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Time-Trimming Tricks for Dynamic Ways & Means
Simulations: Splitting Force Updates
to Reduce Computational Work

massively parallel architecture (one million or more proc-
essors). Any algorithmic speedup will only help to further
reduce MD computational time.

One of the golden opportunities for work reduction is
in the time integration protocol. Since the overall cost
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ing the effective timestep size—can lengthen the physi-
cal time span that can be simulated. Yet, this “timestep
problem” [6, 7] has remained a tough nut to crack. Much

Introduction of this difficulty can be simply attributed to the dilemma
of balancing a larger step size with lower resolution

As one of the largest group of supercomputer consum- accuracy. That is, with decreased intervals of molecular
ers, macromolecular modelers are always scrambling observations (force update frequency), the resolution of
for more computer time. With the goal of gaining insights some fast processes might have to be sacrificed. An-
into a variety of biological processes, scientists are also other obstacle is practical: the more sophisticated algo-
continuously trimming down algorithmic cost. This rithms, such as those described below, are not trivial
economizing of code performance time while maximiz- to incorporate in the context of large programs, since
ing the resulting biological information can be pursued evaluations of the total force depend on many program
by using sophisticated mathematical and computer sci- units. This makes the application of new integrators for
ence machinery where available (e.g., for fast electro- MD more complex than fast schemes for electrostatics
static summations [1] or nonbonded-list manipulations), summations.
by approximating where possible (e.g., continuum sol- In the evolution of certain physical systems—motion
vation [2], conformational path estimates [3]), or any of planets or flow of compound concentrations in chemi-
combination of the above. cal reactions—the effect of the fast processes on the

Though a variety of simulation techniques are avail- global motion is negligible. In biomolecular systems,
able (see Figure 1), the molecular dynamics (MD) ap- unfortunately for algorithm developers, vibrational modes
proach tops the list in popularity because of its physical are intricately coupled: thus, fast small-amplitude mo-
appeal and biological connection. Namely, the trajector- tions can trigger a cascade of events that culminate in
ies showing the evolution in time and space of molecular large-scale global rearrangements. This intricate cou-
conformations follow classical physics; this allows ki- pling limits the traditional mathematical machinery avail-
netic processes to be followed in detail, linking and able for MD integration and compels algorithm develop-
expanding upon experimental observations. MD’s pop- ers to seek inventive, tailored approaches (see Figure
ularity would be overwhelming if the technique’s compu- 1). Still, against these challenges, mathematicians and
tational demands, and hence biological scope, were not other computational scientists have labored in the past
so limited for large systems. This limitation stems from decade to understand the numerical limitations of MD
the numerical stability requirement, which restricts the integration, devise clever schemes, and design ap-
timestep size used for integrating the equations of mo- proaches departing from accurate motion-following that
tion to a relatively small value (e.g., z1 fs). This timestep instead yield greater overall information on the large
size implies one million or more steps for simulating a thermally accessible configuration space of macromole-
mere nanosecond in the life of a biomolecule; this num- cules [8, 7, 9, 10].
ber already translates to days or months of computing Following a historical perspective of method develop-
time, even on state-of-the-art platforms [4], since each ment, we sketch the mathematical machinery for the
step typically requires at least one expensive force eval- promising integration approach termed “force splitting”
uation. (In empirical molecular force fields, the force or “multiple timesteps” (MTS). We describe the associ-
is defined as the negative gradient of the total energy ated difficulties in standard MTS implementations (reso-
[enthalpy], which is expressed as a sum of harmonic nance artifacts), outline how they can be overcome at
bond length and bond angle expressions, trigonometric the cost of augmenting the underlying Hamiltonian (as
torsion terms, nonbonded Coulomb and van der Waals in the LN approach [6, 11]), and illustrate how these
components, and other terms.) methods can be evaluated and used to study large bio-

Certainly, code parallelization on multiple-processor logical systems. We conclude by outlining some out-
machines shaves off computing clock time, as demon- standing problems that remain, such as the efficient
strated by the longest simulation to date, 1 ms, for a implementation of MTS schemes in combination with
villin headpiece, achieved in 4 months of dedicated CPU Ewald summations and in applications to various ther-
time on 256 processors of a Cray T3D/E [5], or by IBM’s modynamic ensembles.
ambitious announcement to fold proteins by 2005 on
a unique petaflop computer called Blue Gene with a Method Development: Historical Perspective

