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Abstract

We prove a general archimedean positivstellensatz for hermitian operator-valued polynomials and show
that it implies the multivariate Fejer–Riesz theorem of Dritschel–Rovnyak and positivstellensätze of
Ambrozie–Vasilescu and Scherer–Hol. We also obtain several generalizations of these and related results.
The proof of the main result depends on an extension of the abstract archimedean positivstellensatz for
∗-algebras that is interesting in its own right.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

We fix d ∈ N and write R[x] := R[x1, . . . , xd ]. In real algebraic geometry, a positivstellen-
satz is a theorem which for given polynomials p1, . . . , pm ∈ R[x] characterizes all polynomials
p ∈ R[x] which satisfy p1(a) � 0, . . . , pm(a) � 0 ⇒ p(a) > 0 for every point a ∈ Rd . A nice
survey of them is [11]. The name archimedean positivstellensatz is reserved for the following
result of Putinar [14, Lemma 4.1]:

Theorem A. Let S = {p1, . . . , pm} be a finite subset of R[x]. If the set MS := {c0 + ∑m
i=1 cipi |

c0, . . . , cm are sums of squares of polynomials from R[x]} contains an element g such that the
set {x ∈ Rd | g(x) � 0} is compact, then for every p ∈ R[x] the following are equivalent:
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(1) p(x) > 0 on KS := {x ∈ Rd | p1(x) � 0, . . . , pm(x) � 0}.
(2) There exists an ε > 0 such that p − ε ∈ MS .

An important corollary of Theorem A is the following theorem of Putinar and Vasilescu [15,
Corollary 4.4]. The case S = ∅ was first done by Reznick [16, Theorem 3.15], see also [2, Theo-
rem 4.13].

Theorem B. Notation as in Theorem A. If p1, . . . , pm and p are homogeneous of even degree and
if p(x) > 0 for every nonzero x ∈ KS , then there exists θ ∈ N such that (x2

1 + · · · + x2
d)θp ∈ MS .

Another important corollary of Theorem A (take S = {1 − x2
1 − y2

1 , x2
1 + y2

1 − 1, . . . ,1 − x2
d −

y2
d , x2

d + y2
d − 1} ⊆ R[x1, y1, . . . , xd, yd ]) is the following multivariate Fejer–Riesz theorem.

Theorem C. Every element of R[cosφ1, sinφ1, . . . , cosφd, sinφd ] which is strictly positive for
every φ1, . . . , φd is equal to a sum of squares of elements from R[cosφ1, sinφ1, . . . , cosφd,

sinφd ].

Note that Theorem C implies neither the classical univariate Fejer–Riesz theorem nor its mul-
tivariate extension from [13] which both work for nonnegative trigonometric polynomials.

Various generalizations of Theorems A, B and C have been considered. Theorem D extends
Theorems A and C from finite to arbitrary sets S and from algebras R[x] and R[cosφ1, sinφ1,

. . . , cosφd, sinφd ] to arbitrary algebras of the form R[x]/I . It also implies that Theorem B holds
for arbitrary S. It is a special case of Jacobi’s representation theorem and Schmüdgen’s posi-
tivstellensatz, see [11, 5.7.2 and 6.1.4]. Generalizations from sums of squares to sums of even
powers and from R to subfields of R will not be considered here, see [2,8,12].

Theorem D. Let R be a commutative real algebra and M a quadratic module in R (i.e. 1 ∈
M ⊆ R, M + M ⊆ M , r2M ⊆ M for all r ∈ R). If M is archimedean (i.e. for every r ∈ R we
have l ± r ∈ M for some real l > 0) then for every p ∈ R the following are equivalent:

(1) p ∈ ε + M for some real ε > 0,
(2) φ(p) > 0 for all φ ∈ VR := Hom(R,R) such that φ(M) � 0.

If R is affine then M is archimedean iff it contains an element g such that the set {φ ∈ VR |
φ(g) � 0} is compact in the coarsest topology of VR for which all evaluations φ �→ φ(a), a ∈ R,
are continuous.

We are interested in generalizations of this theory from usual to hermitian operator-valued
polynomials, i.e. from R[x] to R[x] ⊗ Ah where A is some operator algebra with involution.
Below, we will survey known generalizations of Theorems A, B and C and formulate our main
result which is a generalization of Theorem D. Such results are of interest in control theory. They
fit into the emerging field of noncommutative real algebraic geometry, see [18].

The first result in this direction was the following generalization of Theorem B which was
proved by Ambrozie and Vasilescu in [1], see the last part of their Theorem 8. We say that an
element a of a C∗-algebra A is nonnegative (i.e. a � 0) if a = b∗b for some b ∈ A and that it is
strictly positive (i.e. a > 0) if a − ε � 0 for some real ε > 0.



3134 J. Cimprič / Journal of Functional Analysis 260 (2011) 3132–3145
Theorem E. Let A be a C∗-algebra and let p ∈ R[x] ⊗ Ah and pk ∈ R[x] ⊗ Mνk
(C)h, k =

1, . . . ,m, νk ∈ N, be homogeneous polynomials of even degree. Assume that K0 := {t ∈ Sd−1 |
p1(t) � 0, . . . , pm(t) � 0} is nonempty and p(t) > 0 for all t ∈ K0. Then there are homogeneous
polynomials qj ∈ R[x] ⊗ A, qjk ∈ R[x] ⊗ Mνk×1(A), j ∈ J , J finite, and an integer θ such that

(
x2

1 + · · · + x2
d

)θ
p =

∑
j∈J

(
q∗
j qj +

m∑
k=1

q∗
jkpkqjk

)
.

