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The elliptic gamma function is a generalization of the Euler gamma function and
is associated to an elliptic curve. Its trigonometric and rational degenerations are
the Jackson q-gamma function and the Euler gamma function, respectively. The
elliptic gamma function appears in Baxter's formula for the free energy of the eight-
vertex model and in the hypergeometric solutions of the elliptic qKZB equations.
In this paper, the properties of this function are studied. In particular we show that
elliptic gamma functions are generalizations of automorphic forms of G=SL(3, Z)
_ Z3 associated to a non-trivial class in H 3(G, Z). � 2000 Academic Press

1. INTRODUCTION

This paper deals with the properties of the elliptic gamma function, an
elliptic generalization of the Euler gamma function. It is the meromorphic
function of three complex variables z, {, _, with Im {, Im _>0 defined by
the convergent infinite product

1(z, {, _)= `
�

j, k=0

1&e2?i(( j+1) {+(k+1) _&z)

1&e2?i( j{+k_+z) .

It is the unique solution of a functional equation involving a Jacobi theta
function: Let for z, { # C with Im {>0, %0 denote the theta function

%0(z, {)= `
�

j=0

(1&e2?i(( j+1) {&z))(1&e2?i( j{+z)).
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Then the elliptic gamma function may be characterized as follows.

Theorem 1.1. Suppose that {, _ are complex numbers with positive
imaginary part. Then u(z)=1(z, {, _) is the unique meromorphic solution of
the difference equation

u(z+_)=%0(z, {) u(z)

such that:

(i) u(z) obeys u(z+1)=u(z) and is holomorphic on the upper half
plane Im z>0,

(ii) u(({+_)�2)=1.

This theorem is proved in 3.1 below.
The elliptic gamma function was introduced by Ruijsenaars [R]. Similar

double products appeared earlier in statistical mechanics. Probably the first
(implicit) appearance of the elliptic gamma function in this context is in
Baxter's formula [B] for the free energy of the eight-vertex model. This
model has four parameters, which can be taken to be cB , xB , qB , zB in
Baxter's notation (to which we add a subscript B to avoid conflicts with
our notations); see [B, Eqs. (D1)�(D8)]. If we set cB=c, qB=e2?i{,
xB=e2?i_, zB=e2?iu, then the free energy (times the inverse temperature) is
f (c, u, {, _)=&ln c&ln Z(u, {, _) where Z can be expressed in terms of
theta and elliptic gamma functions:

Z(u, {, _)=
%0(_&u, 2{) %0(_+u, 2{) 1(_&u, {, 4_) 1(_+u, {, 4_)

%0({, 2{) %0(2_, 2{) 1(3_&u, {, 4_) 1(3_+u, {, 4_)
.

The elliptic gamma function and similar double and even triple infinite
products appear in correlation functions of the eight-vertex model [JMN,
JKKMW] and boundary spontaneous magnetization at corners of the
Ising model [DP].

Our own interest in the elliptic gamma functions arose from the study of
hypergeometric solutions of elliptic qKZB difference equations [FTV, FV].
In these solutions the role of powers of linear functions appearing in the Gauss
hypergeometric function is played by ratios of elliptic gamma functions.

In this paper, after reviewing some well-known properties of the theta
function %0 , we derive several identities for elliptic gamma functions. The
most remarkable identities are the ``modular'' three-term relations of
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Theorem 4.1, which connect values of 1 at points related by SL(3, Z) act-
ing on the periods ({, _) by fractional linear transformations. For example,
there is a polynomial Q(z; {, _) of degree three in z whose coefficients are
rational functions of {, _ such that

1(z�_, {�_, &1�_)=ei?Q(z; {, _) 1((z&_)�{, &1�{, &_�{) 1(z, {, _).

These identities have an interpretation in terms of a generalization of
Jacobi modular forms: 1 may be interpreted as the value of generators of
an ``automorphic form of degree 1'': just as the theta function %0 is a
``degree 0'' automorphic form associated to a 1-cocycle in H1(G, M) where
G=SL(2, Z) _ Z2 an M=exp 2?iQ({)[z], the elliptic gamma function
defines a ``degree 1'' automorphic form associated to a 2-cocycle in
H2(G, M) with G=SL(3, Z) _ Z3 and M=exp 2?iQ({, _)[z]. See Section
7 for a more precise statement.

The modular identities have interesting degenerations: limiting ver-
sions relate the gamma functions at points where the periods are linearly
dependent over the rationals to the Euler dilogarithm function (Theorems
5.2, 5.4, 5.5). On the other hand, in the semiclassical limit = � 0 the ``phase
function'' 1(z+=, {, 2=�;)�1(z&=, {, 2=�;) tends to %0(z, {);, and the
modular identities reduce to the Jacobi modular properties of theta func-
tions, see Section 6.

One intriguing aspect of the elliptic gamma function, which is a priori
defined for periods {, _ in the upper half plane, is that it may be extended,
by a simple reflection, to a function of {, _ # C&R in such a way that all
identities remain true. Moreover the elliptic gamma function also has a
limit as { or _ (but not both) approach, from either side, a subset X of full
Lebesgue measure of the real axis, see Theorem 3.5. This subset contains all
irrational algebraic real numbers.

The paper is organized as follows. In Section 2 we review some well-
known properties of the odd Jacobi theta function. Then in Section 3 we
introduce the elliptic gamma function: after giving its definition and its
elementary properties, we study its trigonometric and rational degenera-
tions. Then we derive a summation formula that allows us to study the
limit as one approaches the real axis. The modular properties of the elliptic
gamma function are given in Section 4. The properties of the elliptic
gamma function at special values of its arguments are studied in Section 5.
There the relation to dilogarithms appears. In Section 6 we study the semi-
classical limit, in which the identities of elliptic gamma functions reduce to
differential and difference equations obeyed by powers of theta functions.
In the last section we introduce the notion of automorphic forms of degree
1 and relate the modular identities satisfied by gamma functions to these
automorphic forms and to the cohomology of SL(3, Z)_Z3.
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2. THETA FUNCTIONS

2.1. The theta function. Jacobi's first theta function is defined by the
series

%(z, {)=& :
j # Z

ei?{( j+1�2)2+2?i( j+1�2)(z+1�2), z, { # C, Im {>0.

It is an entire holomorphic odd function such that

%(z+n+m{, {)=(&1)m+n e&?im2{&2?imz %(z, {), m, n # Z, (1)

and obeys the heat equation

4?i
�
�{

%(z, {)=%"(z, {). (2)

Its transformation properties with respect to SL(2, Z) are described in
terms of generators by the identities:

%(&z, {)=&%(z, {), %(z, {+1)=e(i?�4) %(z, {),

% \z
{

, &
1
{+=&i - &i{ ei?z2{%(z, {).

The square root is the one in the right half plane.

2.2. Infinite products. Let x, q # C with |q|<1. The function

(x; q)= `
�

j=0

(1&xq j)

is a solution of the functional equation

(qx; q)=
1

1&x
(x; q).

Using the identity

1& y=exp \& :
�

j=1

y j� j+ , | y|<1, (3)

and summing the geometric series yields the summation formula

(x; q)=exp \& :
�

j=1

x j

j(1&q j)+ , |x|<1, |q|<1. (4)
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2.3. Product representation of theta functions. Let x=e2?iz and q=e2?i{.
Then we have the Jacobi triple product identity

%(z, {)=ie?i({�4&z)(x; q)(q�x; q)(q; q). (5)

In particular we have %$(0, {)=2?'({)3, with '({)=e?i{�12 (q; q) the
Dedekind function.

From the modular properties of %, we deduce the modular properties of
the Dedekind function: '({+1)=e?i�12'({) and '(&1�{)=(&i{)1�2 '({) (up
to a third root of unity, which is 1, as one sees by setting {=i).

We will also need

%0(z, {)=(x; q)(q�x; q)=&i
e?i(z&{�4)

(q; q)
%(z, {).

