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1. Introduction

Variational inequality problem is to find anx ∈ C such that〈
f (x), y − x

〉
� 0, for all y ∈ C, (1.1)

whereC is a nonempty closed convex subset inRn andf (x) is a mapping fromRn to
itself and〈 , 〉 denotes the inner product. Due to their wide applications in various fi
variational inequalities (VI) have received great attention since 1970s, and achiev
fruitful results in the theory as well as applications. The interested reader may con
two-volume monograph by F. Facchinei and J.S. Pang, which presents a comprehens
state-of-the art treatment of the finite dimensional variational inequality and comple
tarity problems [1].

Numerous algorithms for VI have been proposed. Among them, projection-type
ods are simple in form and useful in practice provided the projection ontoC is easy to
calculate. Various projection algorithms, such as basic projection algorithm, extra
ent projection algorithm and hyperplane projection algorithm, have been designed to
the different class of VIs (see, e.g., [1,2,4,6,12,14–21] and references therein). Ge
speaking, each projection algorithm is confined in certain class of VIs so that the conve
gence of the algorithm can be guaranteed. So one usually hopes that an effective al
may be used in a broader scope if it possible. For example, consider the following
projection algorithm with a constant step

xk+1 = PC

[
xk − γf

(
xk

)]
. (1.2)

In the early stages of studying projection methods,f (x) was required to be strong
monotone and Lipschitz continuous with smallγ for the convergence of the algorithm
Later, this condition is weaken to only require the co-coercivity off (x) (see [1, p. 1111]
[9,13]) while γ is chosen in an interval related to the co-coercive constant. Howev
practice we usually cannot get the knowledge of that constant in advance.

Therefore some algorithms are specially proposed so that they may be performe
out the requirement of prior knowledge related tof (x). Generally the step-size in this cla
of algorithms is varied from one iteration to the next in order to guarantee the conver
of an algorithm. In this paper we study the variable-step basic projection algorithm so
VI, which has the following form:

xk+1 = PC

[
xk − γkf

(
xk

)]
. (1.3)

Though in ([1, Algorithm 12.1.4], [20,21]) a variable-step basic projection algor
is given, actually there variable steps depend on the co-coercive constant. So in t
per we focus on a variable-step basic projection algorithm, where the variable ste
independent of the co-coercive constant. The first algorithm discussed below was a
proposed by Auslender [4] in 1970s. Later Fukushima [6] gave its relaxed version for
tical purpose. Both Auslender and Fukushima assumed the strong monotonicity off (x) for
the convergence of their algorithms. This is a strict limit. We establish the converge
Auslender’s algorithm as well as Fukushima’s algorithm under weaker conditions. Main
the strong monotonicity is replaced by the weak co-coercivity, whose a special c
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the co-coercivity, in the proofs of convergence. Therefore we extend the Auslende
gorithm as well as Fukushima’s algorithm to a broader class of VIs. Really Algorith
below may also be viewed as an improvement of ([1, Algorithm 12.1.4], [20,21]) sinc
weak co-coercivity is a weaker condition than co-coercivity. Finally we consider an a
cation of algorithms discussed above to the Split Feasibility Problem (SFP), which
in image reconstruction. An algorithm proposed by Byrne for solving the SFP is imp
by transforming the SFP equivalently into a special case of VI.

This paper is organized as follows. In Section 2 we establish the convergence of Ausle
der’s algorithm under certain conditions, and an example is given to show that al
ditions supposed in this section are satisfied butf (x) is neither strongly monotone no
co-coercive. In Section 3, based on the similar way used in [6], the convergence of t
relaxed projection algorithm is obtained under certain assumptions. In Section 4 we
the algorithms discussed in above two sections to the SFP.

2. A basic projection algorithm with variable steps

First we make some assumptions as following.

(A1) f (x) is a continuous mapping fromC → Rn.
(B1) There is a positive continuous functiong(x, y) onC such that

〈
f (x) − f (y), x − y

〉
� g(x, y)

∥∥f (x) − f (y)
∥∥2

2, ∀x, y ∈ C. (2.1)

(C1) For somez ∈ C, there exists aβ > 0 and a bounded open setD ⊂ Rn such that〈
f (x), x − z

〉
� β · ∥∥f (x)

∥∥
2, ∀x ∈ C/D.

(D1) If there is a solutionx∗ of (1.1) with f (x∗) �= 0, thenf (x) = f (x∗) impliesx = x∗
for x ∈ C.

Remark. If (B1) holds, we callf (x) weakly co-coercive. Ifg(x, y) is a constantη > 0
or g(x, y) has an infimumη > 0, thenf (x) is called co-coercive [1] or inverse strong
monotone(ism) [9]. However ifC is unbounded andg(x, y) tends to zero as‖x‖2 or ‖y‖2

approaches infinity,f (x) is not co-coercive. So the weak co-coercivity is a weaker c
dition than co-coercivity. In Example 1 below we are to discuss a variational inequ
problem with weakly co-coercive but no co-coercivef (x).

Let {ρk} be a sequence of positive parameters satisfying

∞∑
k=1

ρk = ∞,

∞∑
k=1

ρ2
k < +∞. (2.2)

We may state following algorithm without necessity of knowingg(x, y) in advance.
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Algorithm 1. For an arbitraryx1, setk = 1. If f (xk) = 0, stop,xk is a solution of(1.1);
Otherwise calculate the projection ofxk − ρk

‖f (xk)‖2
· f (xk) ontoC, let it bexk+1:

xk+1 = PC

[
xk − ρk

‖f (xk)‖2
· f (

xk
)]

thenk = k + 1. If xk+1 = xk, terminate,xk is a solution of (1.1); otherwise repeat.

