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a b s t r a c t

We present a new result concerning the stability of the stochastic parabolic Itô equation
subject to homogenouswhite noise. Ourmain results state that this system is exponentially
stable by means of a new Lyapunov–Krasovskii functional and a linear matrix inequality
(LMI). A numerical example is exploited to show the usefulness of the derived LMI-based
stability.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decades, a considerable amount of attention has been paid to studying the stability and control of dy-
namic systems governed by ordinary differential equations (ODEs) with uncertain constant or time-varying delays (see for
example [1–9]). It is well known that the choice of an appropriate Lyapunov–Krasovskii functional is crucial for deriving
stability conditions. Special forms of the Lyapunov–Krasovskii functional have been used for the derivation of simple finite-
dimensional conditions in terms of linear matrix inequalities (LMIs). These conditions are either delay independent or delay
dependent.
The stability analysis of partial differential equations (PDEs) with delay is essentially more complicated. There are only

a few works on Lyapunov-based techniques for PDEs with delay. Wang [10] extended the second Lyapunov method to an
abstract nonlinear time-delay system in Banach spaces and applied the result to the delay-independent stability analysis of
some scalar heat and wave equations with constant delays of Dirichlet boundary conditions [11].
In real-life models, the functions of actual delayed systems are influenced by unknown disturbances, which may be

regarded as stochastic. In order to fix these problems, the system dynamics are suitably approximated by a stochastic linear
or nonlinear delayed system. Thus, stochastic delayed PDEs have their own characteristics and it is desirable to obtain
stability criteria that make full use of these characteristics.
To the best of our knowledge, only a few works have been done on the stability criterion for exponential stability of the

delayed stochastic parabolic Itô equation with reaction–diffusion terms along Markovian jumping parameters, and the LMI
approach has never been tackled for any suchworks. The LMI approach is an open and very challenging problem concerning
the stability of delayed and Markovian jumpingparameter systems. In this paper, a newcriterion for the exponential stability
of the system is investigated by constructing the Lyapunov–Krasovskii functional in terms of LMIs, which can be easily
calculated by the Matlab toolbox. A numerical example is given to illustrate the effectiveness and less conservativeness of
the proposed system.
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2. Model description

In this paper, we analyze the exponential stability of the stochastic parabolic Itô equation of the form

du(x, t, ω) = [div(K(x, t) ◦ ∇u(x, t, ω))+ A(r(t))g(u(x, t, ω))−M(r(t))u(x, t, ω)
+ C(r(t))u(x, t − τ , ω)]dt + [g(u(x, t, ω))+ g(u(x, t − τ , ω))] dB(t, ω) (x, t, ω) ∈ D× R+ ×Ω,

u(x, 0, ω) = φ(x, ω) ∈ (u0, u1), (x, t) ∈ D×Ω,
∂u(x, t, ω)
∂n(k)

= 0, (x, t, ω) ∈ ∂D× R+ ×Ω,

 (1)

where {r(t), t > 0} is a right-continuous Markov process on the probability space which takes values in the finite space
H = {1, 2, . . . ,N}with generator Γ = {γij} (i, j ∈ H) (also called the jumping transfer matrix) given by

P{r(t +∆) = j|r(t) = i} =
{
γij∆+ o(∆) if i 6= j,
1+ γii∆+ o(∆) if i = j,

in which∆ > 0 and lim∆→0 o(∆)/∆ = 0, γij ≥ 0 is the transition rate from i to j if i 6= j and γii = −
∑
j6=i γij.

Assume that (B(t, ·))t∈R+0 denotes one-dimensional Brownianmotion starting at the origin and defined on the probability

space (Ω,F , P). Let (Ft)t∈R+0 be a filtration on (Ω,F , P) such that B(t+η, ·)−B(t, ·) is independent of (Ft) for all t, η ∈ R+0 .
Without restricting the generality, we assume that the stochastic basis (Ω, F , (Ft)t∈R+0 , P) is complete. D denotes an open

bounded and connected subset of RN with a sufficient regular boundary ∂D. Let the notation ‖ · ‖p denote the usual Lp(D)-
norm,

‖f ‖pLp(D) =
∫
D
|f (x)|pdx, p ∈ [1,∞].

g is the composition of the real-valued stochastic process u. g ∈ C2([u0, u1]) and g(u0) = g(u1) = 0 and g(u) > 0 for every
u ∈ (u0, u1), and g satisfy the following Lipschitz condition

|g(x1)− g(x2)| ≤ L|(x1 − x2)| ∀x1, x2 ∈ R. (2)

A(r(t)),M(r(t)), C(r(t)) are known constant matrices with appropriate dimensions. The functional K(x, t) is matrix valued
with entries that are Lebesgue measurable in (x, t) ∈ D × R+. Recall that the Markov process {r(t), t > 0} takes values in
the finite space {H = 1, 2, . . . ,N}. For the sake of simplicity, we write r(t) = i, ∀i ∈ H

A(i) = Ai, M(i) = Mi, C(i) = Ci.

