region

from a null hypothesis.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.cell.2015.10.027.
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