Since the 1960s, the Verlet/Störmer method [32, 28] has* To whom correspondence should be addressed (e-mail: schlick@
nyu.edu). been the gold standard for MD (see Figure 2 for a discret-
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Figure 1. Various Simulation Approaches

Continuum solvation includes empirical constructs, generalized Born models, stochastic dynamics, or Poisson Boltzmann solutions. CPU
times are rough estimates for single processors (e.g., SGI Origin 2000 300 MHz R12000) unless stated otherwise. Molecular images surrounding
the table illustrate the various techniques. From top left, clockwise: MD snapshots of DNA TATA element showing the captured bending
toward the major groove [22]; TMD snapshots of the Hck protein, where the restrained segment (blue) moves towards the conformation found
in the active form of the enzyme (M. Young and J. Kuriyan [23]); stochastic-path approach snapshots describing the permeation of a sodium
ion (huge red sphere) through the gramicidin channel embedded in a DMPC membrane (K. Siva and R. Elber, personal communication);
electrostatic potential contours of mouse acetylcholinesterase (D. Sept, K. Tai, and J.A. McCammon, personal communication) [24]; MC
configurations and ensemble radius of gyration/energy plots in a folding simulation for 434 repressor protein based on statistical potentials
(RMS values given for superimposed predictions with native structure) [25]; NMR solution structures, delineated using minimization subject
to NMR constraints, of a DNA duplex with a carcinogen 2-aminofluorene DNA adduct that adopts two conformations in equilibrium [26]; and
BD snapshots of 1500 bp DNA showing site-juxtaposition kinetics at high salt (0.02 M monovalent ions) of two segments located 500 bp
along the DNA contour [27].
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Figure 2. Integration Framework for the Verlet Method

ization outline). The Verlet method forms the basis of number of variables, these schemes complicate the
propagation expressions and, more seriously, can slowvirtually all extensions used today, such as for con-

strained dynamics, Langevin dynamics, MTS methods, down barrier-crossing events that are facilitated by local
motions. Still, internal coordinate MD approaches haveand various thermodynamic ensembles. Verlet’s good

behavior can be attributed to its symplecticness, a favor- found good usage in structure refinement [41].
In the 1970s, multiple-timestep (MTS) variants wereable numerical property for conservative Hamiltonian

systems that roughly implies preservation of volumes introduced to reduce the computational cost of MD sim-
ulations [42]. MTS methods represent a special case ofin phase space [33]. Essentially, this also means that

the simulated trajectory lies sufficiently close to that multilevel techniques in applied mathematics [43]. They
are based on the rather simple idea of force splitting:corresponding to the exact, governing Hamiltonian.

In an attempt to reduce MD computational times, Ver- update the slowly varying forces less often than the
rapidly varying terms. Savings can be realized if thelet-based approaches for constraining the fastest de-

grees of freedom (e.g., bond lengths) soon became pop- slowly varying forces due to distant interactions (e.g.,
electrostatics) are held constant over longer intervalsular (e.g., “SHAKE” and its variants) [34, 35]. Such

approaches increase the timestep slightly (e.g., to than the more rapidly varying short-range forces (e.g.,
bonded terms). Standard Verlet procedures can then bearound 2 fs), with modest added cost [34, 35]. Exten-

sions for freezing the next fastest vibrational mode modified by evaluating the long-range forces less often
than the short-range terms (see Figure 3). Between up-(heavy atom angle bending) fail due to strong vibrational

coupling [36, 37]. In a similar spirit, internal-coordinate dates, the slow forces can be incorporated into the dis-
cretization either as constants (via extrapolation) or asMD approaches were attempted (e.g., with torsion

angles, rather than Cartesian coordinates, as the inde- zero forces (i.e., via impulses, that is, considered only
at the beginning and end of every macrostep). As illus-pendent variables) [38–40]. While certainly reducing the
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Figure 3. Extrapolative versus Impulse Force Splitting

(Left) Schematic illustration for a dual-timestep protocol with inner timestep Dt and outer timestep Dt 5 k Dt (k 5 4 used). In extrapolative
splitting, a slow-force contribution (green) is made each time the fast force (red) is evaluated (i.e., every Dt interval). In impulse splitting, in
contrast, contributions of the slow forces (tall spikes) are considered only at the time of their evaluation (e.g., every four fast-force evaluations).
(Right) Examples of extrapolation and impulse applications to Newtonian and Langevin dynamics for a solvated BPTI (bovine pancreatic typsin
inhibitor) system. Resonance artifacts for impulse splitting are apparent for both Newtonian and Langevin dynamics, as are the energy drift
for Newtonian/extrapolation and the stability of Langevin/extrapolatition.