Our interest in this subject stems from the following generalization of Theorem A which is a
reformulation of a result of Scherer and Hol. See [17, Corollary 1] for the original result and [10,
Theorem 13] for the reformulation and extension to infinite S.

Theorem F. For a finite subset S = {p1, . . . , pm} of Mν(R[x])h, ν ∈ N, write KS := {t ∈ Rd |
p1(t) � 0, . . . , pm(t) � 0} and MS := {∑j∈J (q∗

j qj + ∑m
k=1 q∗

jkpkqjk) | qj , qjk ∈ Mν(R[x]),
j ∈ J, J finite}. If there is g ∈ MS ∩ R[x] such that the set {x ∈ Rd | g(x) � 0} is compact (i.e.
the quadratic module MS ∩ R[x] in R[x] is archimedean) then for every p ∈ Mν(R[x])h such
that p(t) > 0 on KS we have that p ∈ MS .

Finally, we mention an interesting generalization of Theorem C which was proved by
Dritschel and Rovnyak in [6, Theorem 5.1].

Theorem G. Let A be the ∗-algebra of all bounded operators on a Hilbert space. If an element

p ∈ R[cosφ1, sinφ1, . . . , cosφn, sinφn] ⊗ Ah

is strictly positive for every φ1, . . . , φn then p = ∑
j∈J q∗

j qj for some finite J and qj ∈ R[cosφ1,

sinφ1, . . . , cosφn, sinφn] ⊗ A.

The aim of this paper is to prove the following very general operator-theoretic positivstellen-
satz and show that it implies generalizations of Theorems E, F and G. (They will be extended
from finite to arbitrary S, from C∗-algebras to algebraically bounded ∗-algebras A and from
(trigonometric) polynomials to affine commutative real algebras. Theorem F will also be ex-
tended from matrices to more general operators.)

Theorem H. Let R be a commutative real algebra, A a real or complex ∗-algebra and M a
quadratic module (cf. Section 2) in R ⊗ A. If M is archimedean then for every p ∈ R ⊗ Ah the
following are equivalent:

(1) p ∈ ε + M for some real ε > 0.
(2) For every multiplicative state φ on R, there exists real εφ > 0 such that (φ ⊗ idA)(p) ∈

εφ + (φ ⊗ idA)(M).

If A is algebraically bounded (cf. Section 4) and the quadratic module M ∩ R in R is archime-
dean (cf. Theorem D) then M is archimedean.
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One of the main differences between the operator case and the scalar case is that in the operator
case an element of Ah that is not � 0 is not necessarily > 0. We would like to give an algebraic
characterization of operator-valued polynomials that are not � 0 in every point from a given
set. Every theorem of this type is called a nichtnegativsemidefinitheitsstellensatz. We will prove
variants of Theorems F and G that fit into this context.

Finally, we use our results and the main theorem from [9] to get a generalization of the exis-
tence result for operator-valued moment problems from [1] to algebraically bounded ∗-algebras.

2. Factorizable states

Associative unital algebras with involution will be called ∗-algebras for short. Let B be a ∗-
algebra over F ∈ {R,C} where F always comes with complex conjugation as involution. Write
Z(B) for the center of B and write Bh = {b ∈ B | b∗ = b} for its set of hermitian elements. Note
that the set Bh is a real vector space; we assume that it is equipped with the finest locally convex
topology, i.e. the coarsest topology such that every convex absorbing set in Bh is a neighborhood
of zero.

Clearly, every linear functional on Bh is continuous with respect to the finest locally convex
topology. In other words, the algebraic and the topological dual of Bh are the same; we will
write (Bh)

′ for both. We assume that (Bh)
′ is equipped with the weak*-topology, i.e. topology

of pointwise convergence. We say that ω ∈ (Bh)
′ is factorizable if ω(xy) = ω(x)ω(y) for every

x ∈ Bh and y ∈ Z(B)h. Clearly, the set of all factorizable linear functionals on Bh is closed in
the weak*-topology.

We say that a subset M of Bh is a quadratic module if 1 ∈ M , M + M ⊆ M and b∗Mb ⊆ M

for every b ∈ B . The smallest quadratic module in B is the set Σ2(B) which consists of all finite
sums of elements b∗b with b ∈ B . The largest quadratic module in B is the set Bh. A quadratic
module M in B is proper if M �= Bh (or equivalently, if −1 /∈ M). Proper quadratic modules in
B exist iff −1 /∈ Σ2(B). We say that an element b ∈ Bh is bounded w.r.t. a quadratic module
M if there exists a number l ∈ N such that l ± b ∈ M . A quadratic module M is archimedean if
every element b ∈ Bh is bounded w.r.t. M (or equivalently, if 1 is an interior point of M).

For every subset M of Bh write M∨ for the set of all f ∈ (Bh)
′ which satisfy f (1) = 1 and

f (M) � 0. The set of all extreme points of M∨ will be denoted by exM∨. Elements of M∨ will
be called M-positive states and elements of exM∨ extreme M-positive states. A Σ2(B)-positive
state will simply be called a state. Suppose now that M is an archimedean quadratic module.
Applying the Banach–Alaoglu Theorem to V = (M − 1) ∩ (1 − M) which is a neighborhood of
zero, we see that M∨ is compact. The Krein–Milman theorem then implies, that M∨ is equal to
the closure of the convex hull of the set exM∨. We will show later (see Corollary 4) that M∨ is
nonempty iff M is proper.

