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a b s t r a c t

Let D be a category and E a class of morphisms in D . In this paper we study the question
of how to transfer homotopic structure from the category of simplicial objects in D ,
∆◦D , to D through a ‘good’ functor s : ∆◦D → D , which we call simple functor. For
instance, the Bousfield–Kan homotopy colimit in a Quillen simplicial model category is
a good simple functor. As a remarkable example outside the setting of Quillen models
we include Deligne simple of mixed Hodge complexes. We prove here that the simple
functor induces an equivalence on the corresponding localized categories.We also describe
a natural structure of Brown category of cofibrant objects on ∆◦D . We use these facts to
produce cofiber sequences on the localized category of D by E, which give rise to a natural
Verdier triangulated structure in the stable case.

© 2011 Elsevier B.V. All rights reserved.

0. Introduction

Since the beginning of homotopy theory the usage of simplicial techniques has been extremely fruitful. In the present
paper we study how to induce homotopic structure on a category D endowed with a class E of morphisms using a ‘simple’
functor from the category of simplicial objects in D , ∆◦D , to D . Two classical precedents are the following: the geometric
realization ∆◦Top → Top, and the ‘total complex’ of a double chain complex, which may be seen as a simple functor
∆◦C∗(A)→ C∗(A).

In the cosimplicial setting, P. Deligne introduces in [6] a simple functor for cosimplicialmixedHodge complexes, and uses
it as a tool to define amixed Hodge structure over the cohomology of singular varieties. Given a singular variety S, P. Deligne
constructs a mixed Hodge structure on H∗(S) from s(K •), which is the simple mixed Hodge complex of a cosimplicial mixed
Hodge complex K • associated with a smooth hyperresolution X• of S. It turns out that the resulting mixed Hodge structure
on H∗(S) is independent of the hyperresolution X• chosen for S. However, a priori, it could depend on the choice of Deligne
simple s(·).

A natural question is to find out the properties that make Deligne’s construction s a ‘good’ simple functor, and if this
construction is unique or not. In this paper we introduce the notion of simplicial descent category as an answer to this
question.

Consider a category D endowed with a saturated class E of morphisms, calledweak equivalences, such that both D and E
are closed by finite coproducts. A simplicial descent structure on (D, E) is a triple (s, µ, λ) satisfying the following axioms:

(S1) Coproducts: s : ∆◦D → D is a functor, called the ‘simple functor’, which commutes with finite coproducts up to
weak equivalence.

(S2) Eilenberg–Zilber: µ is a zigzag of natural weak equivalences between the iterated simple of a bisimplicial object and
the simple of its diagonal.
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(S3) Normalization: λ is a zigzag of natural weak equivalences between an object A of D and the simple of the constant
simplicial object induced by A.

(S4) Exactness: The simple of a degreewise weak equivalence is a weak equivalence.
(S5) Homotopy: If e is a simplicial homotopy equivalence in∆◦D , then s(e) is in E.

A simplicial descent category is a pair (D, E) as before, endowed with a simplicial descent structure. Cosimplicial descent
categories are defined dually, involving a simple s : ∆D → D . This notion is strongly inspired by the cubical homological
descent categories introduced by Guillén and Navarro in [12].

It holds that Deligne’s construction provides a simple functor verifying our axioms.

Theorem 2.10 Let Hdg be the category of mixed Hodge complexes, and consider the class EHdg of quasi-isomorphisms in Hdg.
Then Deligne simple functor sHdg : ∆Hdg → Hdg endows (Hdg, EHdg) with a structure of cosimplicial descent category.

On the other hand, homotopy colimits in Quillen simplicial model categories are also examples of simple functors
verifying our axioms. More concretely, we prove the

Theorem 3.2 Let M be a simplicial model category with weak equivalences W , and denote by Mc and Mf its corresponding
subcategories of cofibrant and fibrant objects. Then, (Mc,W, hocolim) is a simplicial descent category. Dually, (Mf ,W, holim)
is a cosimplicial descent category.

In addition we see in Corollary 3.4 that, under mild conditions on M, this simplicial descent structure may be extended
to all M, by taking a ‘corrected’ Bousfield–Kan homotopy colimit as simple functor.

The following facts highlight some remarkable differences between simplicial descent categories and Quillen model
categories.

– The localized category of a simplicial descent category may not have small hom’s (Remark 3.3).
– Simplicial descent structures are inherited by diagram categories (Proposition 1.6).
– A simplicial descent structure on (D, E) is unique, up to unique isomorphism, on the localizations (Corollary 5.2).
– Simplicial descent structures are closed by homotopical equivalence (Proposition 1.8).

In the present paper we show that the previous axioms ensure good homotopic properties on (D, E). This is done in two
steps. First, we study the homotopic structure of (∆◦D, S = s−1E) and second, we prove that the simple functor transfers
this structure. Indeed, it induces an equivalence between the corresponding localized categories of∆◦D and D .

Independently, V. Voevodsky introduces in [24] the notion of (∆,⨿<∞)-closed class of ∆◦C, for a general category C.
This notion and the one of simplicial descent category are closely related.

Proposition 4.2

(i) Consider a category C with finite coproducts, and a saturated class W of morphisms in ∆◦C. Then, the following are
equivalent.
(1) W is (∆,⨿<∞)-closed.
(2) (∆◦C,W,D : ∆◦∆◦C → ∆◦C) is a simplicial descent category.

(ii) Given a simplicial descent category (D, E, s), then S = s−1E is (∆,⨿<∞)-closed.

A (∆,⨿<∞)-closed class W of ∆◦C provides a natural structure of cofibrant objects in the sense of Brown [3]. In this
case, the simplicial homotopic structure of ∆◦C is compatible with W , in such a way that the natural cofiber sequences in
(∆◦C)[W−1] satisfy the usual properties. Although not stated explicitly, the proof of the following result is contained in [24].

Proposition 4.9

(i) LetC be a category with finite coproducts andW a (∆,⨿<∞)-closed class of∆◦C. Then (C,W, Cof ) is a category of cofibrant
objects, where Cof = {termwise coprojections}.

(ii) If in addition C is pointed, then a pair (X → Y → Z , Z → Z ⊔Λ(X)) is a simplicial distinguished triangle if and only if it is
a cofibration sequence in the sense of Brown.

These results reveal that the previous axioms guarantee good homotopic properties on ∆◦D . But our aim is to work on
D , not on∆◦D . The key result that makes possible to transfer structure from∆◦D to D is the following.

Theorem 5.1

(i) The simple functor s : (∆◦D)[(∆◦E)−1] → D[E−1] is left adjoint to c : D[E−1] → (∆◦D)[(∆◦E)−1].
(ii) The pair s : ∆◦D � D : c is a homotopical equivalence between (∆◦D, S) and (D, E). In particular, s : ∆◦D[S−1] →

D[E−1] is an equivalence of categories.
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The previous results imply the following corollary.

Corollary 5.6
In the pointed case, distinguished triangles in D[E−1] satisfy the usual ‘non-stable’ axioms for triangulated categories, and they
are natural with respect to diagram categories.

Consequently, in the stable case, D[E−1] has a structure of Verdier triangulated category which is natural with respect to
diagram categories.

There are some further interesting questions concerning the theory presented here. For instance, Theorem 5.1 implies
that s : ∆◦D → D is a homotopy colimit. Indeed, in [21] we obtain homotopy colimits ID → D for diagrams of finite
shape I by combining s with the simplicial replacement. In addition, in case (D, E) is closed by small coproducts, to have
a simplicial descent structure on (D, E) turns out to be equivalent to have realizable homotopy colimits of arbitrary shape
on (D, E).

The organization of the paper goes as follows. We introduce the basic definitions and properties of simplicial descent
categories in the first section. In the second one we describe some concrete examples, as chain complexes, simplicial sets
or mixed Hodge complexes. In Section 3 we prove that the Bousfield–Kan homotopy colimit in a Quillen simplicial model
category is a simple functor in our sense. In Section 4 we describe the relation between simplicial descent categories, ∆-
closed classes and Brown structures of cofibrant objects. Finally, in the last section we prove that the simple functor is an
homotopical equivalence. We use this result to deduce the existence and good properties of the induced cofiber sequences
in D .

I wish to express my deep gratitude to my thesis advisors L. Narváez Macarro and V. Navarro Aznar, who suggested me
this topic and gave me their helpful advice and dedication.