This function obeys

%0(z+1, {)=%0(z, {),

%0(z+{, {)=&e&2?iz%0(z, {), (6)

%0({&z, {)=%0(z, {).

Its modular properties follow from those of % and ': they are %0(z, {+1)=
%0(z, {), and if z$=z�{, {$=&1�{,

e?i({�6&z)%0(z, {)=ie?i(&zz$+{$�6&z$) %0(z$, {$). (7)

The summation formula (4) implies

%0(z, {)=exp \&i :
�

j=1

cos ?j(2z&{)
j sin ?j{ + , 0<Im z<Im {. (8)

3. ELLIPTIC GAMMA FUNCTIONS

3.1. Definitions and elementary properties. Here we consider two
parameters { and _ in the upper half plane, and set q=e2?i{, r=e2?i_, and
consider the function of x=e2?iz,

(x; q, r)= `
�

j, k=0

(1&xq jrk)=(x; r, q)
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It is a solution of the functional equations

(qx; q, r)=
(x; q, r)

(x; r)
, (rx; q, r)=

(x; q, r)
(x; q)

. (9)

For |x|<1, we have the formula

(x; q, r)=exp \& :
�

l=1

xl�l(1&ql)(1&r l)+ . (10)

It is obtained as (4) by expanding the logarithm in a Taylor series in x and
then summing the resulting geometric series.

The elliptic gamma function is

1(z, {, _)=
(qr�x; q, r)

(x; q, r)
.

Theorem 3.1.The elliptic gamma function obeys the identities

1(z, {, _)=1(z, _, {), (11)

1(z+1, {, _)=1(z, {, _), (12)

1(z+_, {, _)=%0(z, {) 1(z, {, _), (13)

1(z+{, {, _)=%0(z, _) 1(z, {, _), (14)

and is normalized by 1(({+_)�2, {, _)=1. As a function of z, 1(z, {, _) is a
meromorphic function whose zeros and poles are all simple. The zeros are at
z=( j+1) {+(k+1) _+l, and the poles are at z=&j{&k_+l, where j, k
run over nonnegative integers and l over all integers.

Proof. It is obvious that 1 is symmetric under interchange of { and _
and is 1-periodic. The remaining identities follow from 9. The zeros of
(x; q, r) are at x=q& j r&k, j, k=0, 1, 2, ... . This implies the statement about
zeros and poles. K

Proof of Theorem 1.1. It remains to prove uniqueness. The point is that
u(z)=1(z, {, _) has no zeros in the strip 0<Im z<Im _+=, for some
=>0. If v(z) is another 1-periodic solution, holomorphic in the upper half
plane, then v(z)�u(z) is a doubly periodic function with periods 1 and _. It
is holomorphic in the same strip and thus, by periodicity, a bounded entire
function. By Liouville's theorem, v�u is thus constant, which implies our
claim. K
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Finally, we mention some elementary identities, which may be thought
of as the analogues of the classical formula 1(1&z) 1(z)=?�sin(?z):

Proposition 3.2.

1(z, {, _) 1(_&z, {, _)=
1

%0(z, _)
,

1(z, {, _) 1({&z, {, _)=
1

%0(z, {)
,

1(z, {, _) 1({+_&z, {, _)=1.

3.2. Trigonometric and rational limit. We have the trigonometric and
rational limit of the theta function:

%0(_s, {)
%0(_, {)

ww�
{ � i� 1&e2?i_ s

1&e2?i_ ww�
_�0 s.

Let 1� be the function

1� (s, {, _)=
(r; r)
(q; q)

%0(_, {)1&s 1(_s, {, _), q=e2?i{, r=e2?i_.

Then u(s)=1� (s, {, _) is a solution of the functional equation

u(s+1)=
%0(_s, {)
%0(_, {)

u(s).

The normalization was chosen here so that u(1)=1. As { � i� we recover
F. H. Jackson's q-gamma function,

1trig(s, _)= lim
{ � i�

1� (s, {, _)=(1&r)1&s (r; r)
(rs; r)

.

This function obeys the functional equation 1trig(s+1, _)= 1&e2?i_ s

1&e2?i_ 1trig(s, _),
and degenerates to the Euler gamma function 1Euler(s)=��

0 ts&1e&t dt:

lim
_ � 0

1trig(s, _)=1Euler(s).

See [A] for an account of the properties of the q-gamma function.
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3.3. The summation formula. From (10) we get

1(z, {, _)=exp \&
i
2

:
�

j=1

sin(?j(2z&{&_))
j sin(?j{) sin(?j_) + . (15)

The region of absolute convergence of this series also include points where
{ or _ do not have positive imaginary part. If {, _ # C&R, then the series
converges absolutely if and only if

|Im(2z&{&_)|<|Im({)|+|Im(_)|. (16)

Whenever both sides of the equations are in the region of convergence of
this series we then clearly have

1(z, &{, _)=1(_&z, {, _), 1(z, {, &_)=1({&z, {, _).

These formulae can be used to extend the definition of the elliptic gamma
function for _, { # C&R, as we do in the next subsection.

3.4. Extending the range of parameters. Since many operations we per-
form do not preserve the upper half plane, it is important to extend the
range of values { and _ can take. We set

(x; q&1)=
1

(qx; q)
, (x; q&1, r)=

1
(qx; q, r)

(x; q, r&1)=
1

(rx; q, r)
. (17)

These formulae define a unique extension of the functions (x; q), (x; q, r) to
meromorphic functions on [(x, q, r) | |q|{1{|r|] obeying 17. It is clear
that the functional relations

(qx, q)=
1

1&x
(x, q), (qx; q, r)=

1
(x; r)

(x; q, r),

still hold in this larger domain. Correspondingly, we extend the definition
of %0 and the elliptic gamma function by using the same formulae in terms
of the infinite products. We obtain:

%0(z, &{)=
1

%0(z+{, {)
,

1(z, &{, _)=
1

1(z+{, {, _)
,

1(z, {, &_)=
1

1(z+_, {, _)
.

A straightforward check gives the following result:
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Theorem 3.3. The identities (6) for %0 hold for all { # C&R. The iden-
tities of Theorem 1.1 and Prop. 3.2 for 1 and %0 hold for all z # C,
{, _ # C&R whenever both sides are defined. The summation formula (15) is
valid for all z # C, {, _ # C&R such that the sum converges absolutely.

However, the statements about the position of zeros and poles are no
longer valid.

3.5. Approaching the real axis. Here we notice that the series (15)
actually also converges for certain real values of { or _. Indeed let, for any
:>1, X: denote the set of real numbers { such that mink # Z | j{&k|> j&:

for all but finitely many integers j>0. By Khintchin's theorem (see, e.g.,
[C, Chapt. VII]), X: , and therefore also X=�:>1 X: , is the complement
in R of a set of Lebesgue measure zero. The set X contains in particular all
irrational algebraic numbers. For { # X, one has, for some :>1, the bound
|sin(?j{)|� j&: for all sufficiently large j. Therefore, the series is also
absolutely convergent if

{ # X, |Im(2z&_)|<|Im _|,

or, by symmetry, if

_ # X, |Im(2z&{)|<|Im {|.

These results may be summarized as follows.

Proposition 3.4. Let X=�:>1 [{ # R | mink # Z | j{&k|> j&:, \j>>1].
Then N=R&X has Lebesgue measure zero and the series appearing in (15)
converges absolutely for all {, _ # C&N and z # C obeying

|Im(2z&{&_)|<|Im({)|+|Im(_)|.

A more precise result is the following ``wall crossing theorem'', which
shows that the values of 1(z, {, _) for real { are obtained as suitable limits
from either side.

Theorem 3.5. Let X be the subset of the real line of Prop. 3.4. and sup-
pose that { # X and |Im(2z&_)|<|Im _|. Then, as a function of = # R,
1(z, {+i=, _), as given by the convergent series (15) is continuous at ==0.