Recall that a (bounded) ∗-representation of B is a homomorphism of unital ∗-algebras from B

to the algebra of all bounded operators on some Hilbert space Hπ . We say that a ∗-representation
π of B is M-positive for a given subset M of Bh if π(m) is positive semidefinite for every
m ∈ M . For every such π and every v ∈ Hπ of norm 1, ωπ,v(x) := 〈π(x)v, v〉 belongs to M∨.
Conversely, if M is an archimedean quadratic module, then every ω ∈ M∨ is of this form by the
GNS construction.

The equivalence of (1)–(4) in the following result is sometimes referred to as archimedean
positivstellensatz for ∗-algebras. It originates from the Vidav–Handelmann theory, cf. [7, Sec-
tion 1] and [20]. Our aim is to add assertions (5) and (6) to this equivalence.
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Proposition 1. For every archimedean quadratic module M in B and every element b ∈ Bh the
following are equivalent:

(1) b ∈ M◦ (the interior w.r.t. the finest locally convex topology),
(2) b ∈ ε + M for some real ε > 0,
(3) π(b) is strictly positive definite for every M-positive ∗-representation π of B ,
(4) f (b) > 0 for every f ∈ M∨,
(5) f (b) > 0 for every f ∈ exM∨,
(6) f (b) > 0 for every factorizable f ∈ M∨.

Proof. (1) implies (2) because the set M − b is absorbing, hence −1 ∈ t (M − b) for some t > 0.
Clearly (2) implies (3). (3) implies (4) because the cyclic ∗-representation that belongs to f

by the GNS construction clearly has the property that π(m) is positive semidefinite for every
m ∈ M . (4) implies (1) by the separation theorem for convex sets. The details can be found in [4,
Theorem 12] or [18, Proposition 15] or [5, Proposition 1.4].

If (5) is true then, by the compactness of exM∨, there exists ε > 0 such that f (b) � ε for
every f ∈ exM∨, hence (4) is true by the Krein–Milman theorem. Clearly, (4) implies (6).
By Proposition 3 below and the fact that the set of all factorizable M-positive states is closed,
(6) implies (5). �

Similarly, we have the following:

Proposition 2. For every archimedean quadratic module M in B and every element b ∈ Bh the
following are equivalent:

(1) b ∈ M (the closure w.r.t. the finest locally convex topology),
(2) b + ε ∈ M for every ε > 0,
(3) π(b) is positive semidefinite for every M-positive ∗-representation π of B ,
(4) f (b) � 0 for every f ∈ M∨,
(5) f (b) � 0 for every f ∈ exM∨,
(6) f (b) � 0 for every factorizable f ∈ M∨.

The following proposition which extends [19, Ch. IV, Lemma 4.11] was used in the proof of
equivalences (4)–(6) in Propositions 1 and 2. Its proof depends on the equivalence of (2) and (3)
in Proposition 2.

Proposition 3. If M is an archimedean quadratic module in B then all extreme M-positive states
are factorizable.

Proof. Pick any ω ∈ exM∨ and y ∈ Z(B)h. We claim that ω(xy) = ω(x)ω(y) for every x ∈ Bh.
Since y = 1

4 ((1 + y)2 − (1 − y)2) and (1 ± y)2 ∈ M , we may assume that y ∈ M . Since M is
archimedean, we may also assume that 1 − y ∈ M .

Claim. If ω(y) = 0, then ω(y2) = 0. (Equivalently, if ω(1 − y) = 0, then ω((1 − y)2) = 0.)

Since y,2 − y ∈ M , it follows that 1 − (1 − y)2 = 1
2 (y(2 − y)2 + (2 − y)y2) ∈ M . Since ω is

an M-positive state, it follows that ω((1 − y)2) � 1. On the other hand, ω((1 − y)2)ω(12) �
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|ω((1 − y) · 1)|2 by the Cauchy–Schwartz inequality. Now, ω(y) = 0 implies that ω((1 −
y)2) = 1, hence ω(y2) = 0.

Case 1: If ω(y) = 0, then ω(xy) = 0 for every x ∈ Bh. (Equivalently, if ω(1 − y) = 0, then
ω(x(1 − y)) = 0 for every x ∈ Bh.) Namely, by the Cauchy–Schwartz inequality and the Claim,
|ω(xy)|2 � ω(x2)ω(y2) = 0. It follows that ω(xy) = ω(x)ω(y) if ω(y) = 0 or ω(y) = 1.

Case 2: If 0 < ω(y) < 1, then ω1 and ω2 defined by

ω1(x) := 1

ω(y)
ω(xy) and ω2(x) := 1

ω(1 − y)
ω

(
x(1 − y)

)

(x ∈ Bh) are M-positive states on Bh. Namely, for every M-positive ∗-representation π of B

and every x ∈ M , we have that π(xy) = π(x)π(y) is a product of two commuting positive
semidefinite bounded operators, hence a positive semidefinite bounded operator. By the equiv-
alence of assertions (2) and (3) in Proposition 2, xy + ε ∈ M for every ε > 0. Since ω is
M-positive, it follows that ω(xy) � 0 as claimed. Similarly, we prove that ω2 is M-positive.
Clearly, ω = ω(y)ω1 + ω(1 − y)ω2. Since ω is an extreme point of the set of all M-positive
states on Bh, it follows that ω = ω1 = ω2. In particular, ω(xy) = ω(x)ω(y). �

If we apply Proposition 1 or 2 to b = −1, we get the following corollary, parts of which were
already mentioned above.