I am very grateful to an anonymous referee who observed that, under our axioms, ∆◦D supports a Brown structure of
cofibrant objects, and who proposed to give an alternative proof of Corollary 5.6 using this fact, instead the direct proof
given in a previous version of this paper. I would like also to thank the other referees for useful comments and for stating
the question whether the simple functor induces an equivalence on localized categories or not, which is now solved in
Theorem 5.1.

0.1. Notations and preliminaries

(0.1) Denote by ∆ the simplicial category, with objects the ordered sets [n] = {0, . . . , n}, n ≥ 0, and morphisms the order
preserving maps. The face maps di : [n − 1] → [n] are characterized by di([n − 1]) = [n] − {i}, and the degeneracy maps
sj : [n+ 1] → [n] are the surjective monotone maps with sj(j) = sj(j+ 1). They satisfy the well-known simplicial identities,
and generate all maps in∆ (see, for instance, [18]).

By∆◦D (resp.∆◦∆◦D) we mean the category of simplicial (resp. bisimplicial) objects in a fixed category D . The diagonal
functor D : ∆◦∆◦D → ∆◦D is given by D({Zn,m}n,m≥0) = {Zn,n}n≥0.

The constant simplicial object defined by A ∈ D will be denoted by c(A). In this way we obtain the constant functor
c : D → ∆◦D , which is fully faithful. When understood, we will denote c(A) by A.

Dually,∆D = (∆◦D◦)◦ is the category of cosimplicial objects in D .

(0.2) If D has (finite) coproducts, there is a natural action of simplicial (finite) sets on∆◦D , given by

(K � X)n =

Kn

Xn.

Recall that ∆[k] is the simplicial finite set with ∆[k]n = Hom∆([n], [k]). In particular ∆[0] = ∗, and ∆[1] plays the role of
‘unit interval’ in∆◦Sets. Given X ∈ ∆◦D , the maps d0, d1 : [0] → [1] induce dX0 , d

X
1 : X → X �∆[1]. Simplicial homotopies

and simplicial homotopy equivalences are defined in∆◦D as usual, using the simplicial cylinder X �∆[1] of X .

(0.3) We call a class of morphisms E of a category D saturated if E = γ−1(isomorphisms), where γ : D → D[E−1] is
the localization functor. In particular, E contains all isomorphisms of D , is closed by retracts and satisfies the 2-out-of-3
property.

Given another category C, Fun(C,D) denotes the category of functors from C to D . If I is a small category, we also write
Fun(I,D) = ID . We denote by CE, or by E if C is understood, the class of morphisms τ : F → G in Fun(C,D) such that
τc ∈ E for all c ∈ C.

(0.4) By a relative categorywemean a pair (D, E) formed by a categoryD and a class ofmorphisms E ofD , which is assumed
to be saturated. Themorphisms of E will be calledweak equivalences. We say that a relative category (D, E) is closed by finite
coproducts if D has an initial object 0 and both D and E are closed by finite coproducts.

Note that if (D, E) is a relative category closed by finite coproducts then D[E−1] is closed by finite coproducts, and they
are preserved by γ : D → D[E−1].
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1. (Co)simplicial descent categories

Definition 1.1. Let (D, E) be a relative pair closed by finite coproducts. A simplicial descent structure on (D, E) is a triple
(s, µ, λ) satisfying the following five axioms.

(S1) s : ∆◦D → D is a functor, called the simple functor, which commutes with finite coproducts up to weak equivalence.
That is, the canonical morphism s(X)⨿ s(Y )→ s(X ⨿ Y ) is in E for all X , Y in∆◦D .

(S2) µ : s◦D 99K s◦s is a zigzag of natural weak equivalences. If Z ∈ ∆◦∆◦D , recall that sD(Z) is the simple of the diagonal
of Z . On the other hand ss(Z) := s(n→ s(m→ Zn,m)) is the iterated simple of Z .

(S3) λ : s◦c 99K 1D is a zigzag of natural weak equivalences, which is assumed to be compatible withµ in the sense of (1.2)
below.

(S4) If f : X → Y is a morphism in∆◦D such that fn ∈ E for all n, then s(f ) ∈ E.
(S5) The image under the simple functor of the map dA0 : A→ A �∆[1] is a weak equivalence for each object A of D .

(1.2) Compatibility between λ and µ
Given X ∈ ∆◦D , denote by X × ∆, ∆ × X the bisimplicial objects with (X × ∆)n,m = Xn and (∆ × X)n,m = Xm. Note that
ss(X ×∆) = s(n→ sc(Xn)) and ss(∆× X) = scs(X). The compositions

s(X)
µ∆×X // scs(X)

λs(X) // s(X) s(X)
µX×∆ // ssc(X)

s(λX ) // s(X) (1)

give rise to isomorphisms of s in Fun(∆◦D,D)[E−1]. Then, λ is said to be compatible with µ if the above isomorphisms are
the identity in Fun(∆◦D,D)[E−1].

Definition 1.3. A simplicial descent category is a relative pair (D, E) closed by finite coproducts and endowed with a
simplicial descent structure (s, µ, λ).

Dually, a cosimplicial descent structure on (D, E) is a triple (s : ∆D → D, µ, λ) such that (s◦, µ◦, λ◦) is a simplicial
descent structure on (D◦, E◦). Cosimplicial descent categories are defined analogously.

To shorten the notations, we will also write (D, E, s) for a simplicial descent category (D, E) endowed with a simplicial
descent structure (s, µ, λ).
Remark 1.4. (I) If (D, E) admits a simplicial descent structure (s, µ, λ), then (s, µ, λ) is uniquely determined on D[E−1]

up to unique isomorphism. This is proved later in Corollary 5.2.
(II) Since E is saturated, (S3) implies that the canonical map 0→ s(0) is a weak equivalence.
(III) All results concerning simplicial descent categories are dualized to cosimplicial descent ones.

Some direct consequences of the axioms are the following.

Proposition 1.5. The simple functor maps simplicial homotopy equivalences to weak equivalences. In particular, the following
properties hold.

(i) If f , g : X → Y are simplicially homotopic maps, then s(f ) = s(g) in D[E−1].
(ii) If α : X → X−1 is an augmentation with an extra degeneracy then s(α) ∈ E.

Proof. Let us see that s(dX0 : X → X �∆[1]) is a weak equivalence for each X in∆◦D . Note that X �∆[1] is the diagonal of
Z ∈ ∆◦∆◦D with Zn,m =


∆[1]n Xm. Therefore, by (S2) sD(Z) = s(X � ∆[1]) and ss(Z) are isomorphic in D[E−1]. By (S1),

there is a natural degreewise weak equivalence between s(m → Z·,m) and s(X) � ∆[1]. So (S4) ensures that s(X � ∆[1])
and s(s(X) � ∆[1]) are naturally isomorphic in D[E−1]. Hence, by (S5), s(dX0 : X → X � ∆[1]) is in E. Since dX0 and
dX1 : X → X � ∆[1] have sX0 : X � ∆[1] → X as common section, it follows that s(dX0 ) = s(dX1 ) in D[E−1]. This fact
implies easily all the statements in the proposition. �

Next result states that simplicial descent structures are inherited by diagram categories. The proof is straightforward,
and is left to the reader.

Proposition 1.6. Let I be a small category and let (s, µ, λ) be a simplicial descent structure on (D, E). Then, the triple
(sID , µID , λID) defined objectwise is a simplicial descent structure on (ID, IE), where ID is the category of functors from I
to D and IE = {α with αi ∈ E for all i ∈ I}. If X : ∆◦ → ID then (sID(X))(i) = s(n → Xn(i)), and (µID , λID) is defined
analogously.

Wewill use of the notion of homotopical equivalence of relative categories of [8, 8.3 (ii)]. In contrast to other homotopy
theories based on the existence of cofibrations, such as Quillen models, it holds that simplicial descent structures are closed
by homotopical equivalence of relative categories.

Definition 1.7. A homotopical equivalence between the relative categories (C,W) and (D, E) is given by:

(1) Functors F : C → D and G : D → C such that F(W) ⊂ E and G(E) ⊂ W .
(2) Zigzags of natural weak equivalences α : FG 99K 1D and β : GF 99K 1C .