Proof. We need to estimate the terms in the sum (15) uniformly in =.
Let us assume for definiteness that =�0. The case =�0 is treated in the
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same way. If |Im x|�$>0, we have c($) exp( |Im x| )�|sin x|�
exp( |Im x| ), with 0<c($)=1&e&2 $<1. This implies the bound on the j th
term of (15):

} sin(?j(2z&{&i=&_))
j sin(?j({+i=)) sin(?j_) }�c(? |Im _| )&1 e?j( |Im(2z&_)&=|&|Im _| )

j sin ?j({+i=)
.

Let :, N be such that mink # Z | j{&k|> j&:, \j�N. The next step is to find
a lower bound for sin ?j({+i=) for j�N. This is done in two different ways
depending on whether j= is small or large.

(a) If sinh ?j=� j&: e?=j, the triangle inequality can be used in the
form

|sin ?j({+i=)|= 1
2 |e?i{j&?=j&e&?i{j+?=j|

� 1
2 |e?i{j&e&?i{j| e?=j& 1

2 |e?=j&e&?=j|

=|sin ?{j | e?=j&sinh ?=j. (18)

Let k # Z so that |{j&k|�1�2. By using |sin ?x|�2 |x| for &1�2�x�1�2,
we get |sin ?{j |=|sin ?({j&k)|�2j&:. Thus

|sin ?j({+i=)|�2j&:e=?j&sinh ?=j� j&: e=?j.

(b) If sinh ?j=� j&: e?=j, the triangle inequality implies

|sin ?j({+i=)|= 1
2 |e?i{j&?=j&e&?i{j+?=j|

� 1
2 ( |e&?i{j+?=j|&|e?i{j&?=j| )

=sinh ?=j� j&:e?=j

In both cases (a) and (b) we get the lower bound

|sin ?j({+i=)|� j&:e?=j,

for all j�N. Therefore we have the uniform bound on the j th term of the
series

} sin(?j(2z&{&i=&_))
j sin(?j({+i=)) sin(?j_) }�c(? Im _)&1 j :&1e?j( |Im(2z&_)|&|Im _| )

for all j�N. The sum over j of this expression converges if
|Im(2z&_)|�|Im _|. So our series is bounded, for all =, by a single
absolutely convergent series. It follows that the sum is a continuous func-
tion of =.
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4. MODULAR PROPERTIES

We consider the transformation properties of the elliptic gamma function
under modular transformations of _ and {. We have the identities

Theorem 4.1. Suppose that {, _, _�{, {+_ # C&R. Let

Q(z; {, _)=
z3

3{_
&

{+_&1
2{_

z2+
{2+_2+3{_&3{&3_+1

6{_
z

+
1

12
({+_&1)({&1+_&1&1).

Then

1(z, {+1, _)=1(z, {, _+1)=1(z, {, _), (18)

1(z, {+_, _)=
1(z, {, _)

1(z+{, {, _+{)
, (19)

1(z�_, {�_, &1�_)=ei?Q(z; {, _)1((z&_)�{, &1�{, &_�{) 1(z, {, _), (20)

1(z�{, &1�{, _�{)=ei?Q(z; {, _)1((z&{)�_, &{�_, &1�_) 1(z, {, _). (21)

Proof. We give the proof of these identities in the domain where the
second and third arguments of all gamma functions have positive
imaginary part, so that the gamma functions are defined by the product
formula. The general case is reduced to this case by inserting the definitions
of 3.4, as a straightforward check shows. The first two identities are
obvious, the third follows from the identity

(x; qr, r)(qx; q, qr)=(x; q, r),

which is easy to check. The last identity is obtained from (21) by exchang-
ing { and _ and using the symmetry (11).

To prove (21), we show that the ratio between the two sides of the equa-
tion is a triply periodic meromorphic function and is therefore constant,
and determine the constant by evaluating the ratio at a special value.

Let A(z; {, _) be the ratio

1 \z
_

,
{
_

, &
1
_+

1 \z&_
{

, &
1
{

, &
_
{+ 1 (z, {, _)

.
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We have

A(z&1; {, _)
A(z; {, _)

=
%0\z

_
,

{
_+

%0\z&_
{

, &
_
{+

=ie?i(&{�6_+z�_&_�6{&z�{&z2�{_)

%0\z
{

, &
_
{+

%0\z&_
{

, &
_
{+=exp(?iP(z; {, _)),

with

P(z, {, _)=&
z2

{_
+z({&1+_&1)&

_
6{

&
{

6_
&

1
2

=P(z, _, {).

Similarly, we find

A(z+{; {, _)
A(z; {, _)

=exp(?iP(z; &1, _)),

A(z+_; {, _)
A(z; {, _)

=exp(?iP(z; {, &1)).

The polynomial Q is designed to compensate for these terms. This is most
easily seen by setting Q(z; {, _, \)=Q(&z�\; &{�\, &_�\) which is sym-
metric in {, _, \ and obeys

Q(z+{; {, _, \)=Q(z; {, _, \)+P(z; _, \).

By using this identity for permutations of {, _, \, with \=&1, we deduce
that Ae&?iQ is a triply periodic meromorphic function of z and is thus con-
stant. To compute this constant, we set z=({+_&1)�2. Then all gamma
functions are equal to one, and Q(z; {, _)=0. Thus the constant is one. K

5. SPECIAL VALUES

Here we consider the degeneration of our three term relations when the
periods {, _ are linearly dependent. The simplest case is when {=_. Then
we can write the gamma function as

1 (z, {, {)= `
�

j=0
\1&e&2?izq j+2

1&e2?izq j +
j+1

, q=e2?i{.
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To express the result we need to recall a simple property of the dilogarithm
function.

Proposition 5.1. Let Li2(x)=��
j=1 (x j�j2) be the dilogarithm and let

for Im t<0,

�(t)=exp \t ln(1&e&2?it)&
1

2?i
Li2(e&2?it)+ ,

where the branch of the logarithm is determined by ln(1&x)=&��
1 x j� j,

( |x|<1). Then �(t) has an analytic continuation to a meromorphic function
on the complex plane. It has a zero of order n at t=n and a pole of order
n at t=&n (n=1, 2, ...) and no other zeros or poles. Moreover � obeys the
functional equation

�(t+1)=(1&e&2?it) �(t),

and the estimate

�(t)=1+0(|Im t| e&2? |Im t|),

as Im t � &�.

Proof. It is clear that the Taylor series defines a holomorphic function
on the lower half plane obeying the functional equation. The singularities
on the real axis can be studied using the integral representation of the
dilogarithm:

�(t)=exp \2?i |
&i�

t

s ds
e2?is&1+ .

This well-known formula may be checked by expanding the geometric
series in the integrand and integrating term by term. From this formula we
see that the only potential singularities of the argument of the exponential
function are at integer values of t. At t=0, however, the function is regular
(�(0)=exp i?�12). The functional equation then implies the statement
about zeros and poles. In particular � is single-valued at the singularities,
so that the integral representation defines a meromorphic function with no
other zeros or poles.

The estimate follows from the inequalities |ln(1&x)|�2 |x|, if |x| is
sufficiently small and |Li2(x)|�|x| ��

1 1� j2 if |x|�1. K
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Theorem 5.2. Let Im {>0 and z # C&(Z+{Z). Then

1(z, {, {)=
e&?iQ(z; {, {)

%0\z
{

, &
1
{+

`
�

k=0

�\k+1+z
{ +

�\k&z
{ +

.

The infinite product is convergent thanks to the estimate of Prop. 5.1
The following calculation is not a completely rigorous proof of this

theorem, but it is more transparent than the correct proof, which consists
of showing that the ratio between left and right-hand side is an entire
doubly periodic meromorphic function taking the value 1 at a special point.

We start from the three term relation for 1.

1(z, {, _)=e&?iQ(z; {, _)

1\z
{

, &
1
{

,
_
{+

1 \z&{
_

, &
1
_

, &
{
_+

=
e&?iQ(z; {, _)

%0 \z
_

, &
1
_+

1 \z
{

, &
1
{

,
_
{+

1 \z
_

, &
1
_

, &
{
_+

.