Corollary 4. For every archimedean quadratic module M in B the following are equivalent:

(1) −1 /∈ M ,
(2) there exists an M-positive ∗-representation of B ,
(3) there exists an M-positive state on B ,
(4) there exists an extreme M-positive state on B ,
(5) there exists a factorizable M-positive state on B .

The following variant of Proposition 1 which follows easily from Corollary 4 was proved in [3,
Theorem 5]. We could call it archimedean nichtnegativsemidefinitheitsstellensatz for ∗-algebras.

Proposition 5. For every archimedean proper quadratic module M on a real or complex ∗-
algebra B and for every x ∈ Bh, the following are equivalent:

(1) For every M-positive ∗-representation ψ of B , ψ(x) is not negative semidefinite (i.e.
〈ψ(x)v, v〉 > 0 for some v ∈ Hψ ).

(2) There exist k ∈ N and c1, . . . , ck ∈ B such that
∑k

i=1 cixc∗
i ∈ 1 + M .

3. Theorems H and F

The aim of this section is to prove Theorem H (see Theorem 6) and show that it implies a
generalization of Theorem F to compact operators. We also prove a concrete version of Proposi-
tion 5.



3138 J. Cimprič / Journal of Functional Analysis 260 (2011) 3132–3145
Theorem 6. Let R be a commutative real algebra with trivial involution, A a ∗-algebra over
F ∈ {R,C} and M an archimedean quadratic module in B := R ⊗ A. For every element p of
Bh = R ⊗ Ah, the following are equivalent:

(1) p ∈ ε + M for some real ε > 0.
(2) For every multiplicative state φ on R, there exists real εφ > 0 such that (φ ⊗ idA)(p) ∈

εφ + (φ ⊗ idA)(M).

The following are also equivalent:

(1′) p + ε ∈ M for every real ε > 0.
(2′) For every multiplicative state φ on R and every real ε > 0 we have that (φ ⊗ idA)(p) + ε ∈

(φ ⊗ idA)(M).

Moreover, the following are equivalent:

(1′′) There exist finitely many ci ∈ B such that
∑

i c
∗
i pci ∈ 1 + M .

(2′′) For every multiplicative state φ on R there exist finitely many di ∈ A such that
∑

i d
∗
i (φ ⊗

idA)(p)di ∈ 1 + (φ ⊗ idA)(M).

Proof. Clearly (1) implies (2). We will prove the converse in several steps. Note that for every
multiplicative state φ on R, the mapping φ ⊗ idA :B → A is a surjective homomorphism of ∗-
algebras, hence (φ ⊗ idA)(M) is an archimedean quadratic module in A. Replacing B , M , f and
p in Proposition 1 with A, (φ ⊗ idA)(M), σ and (φ ⊗ idA)(p), we see that (2) is equivalent to:

(A) For every multiplicative state φ on R and every state σ on Ah such that σ((φ⊗ idA)(M)) � 0
we have that σ((φ ⊗ idA)(p)) > 0.

Note that (φ ⊗ σ)(r ⊗ a) = φ(r)σ (a) = σ(φ(r)a) = σ((φ ⊗ idA)(r ⊗ a)) for every r ∈ R and
a ∈ Ah. It follows that φ ⊗ σ = σ ◦ (φ ⊗ idA). Thus, (A) is equivalent to:

(B) For every M-positive state on R ⊗ Ah of the form ω = φ ⊗ σ where φ is multiplicative, we
have that ω(p) > 0.

Since R ⊗ 1 ⊆ Z(B), every factorizable state ω satisfies ω(r ⊗ a) = ω(r ⊗ 1)ω(1 ⊗ a) and
ω(rs ⊗ 1) = ω(r ⊗ 1)ω(s ⊗ 1) for any r, s ∈ R and a ∈ Ah. Hence ω = φ ⊗ σ where φ is a
multiplicative state on R and σ is a state on Ah. Therefore, (B) implies that:

(C) ω(p) > 0 for every factorizable ω ∈ M∨.

By Proposition 1, (C) is equivalent to (1).
The equivalence of (1′) and (2′) can be proved in a similar way using Proposition 2. It can

also be easily deduced from the equivalence of (1) and (2).
Clearly (1′′) implies (2′′). Conversely, if (1′′) is false, then −1 /∈ N where N := {m −∑
c∗
i pci | m ∈ M, ci ∈ B} is the smallest quadratic module in B which contains M and −p.

By Corollary 4, there exists a factorizable state ω ∈ N∨. From the proof of (1) ⇔ (2), we
know that ω = φ ⊗ σ = σ ◦ (φ ⊗ idA) for a multiplicative state φ on R and a state σ on A.
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Since σ((φ ⊗ idA)(N)) = ω(N) � 0, it follows that −1 /∈ (φ ⊗ idA)(N). Since (φ ⊗ idA)(N) =
{(φ ⊗ idA)(m) − ∑

j d∗
j (φ ⊗ idA)(p)dj | m ∈ M,dj ∈ A}, we get that (2′′) is false. �

For every Hilbert space H we write B(H) for the set of all bounded operators on H , P(H) =
Σ2(B(H)) for the set of all positive semidefinite operators on H and K(H) for the set of all
compact operators on H .