We say that (C,W) and (D, E) are homotopically equivalent if there exists a homotopical equivalence between them.
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This means that there exists an equivalence of categories between C[W−1] and D[E−1] which is realized by weak
equivalence-preserving functors F : C � D : G and, in addition, the isomorphisms FG ∼= 1D[E−1], GF ∼= 1C[W−1] are
realized by zigzags of natural weak equivalences.

Proposition 1.8. Let (C,W) and (D, E) be relative categories closed by finite coproducts, which are in addition homotopically
equivalent. If (D, E) is a simplicial descent category, then so is (C,W).

Proof. Let (sD , µD , λD) be a simplicial descent structure on (D, E) and let F : C � D : G, α : FG 99K 1D , β : GF 99K 1C

be a homotopical equivalence between (C,W) and (D, E). We assume that βG G(α−1) = 1G in Fun(D,C)[W−1] and
F(β) α−1F = 1F in Fun(C,D)[E−1]. This is possible by Lemma 1.9. Let us see that sC

= GsDF : ∆◦C → C is a simple
functor for (C,W).

(S1)Wehave that sC preserves finite coproducts up toweak equivalence becauseG, sD and F do.We already know that sD

does. On the other hand, C[W−1] and D[E−1] are closed by finite coproducts, and they are preserved by γC : C → C[W−1]
and γD : D → D[W−1]. As F : C[W−1] → D[E−1] is an equivalence of categories, it commutes with finite coproducts.
This means that given c, d ∈ C, the canonical morphism τF : F(c) ⊔ F(d) → F(c ⊔ d) of D becomes an isomorphism in
D[E−1]. So τF ∈ E because E is saturated. Arguing analogously for G, we get that sC satisfies (S1).

(S2) Consider Z ∈ ∆◦∆◦C. Applying F we obtain F(Z) ∈ ∆◦∆◦D , and we have the zigzag of natural weak equivalences
µD

Z : sDF(DZ) 99K sDsDF(Z). Then G(µD
Z ) : sC(DZ) 99K GsDsDF(Z) is a zigzag of natural weak equivalences. On

the other hand, applying GsD to αsD F(Z) : FGsDF(Z) 99K sDF(Z) we obtain the zigzag of natural weak equivalences
ρZ : GsDFGsDF(Z) = sCsC(Z) 99K GsDsDF(Z). Then, we set µC

Z = ρ
−1
Z G(µD

Z ).
(S3) Given A ∈ C , we have λD

F(A) : s
DcF(A)→ F(A). So λC

A : s
Cc(A)→ A is obtained from G(λD

F(A)) and βA : GF(A)→ A.
The compatibility between λC and µC follows easily from the compatibility between λD and µD and from the equalities
βG G(α−1) = 1G, F(β) α−1F = 1F .

(S4) sC preserves degreewise weak equivalences because sD does, F(W) ⊂ E and G(E) ⊂ W .
(S5) Consider A in C. Since F commutes with finite coproducts up to weak equivalence, for each simplicial finite set K we

have a natural degreewise weak equivalence F(A) � K → F(A � K). It follows that sD(F(A) � K)→ sDF(A � K) is in E, so
GsD(F(A) � K)→ GsDF(A � K) is in W . Then GsD(dF(A)0 ) ∼ sC(dA0), and sC(dA0) is in W since we know that sD(dF(A)0 ) is in E
and G(E) ⊂ W . �

Next lemma is a relative version of the fact that any pair F : C � D : G of inverse equivalences of categories gives an
‘adjoint equivalence of categories’ (see [17, IV.4, Theorem 1]).

Lemma 1.9. Assume that F : C � D : G, α : FG 99K 1D and β : GF 99K 1C form a homotopical equivalence between (C,W)
and (D, E). Then there exists a zigzag β ′ : GF 99K 1C of natural weak equivalences such that the compositions

F
α−1F
99K FGF

F(β ′)
99K F G

G(α−1)
99K GFG

β ′G
99K G

are equal to 1F in Fun(C,D)[E−1] and to 1G in Fun(D,C)[W−1], respectively.

Proof. Since α is an isomorphism in Fun(D,D)[E−1] and FG(α) α = αFG α then FG(α) = αFG. Analogously, GF(β) = βGF .
Note that β ′ : GF 99K 1C in Fun(C,C)[W−1] is determined by β ′G : GFG 99K G. Indeed, since β ′ is natural we must have the
equality β ′ GF(β) = β β ′GF in Fun(C,C)[W−1]. But β and GF(β) are isomorphisms in Fun(C,C)[W−1], so β ′ is determined
by β ′G. Therefore, we pick up the (unique) β ′ : GF 99K 1 such that β ′G = G(α), that is β ′ = β G(αF )GF(β)−1. Then β ′ is a
zigzag of natural weak equivalences. In addition β ′G = βG G(αFG)GF(βG)

−1
= βG GFG(α) (βGFG)

−1
= G(α).

To finish it remains to see the equality F(β ′) = αF . Arguing as before, we have that γ : F 99K F in Fun(C,D)[E−1] is
determined by γG. Therefore it suffices to see that F(β ′G) = αFG. But β ′G = G(α) implies F(β ′G) = FG(α) = αFG. �

2. Examples

In this section we exhibit some examples of simplicial and cosimplicial descent categories. We begin with two general
examples. In the first one, the weak equivalences form the biggest possible class: E = {all morphisms}. In the second one, E
is the smallest possible class: E = {isomorphisms}.

After that,we treat the classical examples of chain complexes and simplicial sets,which are useful to illustrate the axioms’
meaningwhen the simple functor corresponds to the ‘total complex’ of a double chain complex ononehand, and thediagonal
of a bisimplicial set on the other.

Further examples are deduced fromTheorem3.2 in next section,wherewe prove that Quillen simplicialmodel categories
are simplicial descent categories. In the last part of this section we study the category of mixed Hodge complexes, as a
remarkable example outside the setting of Quillen models. We see there that Deligne’s construction for cosimplicial mixed
Hodge complexes provides a simple functor satisfying our axioms.

(2.1) E = {all morphisms}
Let D be a category with finite coproducts and initial object. Then, (D, E = {all morphisms}) admits a trivial simplicial
descent structure (s, µ, λ). The simple functor s : ∆◦D → D is s(X) = Xk for a fixed k ≥ 0, and λ and µ are the identity
natural transformations.



780 B. Rodríguez González / Journal of Pure and Applied Algebra 216 (2012) 775–788

(2.2) E = {isomorphisms}
Let C be a category with finite colimits and initial object. Then, (C, E = {isomorphisms}) admits the following simplicial
descent structure. The simple functor is s = eq : ∆◦C → C, where eq(X) denotes the coequalizer of

X0 X1
d0

oo
d1oo

Note that eq(X) agrees with the colimit of the whole diagram X . On the other hand, µ and λ are the identity natural
transformations.

(2.3) Simplicial sets and weak equivalences
Consider the class W of weak (homotopy) equivalences in ∆◦Set . Then, the diagonal D : ∆◦∆◦Set → ∆◦Set endows
(∆◦Set,W)with the simplicial descent structure (D, µ = id, λ = id).

Indeed, (S1), (S2) and (S3) are obvious. (S5) is a basic property of weak equivalences: they contain the homotopy
equivalences. The remaining axiom (S4) is a well-known property:

(S4) Consider a map F·,· : X → Y of bisimplicial sets such that for all n ≥ 0, Fn,· is a weak equivalence. Then D(F), the
diagonal of F , is again a weak equivalence.

For a proof the reader may consult, for instance, [11, proposition 1.9, p. 211]. Also, it is possible to deduce the previous
simplicial descent structure from Theorem 3.2, or from Proposition 4.2(i).

(2.4) Positive chain complexes
LetA be an abelian category, and denote by C+(A) the category of positive chain complexes. More concretely, X ∈ C+(A) is
a chain complex {Xn}with Xn = 0 for n < 0. Consider the class E of weak equivalences formed by the quasi-isomorphisms,
that is, those chain maps inducing isomorphism on homology.

