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Abstract

We consider a cosmological horizon, named thermo-horizon, to which are associated a temperature and an entropy of Bekenstein–Hawking
and which obeys the first law for an energy flow calculated through the corresponding limit surface. We point out a contradiction between the first
law and the definition of the total energy contained inside the horizon. This contradiction is removed when the first law is replaced by a Gibbs’
equation for a vacuum-like component associated to the event horizon.
© 2007 Elsevier B.V. Open access under CC BY license.
1. Introduction

The generalization of the thermodynamics of black holes
(BH) to cosmological horizons represents an important take
to understand different issues in cosmology such as the nature
of the dark energy (DE) in relation with the problems of the
cosmological constant (CC) and of the vacuum energy, the ac-
celeration of the present universe, the coincidence problem and
the early inflation.

This generalization was first introduced for de Sitter space-
time [1]. Thereafter, it was tentatively extended to quasi-de Sit-
ter FRW spacetimes in different frameworks (see [2–6]). In an
interesting approach, Bousso [7,8] considers the flow of energy
through the horizon as a null surface. He interprets the variation
of the entropy of the horizon through the variation of its surface
as the response of the horizon to the flux of energy, in the same
way as the “first law” of the BH.

Following this approach, several authors (see for example
[9,10]) have estimated that the apparent horizon (a.h.) is the
only limit surface (excluding other horizons such as the event
horizon (e.h.)) having coherent thermodynamical properties to
address problems such as the nature of the DE.

Our main goal is to shed some light on the contradiction
between the amount of energy calculated from the first law as

* Corresponding author.
E-mail address: barba@ccr.jussieu.fr (C. Barbachoux).
0370-2693 © 2007 Elsevier B.V.
doi:10.1016/j.physletb.2007.07.051

Open access under CC BY license.
defined in [7,8] and the definition of the energy contained inside
the horizon, independently of the choice of the thermo-horizon
(t.h.).

We restrict our study to a spatially flat FRW spacetime,
which is the starting point of other studies (non-spatially flat
spacetimes, cases with interactions, . . . ).

After a brief review of the definition of a t.h. in a Q-space
introduced in [7,8], we show that any t.h. obeys the second law
(Section 2). In Section 3, we present the contradiction between
the amount of energy derived from the first law and the defin-
ition of the energy inside the horizon. We then show that this
contradiction is resolved in a thermodynamical model for a DE
[4,5] based on the e.h. (Section 4).

2. Definition of a thermo-horizon

In a spatially flat FRW spacetime

(1)ds2 = −dt2 + a(t)2(dr2 + r2 dΩ2),
the dynamical evolution of the scale factor a(t) is given for a
perfect fluid with energy density ρ and pressure P by

(2)

(
ȧ

a

)2

= H 2 = χ
ρ

3
,

(3)
ä

a
= −χ

6
(ρ + 3P),

where χ = 8π is the Einstein constant, with G = 1 and c = 1.
The equation of state (EoS) ω of the fluid is given by P = ωρ
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and we introduce the parameter ε = 3
2 (1 +ω). In the following,

we restrict our study to the Q-space [8], namely accelerated
universes, for which 0 < ε < 1. Extending the reasoning of [8],
we consider an horizon (null surface) with a given radius L. Ac-
cording to the first law, the flow of energy through this surface
is given by

(4)−Ė = 4πL2ρ(1 + ω) = T Ṡ.

We assume that we can associate a temperature T and an
entropy S to the dynamical horizon of radius L, given by the
relations of Bekenstein–Hawking for a BH or a de Sitter hori-
zon

(5)T = 1

2πL
and S = πL2.

Any horizon of radius L with a temperature and a entropy given
by (5) and which obeys the first law (4) is called thermo-horizon
(t.h.).

Using (5), we obtain directly T Ṡ = L̇ and Eq. (4) becomes

(6)εL2H 2 = L̇.

With our notations, Eq. (3) is given by

(7)

(
1̇

H

)
= ε,

and the first law (6) rewrites

(8)Ḣ =
(

1̇

L

)
.

After integration, this equation leads to

(9)HL − 1 = CL,

where C is a constant. Eq. (9) establishes a general relation
between the t.h. L and the a.h. RA = 1

H
which is satisfied by

any thermo-horizon of radius L without restriction on ε (in par-
ticular without assuming ε = const). With the constant C, this
relation is more general than Eq. (28) of [8].