Lemma 7. Let H be a separable Hilbert space and M a quadratic module in B(H) which is not
contained in P(H). Then M contains all hermitian compact operators, i.e. K(H)h ⊆ M .

Proof. Let M be a quadratic module in B(H) which is not contained in P(H). Pick an arbitrary
operator L in M \ P(H) and a vector v ∈ H such that 〈v,Lv〉 < 0. Write P for the orthogonal
projection of H on the span of v. Clearly, PLP = λP where λ < 0, hence −P ∈ M . If Q is an
orthogonal projection of rank 1, then Q = U∗PU for some unitary U , hence −Q ∈ M . Since
also Q = Q∗Q ∈ M , M contains all hermitian operators of rank 1. Therefore, M contains all
finite rank operators. Pick any K ∈ K(H)h ∩P(H) and note that

√
K ∈ K(H)h ∩P(H) as well.

Clearly, −K+ε
√

K ∈ M for every ε > 0 since it is a sum of an element from K(H)h∩P(H) and
a finite rank operator (check the eigenvalues). It follows that −K ∈ M . It is also clear that every
element of K(H)h is a difference of two elements from K(H)h∩P(H), hence K(H)h ⊆ M . �

As the first application of Theorem 6 and Lemma 7, we prove the following generalization of
Theorem F. By Lemma 11 below, Theorem F corresponds to the case R = R[x] and H finite-
dimensional, i.e. in the finite-dimensional case we can omit the assumption on p.

Theorem 8. Let R be a commutative real algebra with trivial involution, H a separable Hilbert
space, M an archimedean quadratic module in R ⊗ B(H) and p an element of R ⊗ B(H).

If for every multiplicative state φ on R there exists a real ηφ > 0 such that (φ ⊗ idB(H))(p) ∈
ηφ + P(H) + K(H)h (e.g. if p ∈ η + R ⊗ K(H)h for some η > 0) then the following are equiv-
alent:

(1) p ∈ M◦.
(2) For every multiplicative state φ on R such that (φ⊗ idB(H))(M) ⊆ P(H), there exists εφ > 0

such that (φ ⊗ idB(H))(p) ∈ εφ + P(H).

If (φ ⊗ idB(H))(p) ∈ P(H) + K(H)h for every multiplicative state φ on R (e.g. if p ∈ R ⊗
K(H)h) then the following are equivalent:

(1′) p ∈ M .
(2′) For every multiplicative state φ on R such that (φ ⊗ idB(H))(M) ⊆ P(H), we have that

(φ ⊗ idB(H))(p) ∈ P(H).

Proof. Suppose that (1) is true, i.e. p ∈ ε + M for some ε > 0. For every multiplicative state φ

on R such that (φ⊗ idB(H))(M) ⊆ P(H) we have that (φ⊗ idB(H))(p) ∈ (φ⊗ idB(H))(ε +M) ⊆
ε + P(H), hence (2) is true. Conversely, suppose that (2) is true. We claim that for every multi-
plicative state φ on R there exists εφ > 0 such that (φ⊗ idB(H))(p) ∈ εφ +(φ⊗ idB(H))(M). Then
it follows by Theorem 6 that (1) is true. If (φ ⊗ idB(H))(M) ⊆ P(H), then (φ ⊗ idB(H))(p) ∈
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εφ +P(H) ⊆ εφ + (φ ⊗ idB(H))(M) by (2) and the fact that (φ ⊗ idB(H))(M) is a quadratic mod-
ule in B(H). On the other hand, if (φ ⊗ idB(H))(M) � P(H), then K(H)h ⊆ (φ ⊗ idB(H))(M)

by Lemma 7. The assumption (φ ⊗ idB(H))(p) ∈ ηφ + P(H) + K(H)h for some ηφ > 0 then
implies that (φ ⊗ idB(H))(p) ∈ ηφ

2 + (φ ⊗ idB(H))(M) as claimed. The proof of the equivalence
(1′) ⇔ (2′) is similar. �

In the infinite-dimensional case, the assumption on p cannot be omitted as the following
example shows:

Example. Let H be an infinite-dimensional separable Hilbert space, 0 �= E ∈ B(H)h an or-
thogonal projection of finite rank and T an element of B(H)h such that T /∈ P(H) + K(H)h.
Since the quadratic module Σ2(B(H)/K(H)) is closed, also P(H) + K(H)h is closed, hence
there exists a real ε > 0 such that T + ε /∈ P(H) + K(H)h. Write p1 = −x2E, p2 = 1 − x2

and p = ε + x2T . Let M be the quadratic module in R[x] ⊗ B(H) generated by p1 and p2.
Since p2 ∈ M , it follows from Lemma 11 below that M is archimedean. For every point
a ∈ R such that p1(a) � 0 and p2(a) � 0 we have that a = 0, hence p(a) = ε. Therefore,
assertion (2) of Theorem 8 is true for our M and p. Assertion (1), however, fails for our
M and p. If it was true then there would exist finitely many qi, uj , vk ∈ R[x] ⊗ B(H) and
a real η > 0 such that p = η + ∑

i q
∗
i qi + ∑

j u∗
jp1uj + ∑

k v∗
kp2vk . For x = 1, we get

ε + T = η + ∑
i qi(1)∗qi(1) − ∑

j uj (1)∗Euj (1). The first two terms belong to P(H) and the
last term belongs to K(H)h, a contradiction with the choice of T .

We finish this section with a concrete version of Proposition 5 in the spirit of Theorem F. For
R = R[x], we get [10, Corollary 22].