trated in Figure 3 for a two-timestep scheme, the slow methods are used for the electrostatic calculations,
splitting the PME direct and reciprocal terms [1] intoforces contribute to each small timestep in extrapola-

tion, even though they are only computed every long force classes remains a challenge, since the reciprocal
component contains rapidly varying terms.timestep, rather than being added only at their time of

evaluation, as in impulse splitting. While intuitive and reasonable, such MTS approaches
were not immediately as successful and simple as hadFor example, consider a three-timestep protocol ({Dt ,

Dtm , Dt}), where the timesteps are related by integral been hoped. The details of merging the updates of the
different force components required great care to avoidmultiples: the small timestep Dt defines the update fre-

quency of the local, bonded forces; the medium time- instabilities. More significantly, attempts to increase the
outer timesteps encountered unexpected, and theoreti-step Dtm , an integer multiple of Dt (Dtm 5 k1 Dt ), specifies

a longer update frequency for nonbonded interactions cally peculiar, obstacles; namely, even though the fast
forces were updated frequently, a much larger timestepwithin a given radial distance (e.g., 6 Å region); and

an outermost (large) timestep, Dt 5 k2 Dtm, defines the was not possible as might appear appropriate for the
slow components.frequency of calculating the remaining, long-range

forces. By splitting the forces appropriately and max- Specifically, the early extrapolative MTS variants ex-
hibited systematic energy drifts [44] and were aban-imizing the outer timestep (or the ratio r 5 Dt/Dt 5 k1 k2

between the largest to smallest timestep), we can opti- doned. Symplectic variants followed [45, 46], with im-
portant mathematical machinery presented for theirmize the overall speedup in relation to a single-timestep

(STS) simulation at Dt. This partitioning reduces compu- analysis and development (Trotter factorization of the
Liouville operator) [46]. However, early observations [45,tational time, since the majority of the work in the total

force evaluation stems from the slow components [11]. 47] forecasted hidden dangers in these symplectic im-
pulse-MTS treatments. Indeed, in 1995, when theseThese long-range terms are order 2(N 2) in direct com-

plexity (or 2(N log N) by accelerated methods [1]), in methods were applied to biomolecular dynamics [48,
49], a limitation on the outermost timestep to less thancontrast to linear complexity for the local terms (N is

the number of independent variables, typically atoms). 5 fs was observed. This value not only limited practical
speedup, it posed a puzzle for its origin, given that 5 fsAs discussed below, when particle mesh Ewald (PME)
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Figure 4. Extrapolative versus Impulse MTS Approaches for Molecular Dynamics

For the LN scheme described in the text, the extrapolative MTS method is modified in three places: equation (1a) becomes Xo
r 5 X; after

equation (3a), the random force R is evaluated; and equation (3b) is modified as shown in equation (3b*).

is still much less than the timescales of slower biomolec- [37]: extrapolative force splitting (which by itself leads
to energy drifts but is not as vulnerable to resonanceular motions (e.g., long-range electrostatics)!

The vulnerability of these impulse treatments to nu- artifacts as are impulse variants) and stochastic dynam-
ics (which eliminate the drifts as well as dampen themerical stability became clear upon detailed analysis

over the last five years [50–53]. This inherent resonance, mild resonances). The stochastic framework, in the form
of Langevin dynamics [54], represents a departure fromor integrator-induced corruption of the system’s dynam-

ics, results from application of a force impulse (or pulse) Hamiltonian dynamics, but stochastic simulations are
appropriate for many thermodynamic and samplingat the onset and at the end of a sweep covering the

long interval Dt: its strength is proportional to Dt/Dt, that questions, since the same equilibrium states are ap-
proached in theory. In practice, the bath-coupling pa-is, r times larger in magnitude than those changes made

to the position and velocity vectors in each inner time- rameter (damping constant g; see Figure 2) can be set
as small as possible to minimize the Hamiltonian pertur-step, Dt (see Figures 3 and 4). Such resonance artifacts

are integrator dependent [50–52]. bation while still ensuring numerical stability (e.g., g
around 10 ps21 or less) [11, 55, 56]. This stochasticPredictions for the occurrence of these resonances

can be made based on analysis of harmonic models. coupling was also adopted later by Skeel and cowork-
ers, in the context of a mollified impulse method [57],Such analyses suggest that the most severe (third-order)