If X = {Xn, di, sj} is in ∆◦C+(A), each Xn is a chain complex {Xn,p, dXn}p∈Z. Hence X induces a double complex KX with
(KX)n,p = Xn,p. The boundary maps are dXn : Xn,p → Xn,p−1 and ∂ : Xn,p → Xn−1,p, ∂ =

∑n
i=0(−1)

idi . The simple functor
s : ∆◦C+(A)→ C+(A) is defined as s(X) = { total complex of KX}, that is

(sX)q =

p+n=q

Xn,p d =

(−1)p∂ + dXn :


p+n=q

Xn,p −→


p+n=q−1

Xn,p

The following are well-known properties of s, which are inherited by those of the total complex functor.
(S1): s is an additive functor.
(S2): Eilenberg–Zilber [7, 2.15]: If Z ∈ ∆◦∆◦C+(A), the Alexander–Whitney map µZ : sD(Z) → ss(Z) and the ‘shuffle’ or
Eilenberg–Zilber map νZ : ss(Z)→ sD(Z) are inverse homotopy equivalences.

In degree n, (µZ )n is the sum of the maps Z(d0
j)
· · · d0, dpdp−1 · · · dj+1) : Zp,p,q → Zi,j,q, i + j = p, p + q = n. The shuffle

map is defined in degree n by (νZ )n =


i+j=n νZ (i, j), where

νZ (i, j) =
−
(α,β)

ϵ(α, β)Z(sαjsαj−1 · · · sα1 , sβisβi−1 · · · sβ1) : Zi,j → Zi+j,i+j

The last sum is indexed over the (i, j)-shuffles (α, β), and ϵ(α, β) is the sign of (α, β) [9].
(S3): For each chain complex A ∈ C+(A) there is a natural splitting sc(A) ∼= A⊕ Gwhere G is contractible, and λA is just the
projection A⊕ G→ A.
(S4): If X ∈ ∆◦C+(A) is such that Xn is acyclic for all n, then s(X) is so. This is a well-known property of first-quadrant double
complexes. Property (S4) is easily deduced from this particular case.
(S5): Given a chain complex A, s(A � ∆[1]) is naturally homotopic to cyl(A), the classical cylinder of A. See, for instance,
[25] for the precise definition of cyl(A). I follows that if e is a simplicial homotopy equivalence in ∆◦C+(A) then s(e) is a
homotopy equivalence in C+(A), so (S5) holds.

Therefore, for any abelian category A, (C+(A), E) is a simplicial descent category with (s, µ, λ) as defined above. Dually,
the positive cochain complexes on A, together with the quasi-isomorphisms as weak equivalences form a cosimplicial
descent category, with the dual cosimplicial descent structure (s : ∆C+(A)→ C+(A), µ, λ).

(2.5) Mixed Hodge complexes
Next we define a category of mixed Hodge complexes and endow it with a structure of cosimplicial descent category.
The simple functor agrees with Deligne’s construction [6, 8.I.15] on objects. It becomes a functor since the comparison
morphisms of our mixed Hodge complexes are genuine filtered quasi-isomorphisms instead of maps in the corresponding
filtered derived category.

We denote by Q and C the respective categories of Q and C-vector spaces. Also, by CF+Q and CF+C we mean the
respective categories of filtered positive cochain complexes of Q and C-vector spaces. All the filtrations are assumed to
be biregular.
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Definition 2.6. A mixed Hodge complex is the data ((KQ,W), (KC,W, F), α), where
(1) (KQ,W) ∈ CF+Q is such that KQ has finite dimensional cohomology, and W is an increasing filtration.
(2) (KC,W, F) is a positive bifiltered cochain complex of C-vector spaces, where W (resp. F) is an increasing (resp.

decreasing) filtration, called the weight (resp. Hodge) filtration.
(3) α is the data (α0, α1, (K , W)), where (K , W) is an object of CF+C and αi, i = 0, 1, is a filtered quasi-isomorphism. That is,

if Grk : CF+C→ C+(C) denotes the graded functor then Grk(αi) is a quasi-isomorphism for all k and i = 0, 1. Visually,
α is

(KC,W) (K , W)α0oo α1 // (KQ,W)⊗ C

The following axiom must be satisfied:
(MHC) For each n the boundary map of WGrnKC is compatible with the induced filtration F, and (WGrnHkKC, F) is a Hodge
structure of weight n+ k. That is,

FGrpFGr
q
WGrnHkKC = 0 for p+ q ≠ n+ k

Remark 2.7. (I) The filtered quasi-isomorphisms have a calculus of fractions in the category of filtered complexes up to
filtered homotopy (see [15, p. 271]). Hence any filtered quasi-isomorphism is represented by a zigzag as in (3).

(II) Except for the Z-part, a mixed Hodge complex as above is a mixed Hodge complex in the sense of Deligne, viewing α
as an isomorphism in the filtered derived category. Also, applying the decalage filtration to W we get a mixed Hodge
complex as defined in [14,1].

(III) We dropped the Z-part of a mixed Hodge complex for simplicity, but all results in this section are also valid for mixed
Hodge complexes with Z-coefficients.

Example 2.8 ([6, 8.I.8]). Let j : U → X be an open immersion of complex smooth varieties, where X is proper and Y = X\U
is a normal crossing divisor.

If F is a sheaf on T , set RΓ (T ,F ) = Γ (T ,CGodF ), where CGodF is the Godement resolution of F . Analogously, if F is
a bounded below complex of sheaves on T (eventually filtered), set RΓ (T ,F ) = Γ (T , Tot(CGodF )), where Tot means the
total complex of a double complex. The point is that RΓ has values in the category of (filtered) complexes instead of the
derived category, and the hypercohomology H∗(T ,F )may be computed as the cohomology of RΓ (T ,F ).

Let (ΩX ⟨Y ⟩,W, F) be the logarithmic De Rham complex of X along Y [5, 3.I]. W is the so-called ‘weight filtration’, and F
is the ‘Hodge filtration’, that is the filtration ‘bête’ associated withΩX ⟨Y ⟩.

Denote by W the ‘canonical’ filtration on j∗QU , that is, W = τ≤j∗QU . A general argument shows that there is a zigzag of
filtered quasi-isomorphisms connecting RΓ (j∗QU ,W)⊗C to RΓ (ΩX ⟨Y ⟩,W) (see [13, p. 66] or [19, 4.11]). It is basically the
result [5, 3.I.8] connecting ΩX ⟨Y ⟩ to j∗ΩU , together with Poincaré lemma (that is, ΩU is a resolution of the constant sheaf
CU ). This zigzag may be reduced to a length 2 zigzag in a natural way (for instance, through the path object). Therefore
(RΓ (j∗Q,W), RΓ (ΩX ⟨Y ⟩,W, F)) is a mixed Hodge complex in the sense of previous definition.

Definition 2.9. A morphism (fQ, fC,f ) :((KQ,W), (KC,W, F), α)→ ((K ′Q,W
′), (K ′C,W

′, F′), α′) of mixed Hodge complexes
consists of morphisms fQ : (KQ,W) → (K ′Q,W

′) and fC : (KC,W, F) → (K ′C,W
′, F′) of (bi)filtered complexes. If α and α′

are the respective zigzags

(KC,W) (K , W)α0oo α1 // (KQ,W)⊗C (K ′C,W
′) (K ′, W′)α′0oo

α′1 // (K ′Q,W
′)⊗C

thenf : (K , W)→ (K ′, W′) is a morphism of bifiltered complexes such that squares I and II in the diagram below

(KC,W)

fC
��

(K , W)α0oo α1 //

f
��

(KQ,W)⊗ C

fQ⊗C
��

(K ′C,W
′)

I

(K ′, W′)α′0oo
α′1 //

II

(K ′Q,W
′)⊗ C

commute.
In this way we obtain the category Hdg of mixed Hodge complexes. We consider the class of weak equivalences

EHdg = {(fQ, fC,f ) | fQ is a quasi-isomorphism in C+(Q)}. It follows from general Hodge theory that a weak equivalence
induces an isomorphism between the corresponding mixed Hodge structures.

Next we endow (Hdg, EHdg)with a cosimplicial descent structure.
Simple functor: If K = ((KQ,W), (KC,W, F), α) is a cosimplicial mixed Hodge complex, let sHdg(K) be the mixed Hodge
complex


(s(KQ), δW), (s(KC), δW, s(F)), s(α)


, where s denotes the simple of cochain complexes (see Example 2.4) and

δW is the diagonal filtration. More concretely

s(K∗)n =

p+q=n

K p,q
∗
; (δW)k(s(K∗))n =


i+j=n

Wk+iK i,j
∗
, if ∗ is Q or C

(s(F))k(s(KC))
n
=


p+q=n

FkK p,q
C
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If α = (α0, α1, (K , W)) then s(α) denotes the zigzag

(s(KC), δW) (s(K), δW)s(α0)oo s(α1) // (s(KQ ⊗ C), δ(W⊗ C)) ≃ (s(KQ), δW)⊗ C .