Theorem 9. Let R be a commutative real algebra with trivial involution, ν ∈ N, and M an
archimedean quadratic module in Mν(R). For every element p ∈ Mν(R)h, the following are
equivalent:

(1) There are finitely many ci ∈ Mν(R) such that
∑

i c
∗
i pci ∈ 1 + M .

(2) For every multiplicative state φ on R such that (φ ⊗ id)(m) is positive semidefinite for all
m ∈ M , we have that the operator (φ ⊗ id)(p) is not negative semidefinite.

Proof. Write A = Mν(R). Clearly, a matrix C ∈ Ah is not negative semidefinite (i.e. it has at
least one strictly positive eigenvalue) iff there exist matrices Di ∈ A such that

∑
i D

∗
i CDi − I is

positive semidefinite. It follows that a quadratic module M in A which is different from Σ2(A)

contains −I , hence it is equal to Ah. (This also follows from Lemma 7.) Now we use equivalence
(1′′) ⇔ (2′′) of Theorem 6. �
4. Theorem E

Recall that a ∗-algebra A is algebraically bounded if the quadratic module Σ2(A) is
archimedean. For an element a ∈ Ah we say that a � 0 iff a + ε ∈ Σ2(A) for all real ε > 0
(i.e. iff a ∈ Σ2(A)) and that a > 0 iff a ∈ ε + Σ2(A) for some real ε > 0 (i.e. iff a ∈ Σ2(A)◦). It
is well known that every Banach ∗-algebra is algebraically bounded.

The aim of this section is to deduce the following theorem from Theorem 6 and to show that
it implies Theorem E. Other applications of Theorem 6 will be discussed in Section 5.
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Theorem 10. Let R be a commutative real algebra with trivial involution and A an algebraically
bounded ∗-algebra over F ∈ {R,C}. Let U be an inner product space over F , L(U) the ∗-
algebra of all adjointable linear operators on U , L(U)+ its subset of positive semidefinite
operators, and M an archimedean quadratic module in R ⊗ L(U).

Write B := R ⊗ A and consider the vector space B ⊗ U as left R ⊗ L(U) right B bimodule
which is equipped with the biadditive form 〈·,·〉 defined by 〈b1 ⊗ u1, b2 ⊗ u2〉 := b∗

1b2〈u1, u2〉U .
Write M ′ for the subset of Bh which consists of all finite sums of elements of the form 〈q,mq〉
where m ∈ M and q ∈ B ⊗ U .

We claim that the set M ′ is an archimedean quadratic module and that for every element
p ∈ R ⊗ Ah the following are equivalent:

(1) p ∈ ε + M ′ for some real ε > 0.
(2) For every multiplicative state φ on R such that (φ ⊗ idL(U))(M) ⊆ L(U)+, we have that

(φ ⊗ idA)(p) > 0.

Moreover, the following are equivalent:

(1′) p ∈ M ′.
(2′) For every multiplicative state φ on R such that (φ ⊗ idL(U))(M) ⊆ L(U)+, we have that

(φ ⊗ idA)(p) � 0.

Finally, the following are equivalent:

(1′′) There exist finitely many ci ∈ B such that
∑

i c
∗
i pci ∈ 1 + M ′.

(2′′) For every multiplicative state φ on R such that (φ ⊗ idL(U))(M) ⊆ L(U)+, there exist
finitely many elements di ∈ A such that

∑
i d

∗
i (φ ⊗ idA)(p)di − 1 � 0.

We will need the following observation which follows from the fact that the set of bounded
elements w.r.t. a given quadratic module is closed for addition and multiplication of commuting
elements.

Lemma 11. Let R be a commutative algebra with trivial involution and A an algebraically
bounded ∗-algebra. A quadratic module N in R ⊗ A is archimedean if and only if N ∩ R is
archimedean in R. If x1, . . . , xd are generators of R, then N is archimedean if and only if it
contains K2 − x2

1 − · · · − x2
d for some real K .

Proof of Theorem 10. To prove that (1) implies (2), it suffices to prove:

Claim 1. For every multiplicative state φ on R such that (φ ⊗ idL(U))(M) ⊆ L(U)+, we have
that (φ ⊗ idA)(M ′) ⊆ Σ2(A).

For every q ∈ B ⊗ U and m ∈ M we have that (φ ⊗ idA)(〈q,mq〉) = 〈s, (φ ⊗ idL(U))(m)s〉
where s = (φ ⊗ idA ⊗ idU)(q) ∈ A ⊗ U . If s = ∑k

i=1 ai ⊗ ui , then

〈
s, (φ ⊗ idL(U))(m)s

〉 = [
a∗

1 . . . a∗
k

]
T

⎡
⎢⎣

a1
...

a

⎤
⎥⎦
k
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where T = [〈ui, (φ ⊗ idL(U))(m)uj 〉]ki,j=1 ∈ Mk(F). Since (φ ⊗ idL(U))(m) is positive semidef-
inite for every m ∈ M , T is also positive semidefinite.

To prove that (2) implies (1), consider the following statement:

(3) For every multiplicative state φ on R there exists a real εφ > 0 such that (φ ⊗ idA)(p) ∈
εφ + (φ ⊗ idA)(M ′).