Let us take the limit _ � {. The limit of the ratio of gamma function is
delicate. Set _={(1+=) and introduce multiplicative variables:

q1=e&2?i�{,
r2=e&2?i{�_,

q2=e&2?i�_,
x1=e2?iz�{,

r1=e2?i_�{,
x2=e2?iz�_.

Then, by the summation formula,

ln
1 \z

{
, &

1
{

,
_
{+

1 \z
_

, &
1
_

, &
{
_+

=& :
�

j=1

(q1r1�x1) j&x j
1

j(1&q j
1)(1&r j

1)

+ :
�

j=1

(q2r2 �x2) j&x j
2

j(1&q j
2)(1&r j

2)
.

We now expand the various terms around ==0. We get

q2=q1 \1+
2?i
{

=++O(=2), r1=1+2?i=+O(=2),

r2=1+2?i=+O(=2), x2=e2?iz�{ \1&2?i
z
{

=+ .
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The singular terms have the expansion

1
1&r j

1

=&
1

2?ij=
+

1
2

+O(=) ,

1
1&r j

2

=&
1

2?ij=
&

1
2?ij

+
1
2

+O(=) .

Inserting this in the summation formula yields

ln
1 \z

{
, &

1
{

,
_
{+

1 \z
_

, &
1
_

, &
{
_+

=&:
�

1

q j
1 x& j

1 \1
{

+
z
{+

j(1&q j
1)

&:
�

1

x j
1

j(1&q j
1)

}
z
{

&:
�

1

q j
1x& j

1 &x j
1

2?ij2(1&q j
1)

&:
�

1

q j
1 x& j

1 &x j
1

j(1&q j
1)2 }

q j
1

{
+O(=).

After expanding the denominators into geometric series and exchanging the
summations, the sums over j become Taylor series for (di)logarithms. The
result is the formula of the theorem.

Corollary 5.3. Let { � 0 on a ray [s{0 | s>0] with Im({0)>0 and let
z=u+v{0 with &1<u<0, v # R be fixed. Then

1(z, {, {)=e&?iQ(z; {, {)(1+O(e&c�Im {))

for some c>0 depending on z, {0 .

Remark. As { � 0 along this ray, the zeros and poles of 1(z, {, {) as a
function of z accumulate on the lines n+s{0 , n # Z, s # R. The assumption
on z means that z lies between two lines. One can relate this case to the
more general case of z between any two other lines by using the fact that
1(z, {, {) is 1-periodic.

Proof of Corollary 5.3. The assumption on z implies that the arguments
of the � functions in Theorem 5.2 obey

Im
k+1+z

{
=(k+1+u) Im

1
{

, Im
k&z

{
=(k&u) Im

1
{

,

Since Im(1�{) � &� and k+1+u, k&u>0 for all k=0, 1, 2, ..., we can
use the estimate of Prop. 5.1 to show that the product of ratios of � func-
tions tends to 1 as { � 0 with an error term that is smaller than c1 e&c�Im {

for some constants c1 , c>0. Similarly %0 tends to one, and we are left with
the exponential of Q. K
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More generally, one can find similar formulae when the periods {, _ are
linearly dependent over the rationals. The following two theorems reduce
(in different ways) this computation to the case studied above.

Theorem 5.4. Let a, b be positive integers. Then

1(z, a{, b{)= `
b&1

r=0

`
a&1

s=0

1(z+(ar+bs) {, ab{, ab{).

Proof. Let q=e2?i{, x=e2?iz. Then

1 (z, a{, b{)=
(qa+bx&1; qa, qb)

(x; qa, qb)
.

We first prove an identity for double products

(x; qa, qb)= `
�

j, k=0

(1&xqaj+bk)

= `
b&1

r=0

`
a&1

s=0

`
�

j, k=0

(1&xqa(r+bj)+b(s+ak))

= `
b&1

r=0

`
a&1

s=0

(xqar+bs; qab, qab).

If we replace x by qa+bx&1 in this identity and change variables
r � b&1&r, s � a&1&s, we obtain

(qa+b x&1; qa, qb)= `
b&1

r=0

`
a&1

s=0

(x&1 q2ab&ar&bs; qab, qab).

Taking the ratio we get the desired identity for gamma functions. K

Examples.

1. 1(z, {, 3{)=1(z, 3{, 3{) 1(z+{, 3{, 3{) 1(z+2{, 3{, 3{).

2. 1(z, 2{, 3{)=>j # [0, 2, 3, 4, 5, 7] 1(z+ j{, 6{, 6{)

3. Setting a=b and rescaling { we get

1(z, {, {)= `
2(a&1)

j=0

1(z+ j{, a{, a{)a&| j&a+1|.
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Inserting the formula of Theorem 5.2 into the formula of Theorem 5.4
yields an expression for 1(z, a{, b{) in terms of dilogarithms. As an applica-
tion we can compute from Corollary 5.3, the asymptotics of the infinite
products

1(z, a{, b{)= `
�

j=0
\1&q j+a+be&2?iz

1&q je2?iz +
Na , b( j)

.

Here Na, b( j) denotes the number of ways j can be written as j=ar+bs
with r, s nonnegative integers. We have, as { � 0 as in Corollary 5.3,

1(z, a{, b{)=e&?i � b&1
r=0 � a&1

s=0 Q(z+(ar+bs) {; ab{, ab{)(1+O(e&c�Im {)).

Theorem 5.5. Let the greatest common divisor of natural numbers a, b
be 1. Consider the function

1(z, a{, b{)= `
�

j=0
\1&q j+a+be&2?iz

1&q je2?iz +
Na , b( j)

,

where Na, b( j) denotes the number of ways j can be written as j=ar+bs with
r, s nonnegative integers. Then

1(z, a{, b{)ab=1(z, {, {) `
ab&1

k=0

%0(z+k{, ab{):k,

where :k=&ab+k+1 if k=ar+bs for some integers r, s�0 and
:k=k+1 if k cannot be represented in this form.

Example.

1(z, 2{, 3{)6=1(z, {, {) %0(z, 6{)&5 %0(z+{, 6{)2 %0(z+2{, 6{)&3

_%0(z+3{, 6{)&2 %0 (z+4{, 6{)&1 .

To prove the Theorem we shall use the following Lemma.

Lemma 5.6. Let k # [0, ..., ab&1].

1. If k=ar+bs for some integers r, s�0, then ab&k cannot have the
form ab&k=a(i+1)+b( j+1) for some integers i, j�0.

2. If k cannot be represented in the form k=ar+bs for some integers
r, s�0, then ab&k=a(i+1)+b( j+1) for some integers i, j�0.
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Proof of the lemma. If k=ar+bs and ab&k=a(i+1)+b( j+1), then
ab=a(r+i+1)+b(s+ j+1). Since a, b are relatively prime, this leads to
a contradiction. Part 1 is proved.

If k cannot be represented in the form k=ar+bs for some integers r, s�0,
then k can be represented in the form k=ar$+bs$ where 0<r$<b, s$<0.
This gives the desired representation for ab&k, ab&k=a(b&r$)&bs$. Part 2
is proved.

Proof of Theorem 5.5. We have

1(z, a{, b{)ab= `
ab&1

k=0

`
�

s=0

(1&qab(s+1)q&ke&2?iz)ab;k , s

(1&qabsq ke2?iz)ab#k , s
,

where ;k, s is the number of ways ab(s+1)&k can be written as ab(s+1)&k=
a(i+1)+b( j+1) with nonnegative integers i, j and #k, s is the number of ways
abs+k can be written as abs+k=ai+bj with nonnegative integers i, j.
It is easy to see that ;k, s=s+;k, 0 and #k, s=s+#k, 0 . By the Lemma,
;k, 0+#k, 0=1. Notice also that :k=k+1&ab#k, 0 .

