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We consider four-dimensional CFTs which admit a large-N expansion, and whose spectrum contains
states whose conformal dimensions do not scale with N. We explicitly reorganise the partition function
obtained by exponentiating the one-particle partition function of these states into a heat kernel form for
the dual string spectrum on AdS(5). On very general grounds, the heat kernel answer can be expressed
in terms of a convolution of the one-particle partition function of the light states in the four-dimensional
CFT.
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1. Introduction

Heat kernel methods have of late played an important role in
extracting out quantum effects in gravitational physics. Such ap-
plications include the extraction of leading quantum corrections to
black hole entropy [1–4], the asymptotic symmetries of gravita-
tional theories [5–9], precision tests of AdS/CFT [10], as well as the
many more applications extensively reviewed in [11]. This is es-
sentially because the heat kernel method powerfully captures the
leading quantum properties of a given theory. In many cases (es-
pecially quantum gravity) while the full quantum theory is poorly
understood, these leading properties are potentially tractable.

In this Letter, we shall briefly describe some progress in bring-
ing heat kernel methods to bear on another significant arena, the
string theory sigma model on AdS. As is well known, this sigma
model is presently quite intractable at the quantum level. In this
light, one potential starting point to gain a foothold on the sigma
model could be to use the AdS/CFT correspondence [12–14]. In par-
ticular, to take the spectrum of the CFT dual to the AdS string
and to reproduce the planar CFT partition function in terms of
quadratic fluctuations of the dual fields in AdS.1 Typically, these
quadratic fluctuations would arrange themselves into determinants
of the Laplacian acting over fields of varying spin. This would es-
sentially provide us with a first-quantised description of the par-
ticles that form the string spectrum. More ambitiously, one could
attempt to reconstruct the full vacuum amplitude (the torus string
amplitude with no vertex operator insertions) in AdS by interpret-

E-mail address: shailesh.lal@icts.res.in.
1 For a free planar CFT defined on S3 ⊗ S1 this partition function is very explicitly

known by counting the spectrum of gauge invariant operators [15,16], see also [17].
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ing the heat kernel proper time in terms of the modulus of the
torus worldsheet [18].2

In this Letter, we consider CFTs which admit a large-N expan-
sion and whose spectrum contains states whose energies do not
scale with N. We exclusively focus on such states, whose bulk de-
scription is in terms of weakly coupled particles. This subset of the
CFT4 partition function is reorganised into quadratic fluctuations
of particles in AdS5, thereby performing the first of the above two
tasks.

2. The heat kernel for AdS(5): A review

In this section, we shall review the results of [23] for the heat
kernel of the Laplacian acting over tensor fields on AdS. For a
spin-S particle moving on a spacetime manifold M,

lnZ(S) � ln det
(−∇2

(S)

) = Tr ln
(−∇2

(S)

)

= −
∞∫

0

dt

t
Tr et∇2

(S) ≡ −
∞∫

0

dt

t
K (S)(t), (2.1)

where the trace of the Laplacian is taken over both the spin and
the spacetime indices. The determinants of the Laplacian were
explicitly evaluated for the symmetric, transverse-traceless (STT)
fields in Euclidean AdS in [23] by the heat kernel method. This ex-
ploited the fact that AdS spaces can be realised as cosets of Lie

2 There are good reasons to expect this approach to be a fruitful one. In particular,
it has been proposed that the general relation between the heat kernel proper time
and the closed string moduli is closely connected to the phenomenon of gauge-
string duality [19–21]. Encouragingly, this overall approach based on the heat kernel
method has also previously been successful for string theory in flat space [22]. We
thank Rajesh Gopakumar for helpful discussions and correspondence about these
points.
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groups (see for example [24–28,18]). We shall briefly recollect the
main results, specialising to the case of AdS5.

Firstly, Euclidean AdS5 is the symmetric space SO(5,1)/SO(5).
The spin of a field over AdS5 is given by the unitary irreducible
representation (UIR) of the isotropy group SO(5) that is carried by
the field. UIRs of SO(5) are labelled by the array

S = (s1, s2) s.t. s1 � s2 � 0. (2.2)

We shall also need UIRs of SO(5,1), which are labelled by the array

R = (iλ,m1,m2), m1 � |m2|, (2.3)

where R contains S if [29,28]

s1 � m1 � s2 � |m2|. (2.4)