If L is the a.h., then L = 1
H

= RA, implying C = 0. Con-
versely, only C = 0 leads to L = 1

H
. Therefore the a.h. obeys

the first law (4) if and only if C = 0. This special case only is
considered by [8].

More generally, any horizon L defined by (9) with a temper-
ature and an entropy given by (5) is a t.h. and it obeys the first
law (4).

Eq. (6) can be rewritten with the help of (9)

(10)L̇ = ε(1 + CL)2.

Any t.h. verifies this equation. Using Eq. (10), L is strictly in-
creasing in the Q-space (accelerated universe) where 0 < ε < 1.
The same result can be derived for the entropy S given by (5).

3. Energy in a thermo-horizon and the first law

On one side, the total amount of energy contained inside
the a.h. for a spatially flat FW spacetime is (e.g. [9] before
Eq. (20))

(11)E = ρ
4π

3
R3

A = RA

2
.

Let us remark that in [10] this relation is used for a non-
spatially flat FRW spacetime, albeit no more valid in this
case.

On the other side, using (4) and (5), the first law applied to
the a.h. considered as a t.h. leads to

(12)−Ė = ṘA,

where −Ė is the total amount of energy crossing the a.h. by
unit of time. According to the conservation of the energy, this
amount of energy is equal to the variation of the total energy

(11) per unit time, Ė = ṘA

2 . This result is in contradiction with
(12) except when RA is constant, which corresponds to a de Sit-
ter spacetime where the a.h. identifies with the e.h.

This result is not restricted to the a.h. and can be extended to
any t.h. Using (7), the left hand side of (4) becomes for a t.h. of
radius L,

(13)−Ė = L2H 2ε = −L2Ḣ ,

while the total energy inside the horizon is

(14)E = 1

2
H 2L3.

Differentiating (14) and equating with (13), we obtain with (8)

(15)
3

2
(HL)2 − HL + 1 = 0,

where Ḣ �= 0 has been assumed. No real root can be found for
this equation. In particular, L = 1

H
is not a solution. Therefore,

the above contradiction can only be removed for Ḣ = 0, namely
for a de Sitter spacetime.

4. Thermodynamical model of the event horizon
for the dark energy

The preceding results are independent of the underlying
model for the DE. They depend only on the assumptions of the
existence of a temperature and an entropy associated to a t.h.
through the relation (5) and of the validity of the extension of
the first law of BHs (4) to cosmological t.h. With these assump-
tions, we obtain (9) (assuming C = 0), as demonstrated by [7,8]
and by [9], in Sections II-A and II-B.

In Section II-B of [9], the authors consider only the spe-
cific model for the DE developed in [6]. Let us emphasize that
their results can be obtained independently of any model for
the DE (see Section 2) because the demonstration involves only
the density of the total energy ρ. Consequently, the reasoning
developed in [9] cannot question the validity of the model as-
sumed for the component DE and in particular the approach
proposed in [6]. The first law (4) is a relation between the den-
sity of energy ρ and the entropy. It does not involve the density
of energy of the DE ρΛ and therefore cannot be used to discuss
or refute its expression.
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In [9], the authors emphasize the apparent discrepancy be-
tween the horizon chosen as IR cut-off in the expression of ρΛ

in the holographic model of Li [6], which is the e.h. r ,

(16)χρΛ = 3c2

r2
,

and the t.h. L which must be the a.h. RA in order to satisfy
the first law. They suggest that the e.h. r should be identical to
the t.h. L obeying the first law. So, they implicitly assume that
in any holographic model for ρΛ, i.e. χρΛ = 3/l2, we have to
choose for cut-off l the same horizon as the t.h. L obeying the
first law.

Let us discuss the full consequences of the assumption
l = L. On one hand, by setting L = l = r in the expression
of the flux of energy in the first law (4), the first law is no
more satisfied (see Section 3). On the other hand, if we choose
L = l = RA, we obtain for the holographic model:

(17)χρΛ = 3

R2
A

= 3H 2

which with (2) implies ρ = ρΛ, excluding any other contribu-
tion to the total energy (dark matter (DM), dust, radiation, . . . )
in contradiction with the present observations where the DM
takes a non-negligible part (about 1/3) of the energy of the uni-
verse.

Two points of view can be followed to solve this dilemma:

(i) First, we can choose to preserve the first law (4) and pro-
pose an holographic model of the form (17) albeit not com-
patible with the observations [6,12].