We claim that (2) implies (3) and (3) implies (1).
Clearly, b∗〈q,mq〉b = 〈qb,mqb〉 ∈ M ′ for every m ∈ M , q ∈ B ⊗ U and b ∈ B , hence the

set M ′ is a quadratic module in B . Clearly, M ′ ∩ R is archimedean since it contains M ∩ R. By
Lemma 11, M ′ is also archimedean. Hence (3) implies (1) by Theorem 6.

Suppose that (2) is true and pick a multiplicative state φ on R. Clearly, (φ ⊗ idL(U))(M) is a
quadratic module in L(U) and (φ ⊗ idA)(M ′) is a quadratic module in A. If (φ ⊗ idL(U))(M) ⊆
L(U)+, then (2) implies that (φ ⊗ idA)(p) ∈ εφ + Σ2(A) ⊆ εφ + (φ ⊗ idA)(M ′) for some real
εφ > 0, hence (3) is true. If (φ ⊗ idL(U))(M) � L(U)+ then (3) follows from:

Claim 2. For every multiplicative state φ on R such that (φ ⊗ idL(U))(M) � L(U)+ we have
that (φ ⊗ idA)(M ′) = Ah.

We could use Lemma 7 but we prefer to prove this claim from scratch. Pick any C ∈
(φ ⊗ idL(U))(M) \ L(U)+. There exists u ∈ U of length 1 such that 〈u,Cu〉 < 0. Write P for
the orthogonal projection of U on the span of {u}. Clearly, P ∗CP = −λP for some λ > 0,
hence −P ∈ (φ ⊗ idL(U))(M). Also, P = P ∗P ∈ (φ ⊗ idL(U))(M). Let m± ∈ M be such that
(φ ⊗ idL(U))(m±) = ±P . Pick any a ∈ Ah and write q± = 1R ⊗ 1±a

2 ⊗ u where 1 = 1A.
The element m′ = 〈q+,m+q+〉 + 〈q−,m−q−〉 belongs to M ′ and, by the proof of Claim 1,
(φ ⊗ idA)(m′) = 〈s+, (φ ⊗ idL(U))(m+)s+〉 + 〈s−, (φ ⊗ idL(U))(m−)s−〉 where s± = (φ ⊗
idA ⊗ idU)(q±) = 1±a

2 ⊗ u. Therefore, (φ ⊗ idA)(m′) = ( 1+a
2 )2〈u,Pu〉 + ( 1−a

2 )2〈u,−Pu〉 =
( 1+a

2 )2 − ( 1−a
2 )2 = a.

Claim 1 also gives implications (1′) ⇒ (2′) and (1′′) ⇒ (2′′) and Claim 2 gives their converses.
Note that assertion (3) must be replaced with suitable assertions (3′) and (3′′) to which Theorem 6
can be applied. �

For U = Fν , we have that B ⊗ U ∼= Bν ∼= Mν×1(B), R ⊗ L(U) ∼= Mν(R) ⊆ Mν(B) and
〈q,mq〉 = q∗mq in Theorem 10. However, if also A = Mν(F) (i.e. B = Mν(R)), we do not get
Theorem F. Combining both theorems, we get that archimedean quadratic modules M and M ′ in
Mν(R) have the same interior and the same closure.

Finally, we would like to show that Theorem 10 implies Theorem E. The proof also works for
algebraically bounded ∗-algebras.

Proof of Theorem E. Write ν = 2 + ν1 + · · · + νm, ‖x‖ =
√

x2
1 + · · · + x2

d and p0 = [1 −
‖x‖2] ⊕ [‖x‖2 − 1] ⊕ p1 ⊕ · · · ⊕ pm ∈ Mν(R[x]). Clearly, K0 = {t ∈ Rd | p0(t) � 0}. Let M0

be the quadratic module in Mν(R[x]) generated by p0. Since M0 contains (1 − ‖x‖2)Iν , it is
archimedean by Lemma 11. By Theorem 10 applied to U = Fν , every element p ∈ R[x] ⊗ A

which is strictly positive definite on K0 belongs to M ′
0. From the definition of M ′

0, we get that
p = ∑

(s∗sj + q∗p0qj ) for a finite J , sj ∈ R[x] ⊗ A and qj ∈ Mν×1(R[x] ⊗ A), hence
j∈J j j
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p =
∑
j∈J

(
s∗
j sj + w∗

j

(
1 − ‖x‖2)wj + z∗

j

(‖x‖2 − 1
)
zj +

m∑
k=1

s∗
jkpksjk

)

for a finite J , sj ,wj , zj ∈ R[x] ⊗ A and sjk ∈ Mνk×1(R[x] ⊗ A). Replacing x by x
‖x‖ and mul-

tiplying with a large power of ‖x‖2 we get that

‖x‖2θp(x) =
∑
j∈J

((
uj (x) + ‖x‖vj (x)

)∗(
uj (x) + ‖x‖vj (x)

)

+
m∑

k=1

(
ujk(x) + ‖x‖vjk(x)

)∗
pk(x)

(
ujk(x) + ‖x‖vjk(x)

))

where uj , vj ∈ R[x] ⊗ A and ujk, vjk ∈ Mνk×1(R[x] ⊗ A) for every j ∈ J . Finally, we can get
rid of the terms containing ‖x‖ by replacing ‖x‖ with −‖x‖ and adding the old and the new
equation. �
5. Theorem G and moment problems

Our next result, Theorem 12, is a special case of Theorem 10 for U = F . The proof can
be shortened in this case because both claims become trivial. For R = R[cosφ1, sinφ1, . . . ,

cosφn, sinφn], M = Σ2(R) and A = B(H) it implies Theorem G. For R = R[x] and A a finite-
dimensional C∗-algebra it implies [17, Theorem 2], a step in the original proof of Theorem F.
Both special cases can also be obtained from the original proof of Theorem E, namely, Theorem 3
and Lemma 5 from [1] imply Theorem 12 for R = R[x] and A a C∗-algebra.