resonance occurs when Dt is close to half the fastest but the impulse formulation restricts the outer timestep.
period of the physical system [50]. In biomolecular sys-
tems, the first such resonance for Verlet-based MTS Validity and Applications
schemes occurs at about Dt 5 5 fs, which is half the
period of the fastest oscillation [50, 53]; this artifact can Performance of MTS schemes can be assessed by com-

paring energetic, geometric, and dynamic properties tobe delayed to the period, or 10 fs, when a stochastic
formulation is used [11] (see Figure 3), but this is still STS simulations as well as experimental data where

available. In the case of LN trajectories, the referencemuch smaller than characteristic slow motions. Vivid
illustrations of resonance artifacts in the dynamic simu- integrator is an extension of Verlet for Langevin dynam-

ics [31] [see Figure 2, note below equation (7)].lations of proteins can be seen in Figure 3 for Newtonian
and Langevin impulse splitting. In general, these insta- The numerical stability and resonance alleviation were

shown in trajectories for the proteins BPTI and lyso-bilities in impulse-MTS treatments can be avoided only
by reducing Dt, though implicit symplectic schemes can zyme, a large water system [11, 55], solvated DNA [58],

and a large DNA/protein system [56] (Yang et al., submit-be devised to remove low-order resonances for model
systems [52] (they are not practical, however, being too ted), where STS results were well reproduced for outer

timesteps of 50 fs or more. Results have shown that acomputationally demanding).
Fortunately, this understanding of resonance in im- good parameter choice for a 3-class LN scheme is Dt 5

0.5 fs, Dtm 5 1 fs, and Dt up to 150 fs. If constrainedpulse MTS methods suggested a combination of two
simple ingredients that works together to alleviate reso- dynamics (SHAKE [34]) for the light atom bonds are

used, the inner timestep can be increased to 1 fs and thenances and allow larger timesteps in the LN scheme
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medium timestep to around 2 fs. The speedup factors b’s DNA synthesis fidelity. A sequence of local motions
involved in the pol b opening process was also sug-depend on the reference system but can be an order of

magnitude (factor of 10 or more) with respect to 0.5 fs gested (Phe272 flip, pol b thumb movement, and the
Arg258 rotation), along with the evolution of importantinner timesteps [11] or around 5 for 1fs inner timesteps

(when SHAKE is used). Relative mean energy differences hydrogen bonds and water molecules near the active
site (Yang et al., submitted).between MTS and STS simulations are lower when

SHAKE is applied [56].
To illustrate, LN’s performance is shown in Figure 5

Perspective and Extensionsfor three solvated biomolecular systems containing
TATA box DNA (14 base pairs, 15320 atoms) [22], a

We have witnessed considerable progress over the pastpolymerase b/DNA primer/template complex (43751
decade in the development of many rigorous and theo-atoms) [56] (Yang et al., submitted), and TATA box DNA/
retically grounded MD integration algorithms, as well asTBP complex (41011 atoms) [D. Strahs, X. Qian, and
analysis machinery for their interpretation. Problems likeT. S., unpublished data]. The “Manhattan plots,” which
resonance or systematic drifts are now much betterreport the differences in mean energy components as a
understood. Unfortunately, the transfer of these funda-function of the outer timestep Dt relative to STS Langevin
mental mathematical constructs to practical biomolecu-simulations, show low relative errors in all energy com-
lar simulations at large has been slow. This is not dueponents (below 3%) for outer timesteps up to Dt 5 120
so much to the complexity of the algorithms, but ratherfs. In all cases, the inner and medium timesteps are
to the rapid pace of the production rate of MD trajecto-fixed at 1 and 2 fs, respectively, and the computational
ries caused by improvements in computer speed andspeedup factor for Dt 5 120 fs is four or more with
parallelization, as well as the alternative sampling ap-respect to STS simulations at 1 fs.
proaches that have been designed (e.g., Figure 1).The assignment of the Langevin parameter g in the