On morphisms, sHdg(fQ, fC,f ) = 
s(fQ), s(fC), s(f ).

Transformation λHdg
: 1Hdg → sHdg ◦c is λHdg

K = (λ
Q
KQ
, λC

KC
, λCK ) induced by those λQ and λC of C+(Q) and C+(C)

respectively.
Transformation µHdg

: sHdg ◦sHdg → sHdg ◦D is defined analogously as µHdg
K = (µ

Q
KQ
, µC

KC
, µCK ).

Theorem 2.10. Deligne simple functor sHdg : ∆Hdg → Hdg together with the transformations µHdg , λHdg defined above is a
cosimplicial descent structure on (Hdg, EHdg).

Proof. The proof is based on the fact that C+(Q) is a cosimplicial descent category and the forgetful functor U : Hdg →
C+(Q) commutes with simple functors and the transformations λ and µ.

First of all, note that sHdg = (s, δ, s) : ∆Hdg → Hdg is indeed a functor. Given K ∈ ∆Hdg , then sHdg(K) is a mixed
Hodge complex by [6, 8.I.15 i], and sHdg is functorial with respect to the morphisms of∆Hdg by definition. Also, sHdg is an
additive functor, so (S1) holds.

To see (S2) and (S3), let K = ((KQ,W), (KC,W, F), α) be a mixed Hodge complex. Clearly λQ
KQ

, λC
KC

and λCK preserve the
filtrations. Set K = c(K) ∈ ∆Hdg . As the following diagram commutes in CF+C

(KC,W)

λC
KC ��

(K , W)α0oo α1 //

λCK ��

(KQ,W)⊗ C

λC
KQ⊗C

��

λ
Q
KQ
⊗C

**UUUUUUUUUUUUU

(s(KC), δ(W)) (s(K), δ(W))s(α0)oo s(α1) // (s(KQ ⊗ C), δ(W⊗ C)) ∼ // (s(KQ), δ(W))⊗ C

then λHdg
K = (λ

Q
KQ
, λC

KC
, λCK ) is a morphism in Hdg . Analogously µHdg

K = (µ
Q
KQ
, µC

KC
, µCK ) is a morphism in Hdg . Since λQ

KQ

and µQ
KQ

are quasi-isomorphisms in C+(Q), then λHdg
K and µHdg

K are in EHdg .
Axiom (S4) is clear since sHdg(fQ, fC,f ) = 

s(fQ), s(fC), s(f ) and (S4) holds in C+(Q). Finally, given a simplicial finite set
L, and a mixed Hodge complex K then U(K � L) = U(K) � L, so (S5) holds since it holds for cochain complexes. �

3. Homotopy colimits in simplicial model categories

In this section we prove that the Bousfield–Kan formula for the homotopy colimit in a simplicial model category (M,W)
gives rise to a simplicial descent structure on the subcategory of cofibrant objects of M. In case M has functorial cofibrant
replacements and W is closed by finite coproducts, the ‘corrected’ Bousfield–Kan homotopy colimit does induce a simplicial
descent structure on all M. The dual results hold for Bousfield–Kan homotopy limits and cosimplicial descent structures.

We restrict ourselves to simplicialmodel categories because in this case homotopy limits and colimits are easier to define
and to deal with. In a model category which is not necessarily simplicial one defines Bousfield–Kan homotopy limits (resp.
colimits) through the choice of a simplicial (resp. cosimplicial) frame (see [13]). The results given here also work in this
general setting, although the proofs become more technical.

In the cubical case, the connection between simplicial model categories and (cubical) homological descent categories,
which are developed in [12], is studied in [22].

We assume the reader is familiar with simplicial model categories and Bousfield–Kan homotopy limits and colimits. We
refer the reader to [13] for definitions and proofs.

Given a functor F : J → I and an object x ∈ I , recall that the overcategory F ↓ x has as objects the maps F(y) → x of I .
We denote by I ↓ x the overcategory 1I ↓ x. F is called homotopy left cofinal if the simplicial set B(F ↓ x) is contractible for
each x ∈ I . Here B(C) denotes the nerve of C. F is homotopy right cofinal if F op

: Jop → Iop is homotopy left cofinal.

Definition 3.1. Let X : I → M be a functor from a small category I to a simplicial model category (M,⊗). Consider the
bifunctor X ⊗ B(Iop ↓ ·) : I × Iop → M; (c, d) → X(c) ⊗ B(Iop ↓ d). Then, the homotopy colimit of X , hocolimIX (or
hocolim X if I is understood), is the coend [17, IX.6]

hocolimIX =
∫ c

X(c)⊗ B(Iop ↓ c)

A functor F : J → I induces a natural map hocolimJF∗X → hocolimIX , defined by the maps 1⊗ B(F) : X(F(b)) ⊗ B(Jop ↓
b)→ X(F(b))⊗ B(Iop ↓ F(b)).

We will use the following property of hocolim

[13, 19.6.13] If F : J → I is homotopy right cofinal and X : I →M, then the induced map hocolimJF∗X → hocolimIX
is a weak equivalence.
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Theorem 3.2. Let M be a simplicial model category with weak equivalences W . Denote by Mc and Mf the respective
subcategories of cofibrant and fibrant objects of M. Then, (Mc,W, hocolim) is a simplicial descent category. Dually, (Mf ,W,
holim) is a cosimplicial descent category.

Proof. It is well known that cofibrant objects are closed by coproducts, and that the coproduct of two weak equivalences
between cofibrant objects is again aweak equivalence. On the other hand,W is saturated inM by [13, 8.3.9], so it is saturated
in Mc as well. To see (S1), we have that if X : ∆◦ →M is objectwise cofibrant then hocolim∆◦X is cofibrant by [13, 18.5.2].
It follows that hocolim is a functor∆◦Mc →Mc , and it is clear from the definition that it preserves finite coproducts.

The transformations λ andµ are easily defined using that hocolimI is natural on I . Indeed, λ is obtained from l : ∆◦ → ∗.
It induces the map λM : hocolim∆◦c(M) → M = hocolim∗M for each M ∈ Mc . We have λM ∈ W because l is homotopy
right cofinal (∆◦ has an initial object, and therefore contractible nerve).

On the other hand, the diagonal d : ∆◦ → ∆◦ × ∆◦ induces hocolim∆◦D(Z)→ hocolim∆◦×∆◦Z for each Z ∈ ∆◦∆◦Mc .
It gives us a transformation µZ : hocolim∆◦D(Z) → hocolim∆◦hocolim∆◦Z , since the Fubini property of hocolim ensures
that hocolim∆◦×∆◦ and hocolim∆◦ applied twice are the same. But d is homotopy right cofinal (see [23, lemma 5.33]), so
µZ ∈ W . Now, the compatibility between λ and µ holds trivially since the composition of the diagonal d : ∆◦ → ∆◦ × ∆◦

with l × 1 : ∆◦ × ∆◦ → ∆◦ (resp. with 1 × l) is the identity. So (S2) and (S3) are satisfied. (S4) is the property of hocolim
known as ‘homotopy invariance’ (see [13, 18.5.3]): if X, Y : I → M are objectwise cofibrant and τ : X → Y is objectwise a
weak equivalence, then hocolimIτ ∈ W .

To finish, it remains to prove (S5). If A ∈ Mc , let us see that hocolim(dA0 : A → A � ∆[1]) is in W . The key point is that
there is a natural weak equivalence hocolim(A �∆[1])→ A⊗∆[1], where⊗ is the internal action given by the simplicial
model structure. To see this, note that since A is cofibrant, then for any simplicial set K , A� K is Reedy cofibrant. In this case
the Bousfield–Kanmap gives a weak equivalence between hocolim(A�K) and |A�K |, the geometric realization of A�K [13,
18.7.4]. But by [11, (3.7), p. 385] (or by direct computation), it holds that |A � K | ≃ A⊗ K . Finally, since d0 : ∆[0] → ∆[1]
is a weak equivalence in∆◦Set , then A⊗ d0 : A→ A⊗∆[1] is a weak equivalence in M (see [13, 9.3.9]). We conclude that
hocolim(dA0) = hocolim(A � d0) ∼ A⊗ d0 is also a weak equivalence. �

Remark 3.3. The converse of Theorem 3.2 does not hold. Indeed, there are examples of simplicial descent categories whose
homotopy category cannot be equivalent to the homotopy category of any Quillen model category.