Theorem 12. Let R be a commutative real algebra with trivial involution, A an algebraically
bounded ∗-algebra over F ∈ {R,C} and M an archimedean quadratic module in R. Write M ′ =
M · Σ2(R ⊗ A) for the quadratic module in R ⊗ A which consists of all finite sums of elements
of the form mq∗q with m ∈ M and q ∈ R ⊗ A. For every element p ∈ R ⊗ Ah, the following are
equivalent:

(1) p ∈ ε + M ′ for some real ε > 0.
(2) For every multiplicative state φ on R such that φ(M) � 0, we have that (φ ⊗ idA)(p) > 0.

If we combine Theorem 12 with a suitable version of the Riesz representation theorem
(namely, Theorem 1 in [9]) we get the following existence result for operator-valued moment
problems which extends Theorem 3 and Lemma 5 from [1].

Theorem 13. Let A be an algebraically bounded ∗-algebra, R a commutative real algebra and
M an archimedean quadratic module on R. For every linear functional L :R ⊗A → R such that
L(mq∗q) � 0 for every m ∈ M and q ∈ R ⊗ A, there exists an A′-valued nonnegative measure
m on M∨ such that L(p) = ∫

M∨(dm,p) for every p ∈ R ⊗ A. (Note that p defines a function
φ �→ (φ ⊗ idA)(p) from M∨ to A.)

Proof. Recall that the set M∨ is compact in the weak*-topology. We assume that A is equipped
with its natural C∗-seminorm induced by the archimedean quadratic module Σ2(A), see [4,
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Section 3], hence it is a locally convex ∗-algebra. We will write C+(M∨,A) := C(M∨,Σ2(A))

for the positive cone of C(M∨,A). Let i be the mapping from R ⊗ A to C(M∨,A) defined
by i(p)(φ) = (φ ⊗ idA)(p) for every p ∈ R ⊗ A and φ ∈ M∨. By Theorem 12, we have that
C+(M∨,A) ∩ i(R ⊗ A) = i(M ′) where M ′ = M · Σ2(R ⊗ A). Note that L is an M ′-positive
functional on R ⊗ A and that is defines in the natural way an i(M ′)-positive functional L′ on
i(R ⊗ A). By the Riesz extension theorem for positive functionals, L′ extends to a C+(M∨,A)-
positive functional on C(M∨,A) which has the required integral representation by Theorem 1 in
[9]. Hence L also has the required integral representation. �

Finally, we would like to prove a nichtnegativsemidefinitheitsstellensatz that corresponds to
Theorem 12.

Theorem 14. Let H be a separable infinite-dimensional complex Hilbert space and R a commu-
tative real algebra with trivial involution. Let M be an archimedean quadratic module in R and
M ′ = M · Σ2(R ⊗ B(H)). For every p ∈ R ⊗ B(H)h, the following are equivalent:

(1) There are finitely many ci ∈ R ⊗ B(H) such that
∑

i c
∗
i pci ∈ 1 + M ′.

(2) For every multiplicative state φ on R such that φ(M) � 0, the operator (φ ⊗ idB(H))(p) is
not the sum of a negative semidefinite and a compact operator.

Note that for finite-dimensional H , (1) is equivalent to the following: For every multiplicative
state φ on R such that φ(M) � 0, the operator (φ ⊗ idB(H))(p) is not negative semidefinite; cf.
Theorem 9.

Proof. The equivalence (1′′) ⇔ (2′′) of Theorem 10 (with U = C and A = B(H)) says that our
assertion (1) is equivalent to the following:

(3) For every multiplicative state φ on R such that φ(M) � 0, there exist finitely many operators
Di ∈ B(H) such that

∑
i D

∗
i (φ ⊗ idA)(p)Di ∈ 1 + P(H).

Therefore it suffices to prove the following claim:

Claim. For every operator C ∈ B(H)h, the following are equivalent:

(i) C is not the sum of a negative semidefinite and a compact operator,
(ii) the positive part of C is not compact,

(iii) there exists an operator D such that D∗CD = 1,
(iv) there exist finitely many Di ∈ B(H) such that

∑
i D

∗
i CDi ∈ 1 + P(H).

The implications (i) ⇒ (ii), (iii) ⇒ (iv) and (iv) ⇒ (i) are clear. To prove that (ii) implies (iii)
we first note that C+ := E0C = E∗

0CE0 where E0 is the spectral projection belonging to the
interval [0,∞). Since C+ is not compact, there exists by the spectral theorem a real num-
ber γ > 0 such that the spectral projection Eγ belonging to the interval [γ,∞) has infinite-
dimensional range. The operator Cγ := Eγ C+ = E∗

γ CEγ has decomposition Cγ = C̃γ ⊕ 0 with

respect to H = Eγ H ⊕ (1 − Eγ )H where C̃γ � γ . Write F = (C̃γ )−1/2 ⊕ 0 and note that
(Eγ F )∗C(Eγ F) = 1 ⊕ 0. Since Eγ H is infinite-dimensional, it is isometric to H . If G is an
isometry from H onto Eγ H then D := Eγ FG satisfies (iii). �
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