Thus we have

1(z, a{, b{)ab= `
ab&1

k=0

`
�

s=0

(1&qab(s+1)q&ke&2?iz)ab(s+1)&ab#k , 0

(1&qabsqke2?iz)abs+ab#k , 0

= `
ab&1

k=0
\ `

�

s=0

(1&qab(s+1)q&ke&2?iz)(1&qabsqke2?iz)+
k+1&ab#k , 0

_ `
ab&1

k=0

`
�

s=0

(1&qab(s+1)q&ke&2?iz)ab(s+1)&k&1

(1&qabsqke2?iz)abs+k+1

=1(z, {, {) `
ab&1

k=0

%0(z+k{, ab{):k .

The theorem is proved.

6. THE PHASE FUNCTION AND THE SEMICLASSICAL LIMIT

Here we introduce the ``phase function'', which is the ratio of elliptic
gamma functions appearing in hypergeometric integrals [FTV]. It obeys
identities which are direct consequences of the identities for elliptic gamma
functions. We discuss the phase function here since it has a semiclassical
limit in which the identities reduce to more familiar differential equations
and modular properties of theta functions.
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We keep the notation of 3.1 and introduce a new variable a, setting
:=e2?ia. The phase function is defined as the ratio

0a(z, {, _)=
1(z+a, {, _)
1(z&a, {, _)

=
(qr�x:; q, r)(x�:; q, r)
(x:; q, r)(qr:�x; q, r)

. (22)

The following identities are direct translations of identities for gamma
functions:

0a(z+_, {, _)=
%0(z+a, {)
%0(z&a, {)

0a(z, {, _), (23)

0a(z+{, {, _)=
%0(z+a, _)
%0(z&a, _)

0a(z, {, _), (24)

0a(z+1, {, _)=0a(z, {, _). (25)

The modular properties of this function also follow directly from those of
the gamma function. In particular

0a(z, {+_, _)=
0a(z, {, _)

0a(z+{, {, _+{)
, (26)

0a(z, {+1, _)=0a(z, {, _), (27)

0a�{ \z
{

,
_
{

, &
1
{+=e?i(Q(z+a; {, _)&Q(z&a; {, _) 0a�_ \z&{

_
, &

1
_

, &
{
_+

_0a(z, {, _). (28)

The argument of the exponential function is the polynomial

Ra(z, {, _)=
?ia
3{_

(6z2&6({+_&1) z+2a2+{2+_2+3{_&3{&3_+1).

(29)

The summation formula (15) for 1 implies

0a(z, {, _)=exp \&i :
�

l=1

cos(?l(2z&{&_)) sin(2?la)
l sin(?l{) sin(?l_) + . (30)

By using this formula we can compute the semiclassical limit _ � 0, a � 0
with ;=2a�_ fixed: if 0<Im z<Im { we are in the region of convergence
of the series (30) and we get
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u(z, {)= lim
= � 0

0=(z, {, 2=�;)

=exp \&i :
�

l=1

cos(?l(2z&{))
l sin(?l{)

;+
=%0(z, {);, 0<Im z<Im {;

cf. (8). To avoid discussing cuts we assume here that ; is an integer.
Now the identities for 0 become differential and difference equations for

the limit u(z, {). Eq. (23) is the obvious differential equation u$(z, {)=
;(% $0(z, {)�%0(z, {)) u(z, {), where the derivative with respect to z is denoted
by a prime. By (7) we have in the semiclassical limit

%0(z+=, _)
%0(z&=, _)

� e&?i;(2z&1).

Then from (24), (25) we see that the semiclassical limit exists for almost all
z and has the theta function property

u(z+{, {)=&e&?i;(2z&1)u(z, {), u(z+1, {)=u(z, {).

Therefore the limit is %;
0 for almost all z, {. Let us now consider the semi-

classical limit of (26). Expanding (30) yields 0=(z+{, {, {+2=�;)=
1&2?i= r(z, {)+O(=2), with

r(z, {)= :
�

j=1

cos(2?jz)
sin2(?j{)

.

Therefore both sides of (27) tend to the same limit. But the terms of order
= reduce to the differential equation

�u
�{

=?i;r(z, {) u.

The identity (27) becomes u(z, {+1)=u(z, {). We now turn to (28). Let us
assume that Im _, Im _�{>0, Im {>0. Then all factors in the infinite
products (22) tend to one in the semiclassical limit and we get

0a�_ \z&{
_

, &
1
_

, &
{
_+� 1.
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Therefore, (28) implies in the limit the modular transformation properties
of u:

u(z�{, &1�{)=eR0(z, {) u(z, {).

The expression R0 is (see (29))

R0(z, {)=lim
= � 0

R=(z, {, 2=;&1)=?i; \z2

{
&z+

z
{

+
{
6

&
1
2

+
1
6{+

in agreement with (7).

7. A COHOMOLOGICAL INTERPRETATION

Here we give an interpretation of the modular identities obeyed by ellip-
tic gamma functions. These identities may be formulated in terms of the
cohomology of SL(3, Z) _ Z3 and automorphic forms ``of degree 1''.

7.1. Automorphic forms. Let us first review the well-known theory in
degree zero. First some notational preliminaries. We write all groups multi-
plicatively unless stated otherwise. We denote by [u] the equivalence class
of an element u in a quotient of abelian groups. If G is a group, a G-module
A is an abelian group with a group homomorphism \: G � Aut(A). The
group C j (G, A) of j-cochains is the group of maps ,: G j � A, such that
,(g1 , ..., gj)=1 if some gi=1. One sets C 0(G, A)=A. The differential
$=$j : C j (G, A) � C j+1(G, A) is defined by

$,(g1 , ..., gj+1)=[\(g1) ,(g2 , ..., gj+1)

_ `
j

i=1

,(g1 , ..., gi gi+1 , ..., gj+1) (&1) i
] (&1) j+1

,(g1 , ..., gj),

for j�1 and $0,(g)=,�\(g) , for j=0. The j th cohomology group of G
with coefficients A is then H j (G, A)=Ker $j �Im $ j&1 for j�1 and Ker $0

for j=0.
Suppose now that X is a connected complex manifold with nice action

of a group G, so that X�G is a complex manifold. Let N be the multi-
plicative group of the field of meromorphic functions on X and M be the
subgroup of nowhere vanishing holomorphic functions. These groups are
G-modules, i.e., we have homomorphisms G � Aut(N), G � Aut(M) : g # G
is mapped to the automorphism u [ u(g&1 } ). The group of invariants
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H0(G, N)=N G is identified with the group of non-zero meromorphic func-
tions on X�G. Now let ,: G � M be a 1-cocycle with coefficients M.

We define2 automorphic forms of type , to be functions u # N so that

u(x)=,(g, x) u(g&1x)

or ,=$u in C 1(G, N). The 1-cocycle , is called the factor of automorphy
of the automorphic form u.

Automorphic forms corresponding to cocycles ,1 , ,2=,1 $�, (� #
C0(G, M)) in the same cohomology class in H1(G, M) are in one-to-one
correspondence via u [ �u. Thus it is convenient to consider equivalence
classes of automorphic forms modulo M, which are associated to a coho-
mology class of 1-cocycles: for each [,] # H1(G, M), an automorphic class of
type [,] is a class [u] # (N�M)G=H0(G, N�M) so that [$u]=[,].

The basic properties of automorphic classes can be expressed as follows:
to any short exact sequence 1 � M � N � N�M � 1 of G-modules is
associated the long exact sequence of cohomology groups

} } } � H j (G, M) w�
i* H j(G, N) w�

p* H j (G, N�M) w�
$* H j+1(G, M) w�

i* } } } ,

The image of a class [u] by the connecting homomorphism $
*

is obtained
by viewing any representative u as a cochain u # C j (G, N), and setting
$
*

[u]=[$u],
In our case, with j=0, the set of automorphic classes of type

[,] # H1(G, M) is $
*
&1[,]/H0(G, N�M). Exactness at H1(G, M) tells us

that the factors of automorphy [,] for which there exist automorphic
forms are those in the kernel of i

*
and exactness at H0(G, N�M) implies

that the group H0(G, N) of non-zero meromorphic functions on X acts
transitively on $

*
&1[,].