For the purpose of simplicity, we rewrite Eq. (1) as follows; usually we suppress u(t) instead of u(x, t, ω) and also we sup-
press B(t) instead of B(t, ω). Thus Eq. (1) can be rewritten as

du(t) = [div(K(x, t)∇u(t))+ Aig(u(t))−Miu(t)+ Ciu(t − τ)] dt + [g(u(t))+ g(u(t − τ))] dB(t). (3)

3. Main result

In this section we state results and definitions that are needed to prove the main theorem.

Lemma 3.1 ([12]). If u(t) is a solution of system (1), then∫
D
uT (t)∇ · (K(x, t) ◦ ∇u(t))dx = −

∫
D
(K(x, t) · (∇u ◦ ∇u))Edx.

Definition 3.2 ([5]). The trivial solution of system (1) is said to be exponentially stable inmean square if there exist positive
constants λ and c such that, for any v0,

E(|v(x, t, t0, v0)|2) ≤ c|v0|2e−λ(t−t0),

from which one deduces immediately that

lim
t→∞

sup
1
t
lg(E|v(x, t, t0, vo)|) < 0.

The above equation can be written as

du(t) = f (u(t))dt + σ(u(t))dB(t),

where

f (u(t)) = div(K(x, t) ◦ ∇u(t))+ Aig(u(t))−Miu(t)+ Ciu(t − τ),
σ (u(t)) = g(u(t))+ g(u(t − τ)).
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Theorem 3.3. Given positive definite matrices Ai,Mi, Ci and under the given assumption, the solution of system (1) is exponen-
tially stable on norm ‖ · ‖2 in the mean square for a given constant delay τ , provided there exist positive definite matrices Pi, Q
and R and a positive constant α such that the following LMI holds:

Ξ =

[
Ω11 Ω12
∗ Ω22

]
< 0, (4)

where

Ω11 = αPi + Q − PiMi −MTi Pi + PiAiL+ L
TATi Pi + L

TRL+ LTPiL+
n∑
j=1

γijPj,

Ω12 = PiCi + LTPiL, Ω22 = −e−ατQ − e−ατ LTRL+ LTPiL.

Proof. Define the following Lyapunov–Krasovskii functional:

V (u(t), t, i) =
∫
D

{
eαtuT (t)Piu(t)+

∫ t

t−τ
eαsuT (s)Qu(s)ds+

∫ t

t−τ
eαsgT (u(s))Rg(u(s))ds

}
dx,

where Pi = PTi ;Q = Q
T
; R = RT .

The stability results can be proved using the following way.
By the Itô differential rule, the stochastic derivative of V along trajectories of (3) can be obtained as follows:

dV (u(t), t, i) = LV (u(t), t, i)dt +
∂V (u(t), t, i)

∂y
σ(u(t))dB(t).

Integrating on both sides of the above equation over (0, t)with respect to t and taking expectation, we get

E [V (u(t), t, i)] = E [V (u(0), 0, i)]+ E
[∫ t

0
LV (u(t), t, i)dt

]
. (5)

Define an operatorL associated with the Eq. (3) acting on V by

LV (u(t), t, i) =
∂V (u(t), t, i)

∂t
+
∂V (u(t), t, i)

∂u
f (u(t))+

1
2
trace

[
σ T (u(t))

∂2V (u(t), t, i)
∂u2

σ(u(t))
]

+

n∑
j=1

γijV (u(t), t, j).

The generatorLV for the evolution of V is given by

LV (u(t), t, i) =
∫
D

{
αeαtuT (t)Piu(t)+ eαtuT (t)Qu(t)− eα(t−τ)uT (t − τ)Qu(t − τ)

+ eαtgT (u(t))Rg(u(t))− eα(t−τ)gT (u(t − τ))Rg(u(t − τ))
+ 2eαtuT (t)Pi∇ · (K(x, t) ◦ ∇u(t))+ 2eαtuT (t)PiAig(u(t))− 2eαtuT (t)PiMiu(t)

+ 2eαtuT (t)PiCiu(t − τ)+ eαt trace
[
σ T (u(t))Piσ(u(t))

]
+

n∑
j=1

γijV (u(t), t, j)

}
dx.