For instance, there are abelian categories A whose associated (positive) derived category D+(A) does not have small
hom’s. There is an explicit example of such A due to P. Freyd. It consists of the abelian category of small R-modules where
R is the ‘big’ ring of polynomials on a proper class of variables, and with coefficients in Z. As we have seen in Example 2.4,
(D = C+(A), E = {quasi-isomorphisms}) is a simplicial descent category, and D[E−1] = D+(A). But Z endowed with
the trivial R-module structure is an object of A with a proper class of submodules. See [10], or [4], for more details. It turns
out that Ext1(Z,Z) ≃ HomD+(A)(Z,ΣZ) is a proper class. Hence, D[E−1] cannot be equivalent to the homotopy category
M[W−1] of any Quillenmodel category (M,W), since in this case themorphisms inM[W−1] between any two fixed objects
would form a small set.

The previous theorem provides a wide class of examples of simplicial and cosimplicial descent categories. For instance,
we recover Example 2.3.

To finish this section, we show that it is also possible to induce simplicial descent structures on all M, not only on the
cofibrant objects. The price is to ‘correct’ the Bousfield–Kan homotopy colimit by composing it with an objectwise cofibrant
replacement.

Corollary 3.4. Let (M,W) be a simplicial model category. Assume that M admits functorial factorizations, and choose functorial
replacements Qc :M→Mc , Qf :M→Mf .

(i) If W is closed by finite coproducts, then (M,W) is a simplicial descent category with simple functor s = hocolimQc :

∆◦M→M.
(ii) If W is closed by finite products, then (M,W) is a cosimplicial descent category with simple functor s = holimQf : ∆M
→M.

Proof. By duality, it suffices to see the first part. Since a cofibrant functorial replacement Qc : M → Mc and the inclusion
i : Mc → M form a homotopical equivalence between (M,W) and (Mc,W), the result is a consequence of previous
theorem and Proposition 1.8. �

4. ∆-closed classes and Brown categories of cofibrant objects

We begin by reminding the reader the definition of∆-closed class, which is developed in [24].

Definition 4.1. Let C be a category. A class W of morphisms in ∆◦C is called ∆-closed if it satisfies the following three
properties

(1) The class W contains the simplicial homotopy equivalences.
(2) W satisfies the 2-out-of-3 property.
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(3) If F = F·,· : Z·,· → T·,· is a map of bisimplicial objects in C such that Fn,· ∈ W (or F·,n ∈ W ) for all n ≥ 0, then the
diagonal of F , D(F), is in W .
Assume moreover that C has finite coproducts. Then W is (∆,⨿<∞)-closed if it is∆-closed, and

(4) If F ,G ∈ W , then F ⊔ G ∈ W .

Proposition 4.2. (i) Consider a category C with finite coproducts, and a saturated class W of morphisms in ∆◦C. Then, the
following are equivalent.
(1) W is (∆,⨿<∞)-closed.
(2) (∆◦C,W,D : ∆◦∆◦C → ∆◦C) is a simplicial descent category.

(ii) Given a simplicial descent category (D, E, s), then S = s−1E is (∆,⨿<∞)-closed.

Remark 4.3. The saturated class S = s−1E does not depend on the simple functor s. If s′ is another simple functor making
(D, E) a simplicial descent category, then s−1E = s′−1E. This fact follows from Corollary 5.2.

Before giving the proof of previous proposition, let us introduce some notations.

– by∆◦E we mean the class of maps f : X → Y in∆◦D such that fn ∈ E for all n ≥ 0.
– s : ∆◦D → D induces∆◦s, s∆◦ : ∆◦∆◦D → ∆◦D , defined as follows. If Z is in∆◦∆◦D ,

(∆◦s)(Z)n = s(m→ Zn,m)
(s∆◦)(Z)n = s(m→ Zm,n)

Lemma 4.4.

(i) ∆◦E ⊂ S in∆◦D .
(ii) (∆◦s)−1S = (s∆◦)−1S = D−1S in∆◦∆◦D .

Proof. Part (i) is just the exactness axiom (S4). Part (ii) is an easy consequence of (S2). Indeed, let F : Z → T be a map in
∆◦∆◦D . Axiom (S2) produces a natural isomorphism sD(F) ≃ s(∆◦s)(F) in D[E−1]. Then D(F) ∈ s−1E = S if and only if
(∆◦s)(F) is. On the other hand, if F ′ is the bisimplicial map given by F ′n,m = Fm,n, then sD(F) = sD(F ′) ≃ s(∆◦s)(F ′) =
s(s∆◦)(F). Therefore, D(F) ∈ S if and only if (s∆◦)(F) is. �

Proof of Proposition 4.2. Let C and W be as in (i), and assume that (i.1) holds. Then (D, µ = id, λ = id) is a simplicial
descent structure on (∆◦C,W). Indeed, in this case the only non-trivial axioms are (S4) and (S5), which correspond to
properties (3) and (1) of (∆,⨿<∞)-closed class, respectively.

Conversely, assume now that (∆◦C,W,D) is a simplicial descent category. Since W is saturated and closed by finite
coproducts, then properties (2) and (4) of (∆,⨿<∞)-closed class hold. Let us see (1). Given K ∈ ∆◦C, then D(K � ∆[1]) is
by definition equal to the usual cylinder object of K , K ×∆[1]. Then, property (1) follows from (S5) and the 2-of-3 property
of W . To finish, (3) is just the exactness axiom for D. Indeed, given F ∈ ∆◦∆◦C with Fn,· ∈ W for all n, then D(F) ∈ W by
(S4). If F·,n ∈ W for all n, let F ′ ∈ ∆◦∆◦C be F ′n,m = Fm,n. Then D(F) = D(F ′) ∈ W .

Assume now that (D, E) is a simplicial descent category, and s is a simple functor. Property (1) of (∆,⨿<∞)-class for S
is just Proposition 1.5. On the other hand, S is saturated since E is, so property (2) holds. To see (3), consider a bisimplicial
map F such that Fn,· ∈ S (the case Fn,· ∈ S is analogous). This means that s(n → Fn,m) ∈ E for all m ≥ 0, or equivalently,
that (s∆◦)(F) ∈ ∆◦E. But ∆◦E ⊂ S, so F ∈ (s∆◦)−1S = D−1S by Lemma 4.4. Hence D(F) ∈ S. Finally, (4) follows directly
from (S1) and the fact that E is closed by finite coproducts. �

We describe in the remaining part of this section a Brown structure of cofibrant objects on (∆◦C,W), where W is a
(∆,⨿<∞)-closed class. We assume the reader is familiar with Sections 1, 2 and 4 of [3].

Definition 4.5 ([24]). A map F : X → Y in∆◦C is a termwise coprojection if for each n ≥ 0, there exists A(n) ∈ C such that

Xn
Fn //

''OOOOOOO Yn

≀

Xn ⊔ A(n)

where Xn → Xn ⊔ A(n) is the canonical map.
Note that, in this case, given any other map G : X → Z , the pushout of F and G always exists in ∆◦C. We denote it by

Y ∪X Z .
Given a diagram (Q ): Z

G
← X

F
→ Y in∆◦C, define K(F ,G) by the pushout

X ⊔ X
F⊔G ��

(dX0 ,d
X
1 ) // X �∆[1]

��
Y ⊔ Z // K(F ,G)

If G = 1X : X → X , then K(F ,G) is called the simplicial cylinder of F , and denoted by Cyl(F).
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Note that K(F ,G) and Y ⊔ Z → K(F ,G) are natural on (F ,G).

Lemma 4.6. (i) If F is a termwise coprojection, then the natural map K(F ,G)→ Y ∪X Z is in W .
(ii) Given a map of diagrams (fZ , fX , fY ) : (Q ) → (Q ′) such that fZ , fX and fY are in W , then the induced map K(F ,G) →

K(F ′,G′) is in W as well.
(iii) The natural maps Y → Cyl(F)→ Y are inverse simplicial homotopy equivalences.

Proof. The result is a consequence of Lemmas 2.10, 2.11 and 2.9 in [24]. �

We will need a notion of distinguished triangles in ∆◦C defined through the cone functor rather than through
cofibrations. The reason is that we want to transfer these constructions from ∆◦C to C, and we do not have a notion of
cofibrations in C, while we do have an induced cone functor.