For example, take G to be the free abelian group on two generators t1 , t2

acting on X=C by t1z=z+1, t2 z=z+{. Then H0(G, N) is the group of
non-zero elliptic functions, %0 represents a class of H0(G, N�M) and
[,]=$

*
[%0] is the class of the 1-cocycle

,(t l
1 tm

2 , z)=
%0(z)

%0(z&l&m{)
=e&?im(2z+1&(m+1) {).

More generally, let H be the upper half plane and let G=SL(2, Z) _ Z2, the
``Jacobi group'', act on X=C_H by (( a

c
b
d)), n� )(z, {)=((z+n1+n2{)�

(c{+d), (a{+b)�(c{+d)). Then one has

%0( y)=,(g, y) %0(g&1y), y # C_H, g # G.
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The factor of automorphy is defined on generators t1 , t2 of Z2 and
S=( 0

&1
1
0), T=( 1

0
1
1) of SL(2, Z) by

,(t2 , z, {)=e&?i(2z&2{+1), ,(S, z, {)=e?i(&z2�{+z&z�{&{�6&1�6{+1�2),

and ,(t1 , z, {)=,(T, z, {)=1. The value of , on arbitrary group elements
is then uniquely determined by the cocycle relation.

Thus %0 is a representative of an automorphic class of type
[,] # H1(G, M).

Let us review the proof that [,] (and thus [%0] # H0(G, N�M)) is a non-
trivial cohomology class by showing that the corresponding first Chern
class is non-trivial. The first Chern class c1([,]) is the image of [,] under
the connecting homomorphism H1(G, M) � H2(G, 2?iZ) in the long exact
sequence associated to 0 � 2?iZ � O(C_H) w�

exp M � 1. Here O(X) is the
additive group of holomorphic functions on X. Then one checks that
c1([,]) is non-trivial by showing that it is sent to a generator of
H2(Z2, 2?iZ)&Z by the map H2(G, 2?iZ) � H2(Z2, 2?iZ) induced by
inclusion. We do this calculation explicitly in degree 1 below.

7.2. Automorphic forms of degree 1. There is an obvious generalization
of these constructions one degree higher: so for G-modules M/N consist-
ing of certain classes of functions on an G-set X we consider the piece

H1(G, N) w�
p* H1(G, N�M) w�

$* H2(G, M) w�
i* H2(G, N)

of the long exact sequence. A degree 1 automorphic class of type [,] #
Ker(i

*
: H2(G, M) � H2(G, N)) is then a class in $

*
&1[,]. Elements of these

equivalence classes we call degree 1 automorphic forms. Degree 1 auto-
morphic classes of type [,] are acted upon transitively by H1(G, N).

We wish to show that %0 , 1 are values on generators of a degree 1
automorphic form for certain modules M, N over SL(3, Z) _ Z3. As above
let us start by considering the translation subgroup Z3.

Proposition 7.1. Fix _, { in the upper half plane. Let G be the free
abelian group on three generators t1 , t2 , t3 acting on C by t1 z=z+1,
t2 z=z+_, t3 z=z+{. Let N be the group of non-zero meromorphic func-
tions on C, and M the subgroup on nowhere vanishing holomorphic functions.
Then

u(t l
1 tm

2 tn
3 , z)= `

m

j=1

%0(z& j_, {)

represents a non-trivial class [u] in H1(G, N�M). It corresponds to the class
$
*

[u] # H2(G, M) of the cocycle

,(t l
1 tm

2 tn
3 , t l $

1 tm$
2 tn$

3 , z)=e?i(nm$(2z+1)&m$n(n+1) {&nm$(m$+1+2m) _).
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Proof. We need to compute

$u(t l
1 tm

2 tn
3 , t l $

1 tm$
2 tn$

3 , z)

=
>m$

j=1 %0(z&l&m_&n{& j_, {) >m
j=1 %0(z& j_, {)

>m+m$
j=1 %0(z& j_, {)

.

Using the transformation properties of %0 under translations by Z+{Z we
see that this coboundary is in M, so that u represents a class in
H1(G, N�M). The class of $u in H 2(G, M) is $

*
[u] and is easily computed

to give the above expression.
To show that the class of u is non-trivial it is sufficient to show that [,]

is non-trivial. To this purpose we compute the analogue of the first Chern
class: let O(C) denote the additive group of holomorphic functions on C.
To the short exact sequence 0 � 2?iZ � O(C) w�

exp M � 1 of G-modules
(with trivial action on 2?iZ) there corresponds a long exact sequence and
in particular a connecting homomorphism

c1 : H2(G, M) � H3(G, 2?iZ)&Z.

We claim that [,] is mapped to a generator under this homomorphism
and thus is non-trivial. The calculation goes as follows: if we write
,(g1 , g2 , z)=exp(R(g1 , g2 , z)), with R the polynomial appearing in the
exponential function above, then, according to the rules of homological
algebra,

c1(,)(g1 , g2 , g3)=&R(g2 , g3 , g&1
1 z)+R(g1 g2 , g3 , z)

&R(g1 , g2 g3 , z)+R(g1 , g2 , z).

If gj=t lj
1
tmj

2
tnj

3
, we then obtain c1(,)(g1 , g2 , g3)=2?il1n2 m3 which is

indeed the class of a generator of H3(G, 2?iZ) (see [MacL] Section
VI.6). K

Let us now give a similar interpretation for the elliptic gamma function.
By an invertible analytic function on a complex manifold X we mean an
equivalence class of pairs ( f, D) where D/X is a dense open subset and f
is a holomorphic, nowhere vanishing function on D. Two pairs ( f1 , D1),
( f2 , D2) are equivalent if f1= f2 on D1 & D2 . Invertible analytic functions
form a group with respect to the pointwise product ( f1 , D1) }
( f2 , D2)=( f1 f2 , D1 & D2).

It is convenient to pass from affine coordinates {, _ to homogeneous
coordinates x1 , x2 , x3 . Let G=SL(3, Z) _ Z3 act on X=C_C3 by
(A, n� )(z, x� )=(z+n� } x� , Ax� ), A # SL(3,Z), n� =(n1 , n2 , n3) # Z3, x� # C3, z # C.
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The group G has generators ei, j , 1�i, j�3, i{ j and ti , 1�i�3. The
elementary matrix ei, j is the element of SL(3, Z) which differ from the iden-
tity matrix by having the i, j matrix element equal to 1. The ti are the
canonical generators of the Z3 subgroup.

Theorem 7.2. Let G=SL(3, Z) _ Z3 act on X=C_C3 as above. Let N
be the G-module of invertible analytic functions on X such that f (*z, *x� )=
f (z, x� ) for all * # C&[0]. Let M be the submodule of functions of the form
exp 2?if with f # Q(x1 �x3 , x2 �x3)[z�x3] a polynomial in z with coefficients in
the rational functions of x� . Then the classes in N�M of the functions

u(e1, 2 , z, x� )=1 \z&x2

x3

,
x1&x2

x3

, &
x1

x3+
&1

,

u(e3, 2 , z, x� )=1 \ z
x1

,
x2&x3

x1

,
x3

x1+,

u(ei, j , z, x� )=1, j{2,

u(t2 , z, x� )=%0 \z&x2

x1

,
x3

x1+ ,

u(t j , z, x� )=1, j{2,

extend to a 1-cocycle u : G � N�M. Its cohomology class [u] # H1(G, N�M)
is independent of the choice of extension and is non-trivial. The corresponding
cohomology class [,]=$

*
[u] is represented by a function , : G2 � M

whose restriction to (Z3)2 is given by

,(t l
1 tm

2 tn
3 , t l $

1 tm$
2 tn$

3 , z, x� )=e?i(nm$(2z�x1+1)&m$n(n+1) x3 �x1&nm$(m$+1+2m) x2 �x1). (31)

Proof. The proof is based a the presentation of G by generators and
relations. The SL(3, Z) subgroup is generated by the elementary matrices
ei, j , (i{ j). The relations can be chosen [M] to be

ei, j ek, l =ek, l ei, j , i{l, j{k,

ei, j ej, k=ei, k ejk ei, j ,

(e1, 3 e&1
3, 1 e1, 3)4=1.