The m’s and s’s must all simultaneously be integers or half-
integers. Further, the m’s define an SO(4) UIR �m = (m1,m2), and
its conjugate representation �̌m = (m1,−m2). With these ingredi-
ents, the heat kernel of a spin-S particle on (a quotient of) AdS5 is
given by

K (S)(γ , t) = β

2π

∑
k∈Z

∑
�m

∞∫
0

dλχλ, �m
(
γ k)et E(S)

R , (2.5)

where χλ, �m is the Harish–Chandra character in the principal series
of SO(5,1), which has been evaluated [30] to be

χλ, �m(β,φ1, φ2)

=
e−iβλχ

SO(4)

�m (φ1, φ2) + eiβλχ
SO(4)

�̌m (φ1, φ2)

e−2β
∏2

i=1 |eβ − eiφi |2 , (2.6)

the eigenvalue of the Laplacian E(S)
R is a function of λ

E(S)
R = −(

λ2 + C2(S) − C2( �m) + 22), (2.7)

and γ denotes the quotient of AdS5 which corresponds to turning
on a temperature β along with angular momentum chemical po-
tentials φ1, φ2 along the SO(4) Cartans. C2 denotes the quadratic
Casimir of the appropriate SO group. The sum over �m is the sum
over all values of m admitted by the branching rules (2.4).

For STT tensors, the branching rules reduce to

m1 = s, m2 = 0, (2.8)

where s is the rank of the tensor. The partition function of a
massless spin-s particle was evaluated with these inputs in [9].
In particular, it was found that (see Eq. (2.29) of [9])

logZ(s) =
∞∑

m=1

1

m

e−mβ(s+2)

|1 − e−m(β−iφ1)|2|1 − e−m(β−iφ2)|2
× [

χ s
2
(mα1)χ s

2
(mα2) − χ s−1

2
(mα1)χ s−1

2
(mα2)e−mβ

]
,

(2.9)

where we have expressed the SO(4) character χ
SO(4)
(s,0) (mφ1,mφ2)

as a product of SU(2) characters χ s
2
(mα1)χ s

2
(mα2), where α1 =

φ1 + φ2, and α2 = φ1 − φ2.
The reader will recognise (2.9) as the expression for the mul-

tiparticle partition function in terms of the one-particle partition
function Y , where Y is the SO(4,2) character evaluated over the
short representation [s + 2, s

2 , s
2 ] [31,32]. See [33,34] for a classi-

fication of unitary representations of the conformal algebra. Using
the AdS/CFT correspondence [12–14], if a CFT partition function
contains a character of the representation [s + 2, s , s ], there must
2 2
be bulk degrees of freedom giving rise to one-loop determinants
over STT fields, as reviewed above. For example, given a long pri-
mary [	, s

2 , s
2 ] in the CFT, one can infer the presence of quadratic

fluctuations in AdS giving rise to a one-loop determinant of the op-
erator −∇2 + m2, where m2 = (	 − 2)2 − s − 4. The corresponding
heat kernel is given by

K [	, s
2 , s

2 ](γ , t)

= β√
πt

∞∑
k=1

χ s
2
(kα1)χ s

2
(kα2)

e−2kβ |ekβ − eik
(α1+α2)

2 |2|ekβ − eik
(α2−α1)

2 |2

× e−t(	−2)2
e− k2β2

4t (2.10)

for the dual bulk fluctuations. It may be verified by doing the t
integral as in [23] that this gives rise to the expected partition
function. This forms the basis of the analysis of Section 3.

3. The heat kernel for mixed symmetry fields

In this section, we will compute the heat kernel for the AdS5
degrees of freedom that correspond to primaries of mixed sym-
metry in the CFT. These correspond to representations S of SO(5)

where s2 
= 0, i.e.

S = (s1, s2) s.t. s1 � s2 > 0. (3.11)

The main ingredient of this calculation will be the tensors for
which some of the inequalities in the branching rules (2.4) get sat-
urated. In particular, that

m1 = s1, |m2| = s2. (3.12)

The eigenvalues of the Laplacian, for such fields are now given by

E S
R = −(

λ2 + s1 + s2 + 4
)
, R = (iλ, s1,±s2). (3.13)

The heat kernel for the Laplacian acting over such fields is then
given by

K ( j1, j2)(γ , t)

= β√
πt

∞∑
k=1

(χ j1χ j2 + χ j2χ j1)(kα1,kα2)

e−2kβ |ekβ − eik
(α1+α2)

2 |2|ekβ − eik
(α2−α1)