(ii) Secondly, we can consider the holographic model of the DE
(16) compatible with the present observations (acceleration
and EoS today ωΛ � −1 [5,6,11]) and modify the first law
(4) to be compatible with the chosen model for the DE.

Because compatible with the observational features, the sec-
ond alternative is more reasonable. This leads naturally to ques-
tion the first law (4) which seems to fail because, as seen in
Section 3, it contradicts the definition (11) of the total energy
in the horizon. The first law must be modified in order to in-
clude the DE through a model linking the DE with the chosen
horizon. To achieve this goal, we propose a Gibbs’ equation de-
scribing the thermodynamics of the component DE instead of
the first law (4). This approach was introduced in the model [4,
5], where a DE component with an energy density of type (16)
(with c = 1) and an EoS of vacuum-type were considered

(18)
Λ

χ
= ρΛ = −PΛ = 3/χr2,

with r the radius of the e.h. In this model, the Gibbs’ equation
relative to this component DE is given at the specific level by

(19)TΛ dsΛ = dεΛ + PΛ dvΛ,

where εΛ ≡ Λ
nΛχ

is the specific energy, vΛ ≡ 1
nΛ

the specific
volume and nΛ the number density. With the EoS (18), Eq. (19)
becomes

(20)
Λ̇ = χTΛṠΛ = −ṙ ,

nΛ
with TΛ = 1
2πr

. After integration, we obtain for the specific en-
tropy

(21)SΛ = −πr2 + K,

where K is a constant. In [4,5] the local equation of the con-
servation of the energy uβ∇αT αβ = 0 is used instead of the
expression of the global energy E and without assuming any
peculiar expression for the entropy. In these articles, we used
local thermodynamic equilibrium which seems to be more ac-
curate to general relativity because in particular the Einstein
equations involve densities. This necessity was also remarked
by other authors (e.g. [13, Section 1, p. 5390] and [14]).

Considering the global energy of the DE component inside
the horizon as in [9,10], EΛ = ρΛ

4π
3 r3 = r

2 , the Gibbs’ equa-
tion associated to this component becomes

(22)dEΛ = TΛ dSΛ − PΛ dVΛ or ĖΛ = TΛṠΛ − PΛV̇Λ.

With (18) and (21), this equation leads to ĖΛ = ṙ
2 , in full agree-

ment with the previous definition of EΛ = r
2 .

The previous results show that the contradiction described
in Section 3 is essentially related to the mainly questionable as-
sumption of the validity of the expression of the static entropy
S = πL2 of the BH when extended to the cosmological hori-
zon [7,8]. On the contrary, our expression (21) of SΛ is not
postulated but deduced from the Gibbs’ equation for the model
(18) of the DE [4,5], which is supported by the holographic ap-
proach [6].

By comparison of the two equations (5) and (21), let us first
note the difference of sign in the expression of the entropy.
The difference between the situations considered explains this
difference. In the first case (BH), the observer is outside the
limit-surface of the BH and loses information, while in the sec-
ond case (cosmological case), the observer is inside the limit-
surface.

Secondly, let us remark the presence of a pressure term
−PΛ dVΛ in the Gibbs’ equation (22) which does not appear
in the first law (4). In the present case, this term does not vanish
because the pressure of the DE PΛ is defined (albeit negative,
see the equation of state (18)) and because the volume varies
(dVΛ �= 0) due to the “response” of the surface to the flow of
energy [7]. This pressure term is responsible for the sign “mi-
nus” in the expression of the entropy Eq. (21), obtained by
integration of Eq. (20). This point relates the two preceding
remarks and strengthens the consistency of our thermodynam-
ical approach which is compatible with the conservation of the
energy. From Eq. (3), we obtain that the universe can be acceler-
ated only if the strong energy condition ρ + 3P � 0 is violated,
which is only fulfilled for a negative pressure PΛ < 0 (because
Pm = 0 for the dust). The existence of such a pressure term in
the first law was recently considered and discussed in another
contexts by [13,14] and [15].

5. Conclusion

By a general demonstration independent of the underlying
model for the DE, we show in this article a contradiction (except
in de Sitter) between the first law introduced in [7,8] for the
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thermo-horizon that leads to −Ė = ṘA, and the definition of the
total energy in the horizon E = RA

2 . To solve this contradiction,
we propose to replace the first law by a Gibbs’ equation for the
DE component, which is naturally associated to the e.h. in the
model [4,5], later supported by an holographic model [6] in an
independent approach.
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