The relations of the generators of the Z3 subgroup are ti t j=tj ti and the
relations between ei, j , tk are

ei, j tk=tk ei, j , i{k,

ei, j ti =ti t&1
j e i, j .
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The cocycle condition uniquely determines a 1-cocycle in terms of its values
on generators. For any functions u i, j , uk # N�M there exists a unique
1-cocycle of the free group on generators ei, j , ek such that ui, j=u(ei, j) and
ui=u(ti). This cocycle defines a 1-cocycle of G if and only if the relations
are sent to 1.

This can be checked using the identities of the functions 1, %0 . Let us
consider some non-trivial examples.

The relation t2 e3, 2 t3=t3 e3, 2 translates to the condition

u2(z, x� ) u3, 2(z&x2 , x� ) u3(z&x2 , e&1
3, 2x� )=u3(z, x� ) u3, 2(z&x3 , x� ),

which reduces to the defining functional equation for 1 :

%0\z&x2

x1

,
x3

x1 + 1 \z&x2

x1

,
x2&x3

x1

,
x3

x1+=1 \z&x3

x1

,
x2&x3

x1

,
x3

x1+ .

The relation e1, 3 e3, 2=e1, 2 e3, 2 e1, 3 translates to the condition

u1, 3(z, x� ) u3, 2(z, e&1
1, 3x� )

=u1, 2(z, x� ) u3, 2(z, e&1
1, 2x� ) u1, 3(z, e&1

1, 2 e&1
1, 3x� ) mod M.

By inserting the given expressions for ui, j , we see that the condition is

1 \ z
x1&x3

,
x2&x3

x1&x3

,
x3

x1&x3+=
1 \ z

x1&x2

,
x2&x3

x1&x2

,
x3

x1&x2+
1 \z&x2

x3

,
x1&x2

x3

, &
x1

x3+
mod M.

(32)

Using the fact that 1 is periodic with period 1 in all its arguments, and set-
ting Z=(z&x1+x3)�(x1&x3), _=x3�(x1&x3), {=(x2&x1)�(x1&x3),
one sees that this identity reduces to

1 (Z, {, _)=
1 \&

Z+1
{

, &
1
{

, &
_
{+

1 \Z&{
_

, &
{
_

, &
1
_+

mod M.

By the last identity of Proposition 3.2 and the rules for changing signs
before Theorem 3.3, this identity reduces to one of the three-term relation
in Theorem 4.1.

To show that the class of [,]=$
*

[u] is non-trivial, one notices that the
restriction of [,] to Z3 is given by the formula (31). So its image under the
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map c1 : H1(Z3, M) � H3(Z3, 2?iZ), which comes from the short exact
sequence

0 w� 2?iZ w� 2?iQ(x1 �x3 , x2�x3)[z�x3] w�
exp M w� 1

is calculated as in the proof of Prop. 7.1 and is non-trivial. K

7.3. Explicit description of the 2-cocycle. To describe the cohomology
class [,]=$

*
[u] # H 2(G, M) of G=SL(3, Z) _ Z3 with coefficients M

arising in Theorem 7.2, it is convenient to use the isomorphism of
H2(G, M) with the set E(G, M) of equivalence classes of group extensions

1 w� M w�
i E w�

p G w� 1

of the G-module M. The isomorphism assigns to any such extension its
characteristic class in H2(G, M). It is defined as follows: choose a map
_: G � E such that p b _=idG . Then _(g) _(h)=i(,(g, h)) _(gh) for some
2-cocycle , # C 2(G, M) whose class, the characteristic class of the exten-
sion, is independent of the choice of _.

In our case the extension can be described in terms of generators and
relations.

Let us introduce a set of elements ,k
j =exp(i?Lk

j ), , l
j, k=exp(i?L l

j, k),
,l, m

j, k =exp(i?L l, m
j, k ), (1� j, k, l, m�3) of M with

L2
1, 2=

x2(6z2&6(x3+2x2) z+x2 x1&x1
2+6x2

2+6x2 x3+x3
2)

6x3 x1(x2&x1)
,

L1
1, 2=

_&6z2+6(x1+x3+2x2) z&x3
2&6x2x1

+3x1x3&6x2x3&6x2
2&x1

2 &
6x1 x3

,

L2
1, 3=

6z2&6(x3+2x2) z+6x2x3+5x1
2+6x2

2+x3
2&5x1 x3

6(x3&x1) x1

,

L3
2=

2z&2x2&2x3+x1

x1

,

L3, 2
1, 3=

(2z&x2)(2z2&2zx2&x1
2+x1x3&x3

2+x2 x1)
12(x3&x1) x3(x2&x1)

,

L1, 2
3, 1=

(2z&x2)(2z2&2zx2+x2 x3&x1
2+x1 x3&x3

2)
12x1(x2&x3)(x3&x1)

,

L3, 2
1, 2=

x2(2z&x2)(2z2&2zx2+x2x3&x3
2&x1

2+x2x1)
12x1(x2&x1) x3(x2&x3)

,

L1, 2
3, 2=&L3, 2

1, 2 , L2
3=&L3

2 ,
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and all other L } } }
} } } are zero. Let E be the group generated by êi, j ,

1�i{ j�3, t̂i , 1�i�3 and the elements of M subject to the following
defining relations:

(a) The product of elements of M in E is the product in M.

(b) Relations with M:

êi, ju=\(ei, j)(u) êi, j , t̂ iu=\(t i)(u) t̂ i ,

u # M.

(c) Relations among the êi, j :

êi, j êk, l =,k, l
i, j êk, l êi, j , i{l, j{k,

êi, j êj, k=, j, k
i, j êi, k êj, k ê i, j ,

(ê1, 3 ê&1
3, 1 ê1, 3)4=1.

(d) Relations among the t̂i : t̂i t̂j=, j
i t̂ j t̂i

(e) Relations between êi . j and t̂i :

êi, j t̂k=,k
i, j t̂k êi, j , i{k,

t̂j êi, j t̂i =, i
i, j t̂ i êi, j .

This group comes with a natural homomorphism M � E.

Theorem 7.3. Let G, M, [,] be as in Theorem 7.2. The map M � E fits
into a group extension

1 � M � E � G � 1,

of the G-module M, whose characteristic class in H2(G, M) is [,]=$
*

[u]
of Theorem 7.2.

To prove this theorem we need to recall some facts about the description
of extensions by generators and relations. Let G=F�R with R a normal
subgroup of a free group F with generators (ei) i # I . The canonical projec-
tion F � G will be denoted by x [ x� . Let M be a G-module and
\: G � Aut(M) the corresponding homomorphism.

Suppose that a cohomology class [,] # H2(G, M) is given. We want to
describe the middle group of the corresponding extension by generators
and relations. The relations are written in terms of a map �: R � M built
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out of [,]. We proceed to explain how to construct an extension
associated to a map � with certain properties, and how to construct �
given the characteristic class [,] of the extension.

Abstractly, the relation between � and [,] is that � is any inverse image
of [,] by the surjective homomorphism H0(G, Hom(Rab , M)) � H2(G, M)
described in [MacL], Section VIII.9. Here Rab denotes the abelianization
R�[R, R] of R,

This homomorphism can be described explicitly as follows.
An element of H0(G, Hom(Rab , M)) is, by definition, a map �: R � M

such that

�(rs)=�(r) �(s) and �(xrx&1)=\(x� ) �(r), (33)

for all r, s # R, x # F. The semidirect product E� =F_\ M is the cartesian
product with group multiplication rule (x, u)( y, v)=(xy, u\(x) v). Then the
properties of � imply that R� =[(r, �(r)&1) | r # R] is a normal subgroup of
E� . Let E=E� �R� . Then it is easy to show that we have an extension
1 � M � E � G � 1, with the obvious maps. If R is generated by relations
rj , j # J, then E is the group with generators (ei) i # I , M and defining rela-
tions:

1. the product of elements of M in E is the product in M,

2. ei u=(\(ei) u) ei ,

3. rj=�(rj).

i # I, j # J, u, v # M. The characteristic class of this extension is the class of
� b +, where +(g, h) is defined by *(g) *(h)=+(g, h) *(gh), for any section
*: G � F, as can be seen by choosing the section _(g)=[(*(g), 1)] # E.