2 |2

× e−t(2 j1+4)e− k2β2

4t , (3.14)

where

χ j1χ j2(kα1,kα2) ≡ χ j1(kα1)χ j2(kα2). (3.15)

For later convenience, we have expressed the answer in terms of
the SU(2) ⊗ SU(2) characters rather than the SO(4) ones. The pre-
cise dictionary is

χ
SO(4)
(s1,s2)(φ1, φ2) = χ j1(α1)χ j2(α2), (3.16)

where

j1 = s1 + s2

2
, α1 = φ1 − φ2,

j2 = s1 − s2

2
, α2 = φ1 + φ2. (3.17)

We shall now use (3.14) as a building block for the bulk con-
tributions that correspond to mixed symmetry primaries in the
boundary CFT.

Consider first a long SO(4,2) representation of highest weight
[	, j1, j2] ⊕ [	, j2, j1]. This primary is dual to a massive field in
the bulk. The corresponding heat kernel is given by
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K [	, j1, j2](γ , t)

= β√
πt

∞∑
k=1

(χ j1χ j2 + χ j2χ j1)(kα1,kα2)

e−2kβ |ekβ − eik
(α1+α2)

2 |2|ekβ − eik
(α2−α1)

2 |2

× e−t(	−2)2
e− k2β2

4t . (3.18)

This corresponds to the heat kernel of the operator −∇2 +m2 eval-
uated on the tensor fields (3.12), where m2 + 2 j1 + 4 = (	 − 2)2.
Equivalently,

logZ[	, j1, j2]⊕[	, j2, j1] = 1

2

∞∫
0

dt

t
K [	, j1, j2]. (3.19)

Finally, we consider massless fields. These correspond to short rep-
resentations of the conformal group with highest weight [ j1 + j2 +
2, j1, j2]. We can similarly show that the appropriate heat kernel
is

(
K [ j1+ j2+2, j1, j2] − K [ j1+ j2+3, j1− 1

2 , j2− 1
2 ])(γ , t), (3.20)

in the notation of (3.18).

4. From the CFT partition function to the AdS heat kernel

We now organise the full CFT partition function into the form
of a heat kernel in AdS5 for a theory which has only long repre-
sentations in its spectrum. Remarkably, it turns out that the final
answer (4.31) thus obtained is unchanged when short multiplets
are included. This is outlined below.

Suppose the CFT has operators with quantum numbers [	, j1,

j2] appearing N[	, j1, j2] times. The one-particle partition function
is a sum of SO(4,2) characters evaluated over the modules gener-
ated by these primaries.

Y(q,a,b) =
∑

	, j1, j2

N[	, j1, j2]
q	χ j1(a)χ j2(b)∏4

i=1(1 − qxi)
. (4.21)

The (multi-particle) partition function of the theory is then ob-
tained by exponentiating the one-particle partition function.

logZ =
∞∑

k=1

1

k

∑
	, j1, j2

N[	, j1, j2]χ[	, j1, j2]
(
qk,ak,bk). (4.22)

We remind the reader that we focus only on the states whose con-
formal dimension does not scale with N. Only for these is the idea
of a ‘multiparticle’ collection sensible. We have introduced nota-
tion

q = e−β, a = eiα1 , b = eiα2 . (4.23)

Shortly we will also define

x1 = √
ab, x2 =

√
ab̄, x3 = √

āb, x4 =
√

āb̄. (4.24)

In what follows, it is useful to treat symmetric and mixed-
symmetric tensors on a different footing, i.e. sum up the j1 = j2
and j1 
= j2 contributions separately. We then have

logZ =
∞∑

k=1

1

k

∑
	, j

N[	, j, j]χ[	, j, j]

+
∞∑

k=1

1

k
· 1

2

∑′

	, j1, j2

N[	, j1, j2](χ[	, j1, j2] + χ[	, j2, j1]).

(4.25)
The prime over the second sum reminds us that in this sum,
j1 
= j2. The factor of half in the second term is from the fact
that this sum counts each ( j1, j2) pair twice. The dependence
on (qk,ak,bk) is implicit. We have imposed the condition that
N[	, j1, j2] = N[	, j2, j1] to club terms together in the second sum.