Definition 4.7. Assume moreover that C, and hence∆◦C, is pointed with zero object ∗. Consider a map F : X → Y in∆◦C,
and denote by ∗X : X → ∗ the trivial map.

The simplicial cone of F , denoted Cone(F), is by definition equal to K(F , ∗X ).
The simplicial suspension of X , denotedΛ(X), is the simplicial cone of ∗X , that isΛ(X) = K(∗X , ∗X ).
The cone sequence induced by F is the sequence in∆◦D given by

X
F
→ Y → Cone(F) (2)

We define the natural map

aF : Cone(F)→ Cone(F) ⊔Λ(X) (3)

in (∆◦C)[W−1] as follows. SetΘ(F) = Cone

X→ Cyl(F)


. The commutative square

X

��

// Cyl(F)

��
X // Y

induces α : Θ(F) → Cone(F), which is in W . On the other hand, using Cyl(F) → Cone(F) we get β : Θ(F) →
Cone (X → Cone(F)), where X → Cone(F) is the trivial map factoring through ∗. Therefore Cone (X → Cone(F)) is
canonically isomorphic to Cone(F) ⊔Λ(X). We define aF := β ◦ α

−1.
If Y = ∗, we deduce

aX : Λ(X)→ Λ(X) ⊔Λ(X) (4)

which endowsΛ(X)with a cogroup structure, as we will see below. In addition, for a general map F , aF gives a coaction of
Λ(X) on Cone(F).

Definition 4.8. A simplicial distinguished triangle in (∆◦C)[W−1] is a pair

(X → Y → Z , Z → Z ⊔Λ(X))

isomorphic in (∆◦C)[W−1] to the one induced by some F : X → Y in∆◦C as in (2) and (3).

Although the following result is not stated explicitly in [24], its proof is contained there.

Proposition 4.9. (i) Let C be a category with finite coproducts and W a (∆,⨿<∞)-closed class of∆◦C. Then (C,W, Cof ) is a
Brown category of cofibrant objects, where Cof = {termwise coprojections}.

(ii) If in addition C is pointed, then a pair (X → Y → Z , Z → Z ⊔Λ(X)) is a simplicial distinguished triangle if and only if it is
a cofibration sequence in the sense of [3].

Proof. To see the first part, the only non-trivial properties to check are the pushout and cylinder axioms. The pushout
axiom is [24, lemma 2.13]. Let us see the cylinder axiom. If X ∈ ∆◦C, then the natural map sX0 : X � ∆[1] → X is a
simplicial homotopy equivalence. Then, the codiagonal X ⊔ X → X factors as the cofibration X ⊔ X → X � ∆[1] followed
by sX0 : X �∆[1] → X ∈ W .

Assume now that C is pointed. As seen above, X � ∆[1] is a Brown cylinder for X . Therefore, our suspension functor
(∆◦C)[W−1] → (∆◦C)[W−1] induced by Λ : ∆◦C → ∆◦C agrees with the Brown suspension of [3, theorem 3]. Consider
a termwise coprojection i : X → Y in∆◦C. The Brown cofibration sequence induced by i is

X
i
→ Y→Z = Y ∪X ∗, b : Z → Z ⊔Λ(X)


(5)

where b is the coaction of [3, proposition 3]. By Lemma 4.6(i), we have a natural map p : Cone(i) → Z which is in W .
Moreover, using the description of b given in [3, p. 432], it is not hard to see that p is compatible with ai and b. Consequently,
the Brown cofibration sequence (5) is isomorphic to the simplicial distinguished triangle induced by i. Conversely, the
simplicial distinguished triangle given by F : X → Y is isomorphic to the one given by F ′ : X → Y ′, where F ′ is a cofibration
appearing in a factorization F = t◦F ′, t ∈ W . But, again, this simplicial distinguished triangle is isomorphic to the Brown
cofibration sequence of F ′, so we are done. �
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Corollary 4.10. Under the hypothesis of previous theorem, the following properties hold.
(i) (4) makesΛ(X) a cogroup object in (∆◦C)[W−1], and (3) defines a coaction ofΛ(X) on Cone(F).
(ii) Simplicial distinguished triangles in (∆◦C)[W−1] satisfy the usual ‘non-stable’ axioms for triangulated categories (see [3] or

[20]).
(iii) If Λ : (∆◦C)[W−1] → (∆◦C)[W−1] is an equivalence of categories then (∆◦C)[W−1] is a Verdier triangulated category.

In particular (∆◦C)[W−1] is additive.
Combining Propositions 4.2 and 4.9 we deduce that previous corollary holds for (∆◦D, S), where (D, E) is a simplicial

descent category and S = s−1E for some simple functor s.

5. The simple functor as homotopical equivalence

The results of previous section reveals that the pair (∆◦D, S) associated with a simplicial descent category (D, E)
supports good homotopic properties. But our aim is to work on D , not on ∆◦D . The key result that makes possible to
transfer structure from∆◦D to D is the following.
Theorem 5.1. (i) The simple functor s : (∆◦D)[(∆◦E)−1] → D[E−1] is left adjoint to c : D[E−1] → (∆◦D)[(∆◦E)−1].
(ii) The pair s : ∆◦D � D : c is a homotopical equivalence between (∆◦D, S) and (D, E). In particular, s : ∆◦D[S−1] →

D[E−1] is an equivalence of categories.
Proof. By (S3) there is a zigzag of natural weak equivalences λ : s◦c 99K 1D which is then an isomorphism in
Fun(D,D)[E−1]. To see (i), it suffices to giveΦ : 1∆◦D → c◦s in Fun (∆◦D,∆◦D) [(∆◦E)−1] such that

c
Φc // c◦s◦c

c(λ) // c is the identity in Fun(D,∆◦D)[(∆◦E)−1] (6)

s
s(Φ) // s◦c◦s

λs // s is the identity in Fun(∆◦D,D)[E−1] (7)

Given X ∈ ∆◦D , consider the ‘total decalage’ object associated with X (see [16, p.7]). It is a diagram of shape

X2

...

�� ����

X3oo

�� ����

...

77 X4

...

oooo

�� ����

::77 X5

...

oooo
oo

�� ����

::77 X6

...

oooooo
oo

�� ����

· · ·

X1

����

CC FF

X2oo

����

CC FF

77 X3

CC FF

oooo

����

::77 X4

CC FF

oooo
oo

����

::77 ??
X5oooooo

oo

����

CC FF

· · ·

X0

FF

X1

��

oo
77

FF

X2

��

oooo

FF

::77 X3

��

oooo
oo

FF

::77 ??
X4

��

oooooo
oo

FF

· · ·

X0 77 X1oooo
::77 X2oooo

oo
::77 ??
X3oooooo

oo
· · ·

(8)

where themorphisms are defined as follows. The i-th row is obtained from X by forgetting the last i+1 face and degeneracy
maps

Xi Xi+1
d0oo

s0

AAXi+2
d0

oo
d1oo

s0

DD

s1

<<Xi+3
d1oo
d0oo

d2oo

<< AA77 Xi+4oooooo
oo

· · · · · · , (9)

while the i-th column is obtained from X by forgetting the first i+ 1 face and degeneracy maps

Xi Xi+1
di+1oo

si+1

AAXi+2
di+1

oo
di+2oo

si+1

DD

si+2

<<Xi+3
di+2oo
di+1oo

di+3oo

<< AA77 Xi+4oooooo
oo

· · · · · · (10)

Both augmentations have an extra degeneracy: sk : Xi+k → Xi+k+1 for (9), and si : Xi+k → Xi+k+1 for (10).
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Let X ×∆ and∆× X be the bisimplicial objects given by (X ×∆)n,m = Xn and (∆× X)n,m = Xm. Now, we see diagram
(8) as the bisimplicial object dec(X) given by dec(X)n,m = Xn+m+1, together with two augmentations α : dec(X)→ X ×∆
and β : dec(X)→ ∆× X .

We claim that (∆◦s)(α) is in∆◦E. Indeed, given i ≥ 0, by definitionαi,· is themap induced by the augmentation (10). Since
it has an extra degeneracy, it follows from Proposition 1.5 that s(m→ αi,m) ∈ E for all i ≥ 0. Therefore (∆◦s)(α) ∈ ∆◦E.