The following equalities hold, since
∑n
j=1 γij = 0:

n∑
j=1

γij

[∫
D

{∫ t

t−τ
eαsuT (s)Qu(s)ds

}
dx
]
=

(
n∑
j=1

γij

)∫
D

{∫ t

t−τ
eαsuT (s)Qu(s)ds

}
dx

= 0;
n∑
j=1

γij

[∫
D

{∫ t

t−τ
eαsg(uT (s))Rg(u(s))ds

}
dx
]
=

(
n∑
j=1

γij

)∫
D

{∫ t

t−τ
eαsg(uT (s))Rg(u(s))ds

}
dx

= 0.

By using Lemma 3.1 and Eq. (2), we have

LV (u(t), t, i) ≤ eαt
∫
D

{
uT (t)

[
PiCi + LTPiL

]
u(t − τ)− (K(x, t) · (∇u ◦ ∇u))E
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+ uT (t)

[
αPi + Q − PiMi −MTi Pi + PiAiL+ L

TATi Pi + L
TRL+ LTPiL

+

n∑
j=1

γijPj

]
u(t)+ uT (t − τ)

[
−e−ατQ − e−ατ LTRL+ LTPiL

]
u(t − τ)

}
dx.

That is,

LV (u(t), t, i) ≤ eαt
∫
D
NT (t)ΞN(t)dx,

where NT (t) =
[
uT (t), uT (t − τ)

]
.

By using condition (4), we get

LV (u(t), t, i) < 0,

we can rewrite Eq. (5) as

E [V (u(t), t, i)] ≤ E [V (u(0), 0, i)] , (6)

where

E [V (u(0), 0, i)] = BE‖φ‖22,

in which

B = λM(Pi)−
e−ατλM(Q )

α
+
λM(Q )
α
−
e−ατλM(LTRL)

α
+
λM(LTRL)

α

and E‖φ‖22 = sup0<s<τ E‖u(s)‖
2
2.

On the other hand,

E [V (u(t), t, i)] ≥ eαtλM(Pi)E‖u(t)‖22.

Therefore, Eq. (6) becomes

E‖u(t)‖22 ≤ e
−αtλ−1M (Pi)BE‖φ‖

2
2.

This completes the proof. �

4. Example

In this section, the main result is demonstrated with the following example. Our aim is to examine the exponential
stability of a given stochastic parabolic Itô equation. For the sake of simplicity, we consider Eq. (3) with the given parameters

A1 =
[
0.45 0.35
0.26 0.85

]
, A2 =

[
0.12 0.75
0.96 0.88

]
, M1 =

[
4 3
5 6

]
, M2 =

[
2 8
1 3

]
,

C1 =
[
−3 4
−5 6

]
, C2 =

[
−4 2
−7 3

]
, L =

[
1 0
0 1

]
, J =

[
−6 7
6 −7

]
.

Suppose that g is described by

g(u) = tanh(u) =
eu − e−u

eu + e−u
.

Let τ = 0.45 and α = 0.25 in Theorem 3.3; then, using Matlab, we solve the LMI. The feasible solutions for Theorem 3.3 are

P1 =
[
2.7157 0.4403
0.4403 2.6097

]
, A2 =

[
3.0514 0.9182
0.9182 4.6348

]
, Q =

[
6.9451 −3.9349
−3.9349 8.2693

]
,

R =
[
6.9451 −3.9349
−3.9349 8.2693

]
.

The above results show that all conditions stated in Theorem 3.3 have been satisfied. Hence the stochastic parabolic Itô
equation is exponentially stable for the above given parameters. �
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5. Conclusion

In this paper, using a suitable Lyapunov–Krasovskii functional, inequality techniques and LMIs, sufficient conditions
have been derived for checking the exponential stability of a stochastic parabolic Itô equation with delay and Markovian
jumping parameters. The derived conditions are expressed in terms of LMIs, which have been checked numerically for
less conservative results. The main advantages of the LMI-based approach is that LMI stability conditions can be solved
numerically using the Matlab LMI toolbox, which implements the state of the art of interior point algorithms.
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