We will now reinterpret, as per (3.18), each Verma module
character above as arising from a heat kernel in AdS5. Using (3.18)
and (3.19), we have

logZ = 1

2

∞∫
0

dt

t

(∑
	, j

N[	, j, j]K [	, j, j]

+ 1

2

∑′

	, j1, j2

N[	, j1, j2]K [	, j1, j2]
)

. (4.26)

We will now evaluate the sums over 	, j1, j2. To do so, the fol-
lowing identity is useful

e−t(	−2)2 =
√

1

4πt

∞∫
−∞

dy e− y2

4t +iy(	−2). (4.27)

The heat kernel formulae in our new notations are

K [	, j, j](γ , t)

=
∞∑

k=1

β

2πt

∞∫
−∞

dy e− y2+k2β2

4t e−2iy q2kχ j(ak)χ j(bk)∏4
i=1(1 − qkxk

i )
ei	y,

K [	, j1, j2](γ , t) =
∞∑

k=1

β

2πt

∞∫
−∞

dy e− y2+k2β2

4t e−2iy

× q2k(χ j1(a
k)χ j2(b

k) + χ j2(a
k)χ j1(b

k))∏4
i=1(1 − qkxk

i )
ei	y .

(4.28)

We will now use these expressions to evaluate (4.26). As is appar-
ent, most of (4.28) does not depend on 	, j1, j2 and factors out of
the sum. The sum that we essentially have to evaluate is

∑
	, j

N[	, j, j]ei	yχ j
(
ak)χ j

(
bk)

+ 1

2

∑′

	, j1, j2

N[	, j1, j2]ei	y(χ j1

(
ak)χ j2

(
bk) + χ j2

(
ak)χ j1

(
bk))

=
∑

	, j1, j2

N[	, j1, j2]ei	yχ j1

(
ak)χ j2

(
bk). (4.29)

We can now use the definition (4.21) (replacing q by eiy) to write
this as

Y
(
eiy,ak,bk) 4∏

i=1

(
1 − eiyxk

i

)
. (4.30)

We therefore find that

logZ =
∞∑

k=1

∞∫
0

dt
β

4πt2

∞∫
−∞

dy e− y2+k2β2

4t e−2iyq2kY
(
eiy,ak,bk)

×
4∏ (1 − eiyxk

i )

(1 − qkxk)
. (4.31)
i=1 i
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This is an expression for the multi-particle partition function of
the AdS5 theory in terms of the heat kernel time t and the single-
particle partition function of its dual CFT. We remind the reader
that the single-particle partition function Y has been very explic-
itly computed for a free, planar CFT by enumerating the gauge
invariant operators in the CFT spectrum [15,16].3

Before concluding, we outline how the formula (4.31) extends
to the case where the spectrum of the theory has short multiplets
of SO(4,2). For definiteness, consider the case of a theory having
a short multiplet [2m + 2,m,m] that appears N{m} times, another
short multiplet [
1 + 
2 + 2, 
1, 
2] ⊕ [
1 + 
2 + 2, 
2, 
1] that ap-
pears N{
} times. All other multiplets are long. Given this spectrum

logZ =
∞∑

k=1

1

k

(∑′

	, j

N[	, j, j]χ[	, j, j]

+ N{m}(χ[2m+2,m,m] − χ[2m+3,m− 1
2 ,m− 1

2 ])
)

+
∞∑

k=1

1

k

( ∑′

	, j1, j2

N[	, j1, j2]χ[	, j1, j2]

+ N{
}(χ[
1+
2+2,
1,
2] − χ[
1+
2+3,
1− 1
2 ,
2− 1

2 ]

+ χ[
1+
2+2,
2,
1] − χ[
1+
2+3,
2− 1
2 ,
1− 1

2 ])
)

. (4.32)

The prime in the first term is to indicate that the short representa-
tion [2m + 2,m,m] is not summed over. The double-prime on the
second sum is to indicate that the short representation involving
the 
s as well as the terms where j1 = j2 are not summed in this.
We can then show, as above, that the final result for logZ is still
given by (4.31).

5. Conclusions

In this note, we reinterpreted the partition function of a free
CFT on S3 ⊗ S1 in terms of the heat kernel corresponding to a free
string in AdS5. The answer was expressed as a convolution of the
one-particle partition function of the dual CFT. This would corre-
spond to the one-loop string path integral in AdS5 after the level
matching condition is imposed. How this answer might be ex-
tended to recover the full string path integral before level match-
ing is an interesting question. This is work in progress.

Finally, we mention that the results of [23] extend to arbitrary
dimensional hyperboloids, though the odd-dimensional case is per-
haps the nicest. Corresponding expressions for the characters of
the conformal group are also available [32]. Therefore, the analy-
sis presented here extends straightforwardly to AdS/CFT dualities
in other dimensions as well.
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