MTS methods, in particular, though in everyday useLN scheme ensures numerical stability on one hand and
in several laboratories, have not yet superseded the STSminimizes the perturbations to Hamiltonian dynamics
Verlet scheme in popular packages like AMBER andon the other; we have used g 5 10 ps21 or smaller in
CHARMM. This delayed transfer can be attributed tobiomolecular simulations. To assess the effect of g of
two specific areas that require further work: the optimaldynamic properties, the protocol-sensitive spectral den-
integration of MTS methods with PME methods for long-sity functions computed from various trajectories can
range electrostatics, and the application of MTS meth-be analyzed [55] (Yang et al., submitted). As shown in
ods to various thermodynamic ensembles other thanFigure 5 for the pol b/DNA simulation, there is good
the microcanonical (NVE, or constant particle number,agreement between the STS Langevin and LN-com-
volume, and energy). Strategies have appeared in theputed frequencies for the same g (see also [11, 55, 56];
literature, but the optimization of these designs in realYang et al., submitted). This agreement emphasizes the
simulations requires considerable effort.success of MTS integrators as long as the inner timestep

The apparent difficulty in optimizing MTS/PME combi-is small. Furthermore, as g is decreased, the characteris-
nations is that the reciprocal term, which should isolatetic frequencies generated by Langevin dynamics can more
long-range slow forces, contains significant force contri-closely approximate Newtonian signals [11, 55, 56].
butions from near-field particle interactions [59]. ThisDetailed comparisons of the evolution of various geo-
requires further mathematical transformations beforemetric variables from each simulation (bottom dials in
adaptation to biomolecular MD. To clarify, recall thatFigure 5) reflect the agreement between LN and the
the summation for the electrostatic energy of a periodicreference Langevin simulation as well. As expected, in-
system can be expressed by a lattice sum over all pairdividual trajectories diverge, but the angular fluctuations
interactions and over all lattice vectors (excluding i 5 jare all in reasonable ranges.
in the primary box). Such a sum is only conditionallyThe LN speedup factors are significant when large
convergent. Ewald’s trick was to convert this sum into ansystems are investigated (4–7 compared to 1 fs single
expression involving a sum of an absolutely and rapidlytimesteps, see Figure 5). Added savings allow better
convergent series in direct and reciprocal space. Thisestimates of minor-groove bending preferences in
transformation is accomplished by representing eachA-tract DNA [58] and a greater number of TATA variants
point charge as a Gaussian charge density, producing(13) to be studied to assess sequence-dependent de-
an exponentially decaying function. This Gaussianformability and flexibility patterns relative to the wild-
transformation is counteracted by an analogous sub-type TATA element [22]. The savings further allow sam-
traction to leave the net result of an effective pointpling of many segments in the pathway of an enzyme
charge. Thus, the electrostatic energy for a periodicopening motion—polymerase b complexed to primer/
system is expressed as a real-space (direct) term (en-template DNA—with the open and closed crystallo-
ergy due to point charges screened by oppositelygraphic forms serving as experimental anchors (Yang
charged Gaussians) that is short-range with a singularityet al., submitted). For the polymerase application, the
at the origin, and an associated canceling term (periodicaccelerated sampling led to the identification of a key
sum of Gaussians) that is smooth and long-range,step in the pathway (Arg258 rotation, together with re-
summed in reciprocal space using smooth interpolationlease of a catalytic magnesium ion), which is slow and
of Fourier series values [1]. In practice, the width of themay be rate limiting. This produced the intriguing hy-
Gaussian distribution is chosen to balance the work inpothesis that the Arg258 rotation, rather than large sub-

domain movements per se, is a crucial aspect of pol the two terms: making the direct sum rapidly decreasing
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Figure 5. Performance of the Extrapolative Stochastic LN Scheme for Three Molecular Systems with Solvent and Salt

The three systems are a 14 bp TATA element, a pol b/DNA primer/template complex, and a DNA/TBP complex, each modeled in a different
periodic domain that best fits the overall shape (top: hexagonal prism, rhombic dodecahedron, and rectangular box, respectively). The
“Manhattan plots” show mean energy differences with respect to a single-timestep Langevin simulation as a function of LN outer timestep
Dt (with Dt 5 1 fs, Dtm 5 2 fs, g 5 10 ps21, and SHAKE applied to all light-atom bond stretches), as obtained from simulations for several
picoseconds for each Dt. The spectral density functions are computed for the pol b/DNA system separately for water, DNA, and protein atoms
by LN (1/2/150 fs, g 5 10 ps21), STS Langevin (1 fs, g 5 10 ps21), and velocity Verlet (1 fs, g 5 0); see computation protocol in [55]. Similarly,
the evolution of selected geometric variables (sugar puckers, DNA backbone, and protein φ and c angles) for each simulation using LN STS
Langevin, and velocity Verlet show good agreement over several picoseconds.
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