By definition, (∆◦s)(X × ∆)n = s(m → Xn) = s(cXn). Axiom (S3) provides a zigzag of natural degreewise weak
equivalences λX : (∆◦s)(X × ∆) 99K X . On the other hand, (∆◦s)(∆ × X) is just cs(X). We define ΦX : X 99K cs(X) as

X (∆◦s)(X ×∆)
λXoo (∆◦s)(dec(X))

(∆◦s)(α)oo (∆◦s)(β) // (∆◦s)(∆× X) = cs(X) (11)

Given A in D , dec(c(A)) is the constant bisimplicial object equal to A, so α = β = 1. It follows that composition (6) is equal
to the identity.

Given X ∈ ∆◦D , (7) is the top row of the following diagram

s(X) s(∆◦s)(X ×∆)
s(λX )oo s(∆◦s)(dec(X))

s(∆◦s)(α)oo s(∆◦s)(β)// s(∆◦s)(∆× X) = scs(X)
λs(X) // s(X)

s(X)

1

ffMMMMMMMMMMMM
µX×∆

OO

sD(dec(X))

µdec(X)

OO

sD(β) //sD(α)oo s(X)

1

66mmmmmmmmmmmmmmm

µ∆×X

OO

This is a commutative diagram in D[E−1] by (1). Therefore, (7) is the identity if and only if sD(β) = sD(α) in D[E−1].
But this equality follows from Proposition 1.5, since by [16, proposition 1.6.2] the maps D(α) and D(β) are simplicially
homotopic in a natural way. Therefore, (s, c) is an adjoint pair between (∆◦D)[(∆◦E)−1] and D[E−1].

Let us see the second statement. By Lemma 4.4(i), ∆◦E ⊂ S, so c(E) ⊂ ∆◦E ⊂ S, while s(S) ⊂ E holds by definition.
By (S3), we have a zigzag of natural equivalences s◦c 99K 1D . On the other hand, since all arrows in (11) are in S then
Φ provides a zigzag Φ−1 : c◦s 99K 1∆◦D of natural maps in S. The fact (∆◦s)(β) ∈ S may be deduced from the above
commutative diagram, or as follows. We have that (s∆◦)(β) ∈ ∆◦E because β·,i has an extra degeneracy for each i ≥ 0.
Then β ∈ (s∆◦)−1S = (∆◦s)−1S by Lemma 4.4 part (ii). �

Corollary 5.2. Let (D, E) be a relative category closed by finite coproducts. Then, all possible simplicial descent structures
(s, µ, λ) on (D, E) are unique up to unique isomorphism of Fun(∆◦D,D)[E−1]. More concretely, given two simplicial descent
structures (s, µ, λ) and (s′, µ′, λ′) on (D, E), there exists a unique zigzag of natural weak equivalences s 99K s′ compatible with
(µ, λ) and (µ′, λ′).

Proof. First of all, we have that s ∼= s′ : (∆◦D)[(∆◦E)−1] → D[E−1] because they share c : D[E−1] → (∆◦D)[(∆◦E)−1]
as common right adjoint. Since E is saturated, we deduce that S = s−1E = s′−1E. Therefore, as we have seen before, there
are zigzagsΦ : 1∆◦D 99K c◦s andΦ ′ : 1∆◦D 99K c◦s′ of natural maps in S such that (Φ, λ) and (Φ ′, λ′) satisfy (6) and (7).

Then, ψ = λs′ s(Φ ′) : s 99K s′ is a zigzag of natural weak equivalences compatible with λ and λ′. By (1.2), this implies
thatψ is also compatible withµ∆×− andµ′∆×−. We claim thatµ,µ′ are determined byµ∆×−,µ′∆×−. In this case we would
deduce thatψ is compatible withµ andµ′. To see the claim, observe that by Proposition 4.2 (∆◦D, S) is a simplicial descent
category with simplicial descent structure (D, µ = id, λ = id), where D : ∆◦∆◦D → ∆◦D is the diagonal. Hence there
is a zigzag of natural maps in (sD)−1E = (ss)−1E connecting Z to ∆ × D(Z). Thus µ ∼ µ∆×D(−) in Fun(∆◦∆◦D,D)[E−1].
Analogously µ′ ∼ µ′∆×D(−).

To finish, it remains to see that ψ : s 99K s′ is unique. We must have ψc = λ′−1 λ. Since ψ is natural, then
s′(Φ) ψ = ψc s s(Φ), so ψ = s′(Φ)−1ψc s s(Φ) = s′(Φ)−1λ′−1s λs s(Φ). �

Combining previous theorem with Propositions 4.2(ii) and 4.9(i) we deduce the

Corollary 5.3. A simplicial descent category is always homotopically equivalent to a Brown category of cofibrant objects.

Remark 5.4. Note that not every simplicial descent category (D, E) is itself a Brown category of cofibrant objects. The reason
is that simplicial descent structures are closed by homotopical equivalence (see Proposition 1.8), while Brown structures of
cofibrant objects are not.

Consider a simplicial model category (M,W)with functorial cofibrant replacements, and such that W is closed by finite
coproducts. Its subcategory of cofibrant objects (Mc,W) is then a homotopically equivalent Brown category of cofibrant
objects. By Corollary 3.4 (M,W) inherits a simplicial descent structure from (Mc,W). But (M,W) is not necessarily a Brown
category of cofibrant objects with the cofibrantions of the model structure, because it may happen that not all objects in
M are cofibrant. This is the case, for instance, of commutative differential graded algebras over a characteristic 0 field (see
[2]). In the dual setting, one may consider the (Quillen-dual equivalent) model category (∆◦Set,W) where not all objects
are fibrant.

Note that we obtain in this case a second way to associate with (M,W) a homotopically equivalent Brown category of
cofibrant objects, namely (∆◦M, s−1W).
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Definition 5.5. Assume that (D, E) is a pointed simplicial descent category, that is, a simplicial descent category where the
initial object 0 in D is also final. We denote it by ∗.

The cone functor c : Maps(D)→ D is defined as cone(f ) = sCone(c(f )). Here Cone(c(f )) is the simplicial cone of the
simplicial constant map given by f (see Definition 4.7). It is equipped with the natural map B→ cone(f ) in D[E−1] given

by B
λ−1B
−→ sc(B) −→ sCone(c(f )).

The suspension functor Σ : D → D is defined as the simple of the simplicial suspension of c(A), that is, Σ(A) =
sΛ(c(A)) = cone(A→ ∗).

The map mf : cone(f )→ cone(f ) ⊔Σ(A) in D[E−1] is mf = s(ac(f )), where

ac(f ) : Cone(c(f ))→ Cone(c(f )) ⊔Λ(c(A))

is given in (3).
A distinguished triangle in D[E−1] is a pair (X → Y → Z , Z → Z ⊔ΣX)which is isomorphic in D[E−1] to a pair of the

form 
A

f
→ B→ cone(f ), mf : cone(f )→ cone(f ) ⊔Σ(A)


(12)

Corollary 5.6. (i) Given A ∈ D , denote by ∗A : A → ∗ the trivial map. Then m∗A : Σ(A) → Σ(A) ⊔ Σ(A) makes Σ(A) a
cogroup object in D[E−1]. If f : A→ B then mf defines a coaction ofΣ(A) on cone(f ).

(ii) Distinguished triangles in D[E−1] satisfy the usual ‘non-stable’ axioms for triangulated categories (see [3] or [20]).
(iii) Distinguished triangles (12) are natural with respect to diagram categories. In other words, given a small category I, there

is a natural notion of distinguished triangles in (ID)[E−1]. In addition, if φ : I → J is a functor of small categories, then
φ∗ : (JD)[E−1] → (ID)[E−1] preserves distinguished triangles.

(iv) Assume moreover that Σ : D[E−1] → D[E−1] is an equivalence of categories. Then D[E−1] is a Verdier triangulated
category. In particular D[E−1] is additive.

(v) IfΣ is an isomorphism in Fun(D,D)[E−1], then (ID)[E−1] is a Verdier triangulated category for each small category I, and
each φ : I → J induces a triangulated functor φ∗ : (JD)[E−1] → (ID)[E−1].

Proof. Parts (i), (ii) and (iv) are obtained combining Proposition 4.2, Theorem 5.1 and Corollary 4.10. Parts (iii) and (v) are
consequences of the previous ones and the fact that simplicial descent structures are inherited by diagram categories by
Proposition 1.6. �
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