Conversely, given a 2-cocycle , # C2(G, M) we may find a � # H0(G,
Hom(Rab , M)) mapping to [,] as follows. Let �: F � M be the unique
map such that

�(e\1
i )=1, i=1, ..., n,

(34)
�(xy)=,(x� , y� ) �(x) \(x� ) �( y), \x, y # F.

Then the restriction of � to R obeys (33). For any section *: G � F we have

�(+(g, h)) �(*(gh))=�(+(g, h) *(gh))

=�(*(g) *(h))

=,(g, h) �(*(g)) \(g) �(*(h)).

Thus the 2-cocycle � b + is indeed in the same cohomology class as ,.
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Let us apply this construction to our case. Let [u] # H1(G, N�M) be the
cohomology class described in the Theorem. Let us choose a representative
u: G � N, which on the generators coincides with the functions given in the
claim. Then a representative of the class [,]=$

*
[u] # H2(G, M) is given

by ,(g, h)=u(gh)�(u(g) \(g) u(h)). The generators ei are here ei, j , ti . We
need to compute the value of � on relations.

Every element {1 of F is can uniquely be written as a reduced word
x1 } } } xk , with xj # [e\1

i , i # I]. Reduced means that xj {x&1
j+1 , j=

1, ..., k&1. The function �: F � M is then given according to the rule (34)
by the formula

�(x1 } } } xk)=
u(x� 1) >k

i=2 \(x� 1 } } } x� i&1) u(x� i)
u(x� 1 } } } x� k)

,

for xi # [ej , e&1
j ]. If x1 } } } xk is a relation, the denominator is equal to 1,

so to compute �(r) we only need the value of u on generators and their
inverses. The value of u on inverses of generators obeys, by the cocycle con-
dition, u(x� &1)=(\(x� &1) u(x� ))&1 modulo M. Since we have no generators
such that x� =x� &1 we may choose u so that this relation holds for repre-
sentatives, not just modulo M.

We explain the calculation in the case of the relation r=
e1, 3 e3, 2(e1, 2 e3, 2 e1, 3)&1. For the other relations the calculation is similar.
The equation for ,3, 2

1, 3=�(r) can be written as

u1, 3(z, x� ) u3, 2(z, e&1
1, 3x� )=�(r, z, x� ) u1, 2(z, x� ) u3, 2(z, e&1

1, 2x� ) u1, 3(z, e&1
1, 2e&1

1, 3 x� ).

with ui, j=u(ei, j).

1 \ z
x1&x3

,
x2&x3

x1&x3

,
x3

x1&x3+=�(r, z, x� )
1 \ z

x1&x2

,
x2&x3

x1&x2

,
x3

x1&x2+
1 \z&x2

x3

,
x1&x2

x3

, &
x1

x3+
.

Comparing with Theorem 4.1, we see that (cf. the calculation following (32))

�(r, z, x� )=exp \&?iQ \z&x1+x3

x1&x3

;
x2&x1

x1&x3

,
x3

x1&x3++ .

This expression is easily checked to be identical to exp(?iL3, 2
1, 3).

Proceeding in the same way with the other relations, we find that the
non-trivial values of , on relations are ,B

A=exp(?iLB
A) with
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L2
1, 2=&2

z&x2

x3

+1+F \z&x2

x1

,
x3

x1+&F \ z&x1

x1&x2

,
x3

x1&x2+ ,

L1
1, 2=2

z&x2

x3

+1&F \z&x2

x1

,
x3

x1+ , L2
1, 3=&F \ z&x2

x1&x3

,
x1

x1&x3+ ,

L3
2=2

z&x2&x3

x1

+1, L1, 2
3, 1=Q \z&x1

x1

;
x2&x3

x1

,
x3&x1

x1 + ,

L3, 2
1, 2=Q \z&x1

x1

;
x2&x3

x1

,
x3&x1

x1 ++Q \z&x1+x3

x1&x3

;
x3

x1&x3

,
x2&x1

x1&x3 + .

Here F is the polynomial appearing in the modular transformation proper-
ties of %0 :

F(z, {)=
z2

{
+z \1

{
&1++

{
6

+
1
2

+
1
6{

These expressions may be (preferably with a computer) simplified to give
the claim of the theorem. The proof is complete.

7.4. The restriction of the 2-cocycle to SL(3, Z). Let G, M, [,] be as in
Theorem 7.2. We show here that the restriction [,� ] # H2(SL(3, Z), M) to
SL(3, Z)/G is non-trivial (See [S] for a description of the cohomology of
SL(3, Z)). This is proved by showing that the restriction to a D4 subgroup
is non-trivial. This D4 subgroup is generated by a=(e&1

2, 1 e1, 2 e&1
2, 1)2 :

(x1 , x2 , x3) [ (&x1 , &x2 , x3) and b=e3, 1 e&1
1, 3 e1, 3 : (x1 , x2 , x3) [

(&x3 , x2 , x1). The defining relations of D4 are a2=b4=1, bab=a. The
restriction of [,] to this subgroup is the characteristic class of the exten-
sion 1 � M � D� 4 � D4 � 1, where D� 4 is the inverse image of D4 by the projec-
tion E � G. A presentation of D� 4 is obtained by choosing lifts of generators

â=e?i�2(z2�x1x3&2z�x3+1+x1�6x3+x3�6x1)(ê&1
2, 1 ê1, 2 ê&1

2, 1)2

b� =ê3, 1 ê&1
1, 3 ê1, 3 .

The relations between these generators are computable from the presenta-
tion of E above, with the result

â2=b� 4=1, b� âb� =iâ, i=e2?i�4 # M.

Proposition 7.4. The pull-back i*[,] of the class [,] # H2(G, M) of
Theorem 7.2 by the inclusion i : D4 � SL(3, Z) _ Z3 is the characteristic class
in H2(D4 , M) of the extension 1 � M � D� 4 � D4 � 1. It is a non-trivial
cohomology class.
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Proof. It remains to prove that the class is non-trivial. If the charac-
teristic class were trivial, the exact sequence of the extension would split.
This would mean that, for suitable homogeneous functions A, B #
Q(x1 , x2 , x3)[z], e2?iAâ and e2?iBb� obey the relations of D4 . Suppose, by
contradiction, that such functions exist. Then A, B obey

A(z, x� )+A(z, a&1x� )=r,

B(z, x� )+B(z, b&1x� )+B(z, b&2x� )+B(z, b&3x� )=s,

B(z, x� )+A(z, b&1x� )+B(z, (ba)&1 x� )=&1
4+A(z, x� )+t.

for some integers r, s, t. Let A� =A&r�2, B� =B&s�4, then A� , B� obey

A� (z, x� )+A� (z, a&1x� )=0,

B� (z, x� )+B� (z, b&1x� )+B� (z, b&2x� )+B� (z, b&3x� )=0,

B� (z, x� )+A� (z, b&1x� )+B� (z, (ba)&1 x� )=&
1
4

+A� (z, x� )+t&
s
2

.

If we view Q(x1 , x2 , x3)[z] as a module over the group ring ZD4 , the first
two equations can be written as (1+a) A� =0, (1+b+b2+b3) B� =0. This
implies that A� , B� are annihilated by the idempotent

P= 1
8 :

g # D4

g= 1
8 (1+b+b2+b3)(1+a)= 1

8 (1+a)(1+b+b2+b3).

Applying P to the third equation, we get 0=&1�4+t&s�2, t, s # Z, a con-
tradiction. K
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