Remark. Algorithm 1 was first proposed in [4] in 1970s, Auslender proved its c
vergence by assuming the strong monotonicity and boundedness off (x). Later based
on it Fukushima [6] established the convergence of its relaxed version under the
monotonicity and other conditions.

It is clear thatxk is a solution of(1.1) if the algorithm terminates atxk. So in the
remainder of this section we focus on the convergence of Algorithm 1 for the case o{xk}
being an infinite sequence.

Lemma 2.1. x∗ is a solution of(1.1) if and only ifx∗ = PC [x∗ − α · f (x∗)] for any given
α > 0.

Lemma 2.2. For anyx, y ∈ Rn

∥∥PC(x) − PC(y)
∥∥2

2 � ‖x − y‖2
2 − ∥∥(

PC(x) − x
) − (

PC(y) − y
)∥∥2

2.

These two lemmas are well known for VI.

Lemma 2.3. Assume that(A1), (B1), (C1) hold and{xk} is the sequence generated
Algorithm1, then{xk} is bounded.

This lemma can be easily proved with the same way as the proof of Lemma 3 in [

Theorem 2.1. Suppose that(A1), (B1), (D1) hold and(1.1) has at least a solution. Assum
that {xk} is an infinite sequence produced by Algorithm1 and is bounded. Then any acc
mulation point of{xk} is a solution of(1.1). Furthermore, if(1.1) has no solution at which
f (x) vanishes, then the solution of(1.1) is unique and{xk} converges to this solution.

Proof. Let x∗ be a solution of(1.1). By Lemma 2.1 we havex∗ = PC [x∗ − ρk

‖f (xk)‖2
·

f (x∗)] for eachk. Then

∥∥xk+1 − x∗∥∥2
2 =

∥∥∥∥PC

[
xk − ρk

‖f (xk)‖2
· f (

xk
)] − PC

[
x∗ − ρk

‖f (x∗)‖2
· f (x∗)

]∥∥∥∥
2

2

�
∥∥∥∥
(

xk − ρk

‖f (xk)‖2
· f (

xk
)) −

(
x∗ − ρk

‖f (xk)‖2
· f (x∗)

)∥∥∥∥
2

2

−
∥∥∥∥
(

xk+1 −
(

xk − ρk

k
· f (

xk
)))
‖f (x )‖2



170 Q. Yang / J. Math. Anal. Appl. 302 (2005) 166–179
−
(

x∗ −
(

x∗ − ρk

‖f (xk)‖2
· f (x∗)

))∥∥∥∥
2

2

= ∥∥xk − x∗∥∥2
2 − 2

ρk

‖f (xk)‖2

〈
xk − x∗, f

(
xk

) − f (x∗)
〉

+
(

ρk

‖f (xk)‖2

)2∥∥f
(
xk

) − f (x∗)
∥∥2

2

−∥∥(
xk+1 − xk

) + ρk

‖f (xk)‖2

(
f

(
xk

) − f (x∗)
)∥∥2

2

= ∥∥xk − x∗∥∥2
2 − 2

ρk

‖f (xk)‖2

〈
xk − x∗, f

(
xk

) − f (x∗)
〉

−∥∥xk+1 − xk
∥∥2

2 − 2
ρk

‖f (xk)‖2

〈
xk+1 − xk, f

(
xk

) − f (x∗)
〉

�
∥∥xk − x∗∥∥2

2 − 2
ρk

‖f (xk)‖2
g
(
xk, x∗)∥∥f

(
xk

) − f (x∗)
∥∥2

2

−∥∥xk+1 − xk
∥∥2

2 − 2
ρk

‖f (xk)‖2

〈
xk+1 − xk, f

(
xk

) − f (x∗)
〉
. (2.3)

The first inequality follows from Lemma 2.2 and the last inequality from condition(B1).
Because

−2
ρk

‖f (xk)‖2

〈
xk+1 − xk, f

(
xk

) − f (x∗)
〉

� 2
ρk

‖f (xk)‖2
g
(
xk, x∗)∥∥f

(
xk

) − f (x∗)
∥∥2

2

+ 1

2g(xk, x∗)
ρk

‖f (xk)‖2

∥∥xk+1 − xk
∥∥2

2.

Then we deduce from (2.3)∥∥xk+1 − x∗∥∥2
2 �

∥∥xk − x∗∥∥2
2 −

(
1− 1

2g(xk, x∗)
ρk

‖f (xk)‖2

)∥∥xk+1 − xk
∥∥2

2. (2.4)

Since we assume that{xk} is bounded, then there exists a closed ballBM = {x ∈ Rn |
‖x‖2 � M} containing{xk} andx∗. Since by assumption(B1), g(x, y) is continuous onC,
theng(x, y) is uniformly continuous onC ∩ BM , which means that there exists aδ > 0
such that

g(x, x∗) � δ, ∀x ∈ C ∩ BM. (2.5)

As a result we conclude thatg(xk, x∗) � δ, ∀k. Therefore from (2.4) it follows∥∥xk+1 − x∗∥∥2
2 �

∥∥xk − x∗∥∥2
2 −

(
1− 1

2δ

ρk

‖f (xk)‖2

)∥∥xk+1 − xk
∥∥2

2. (2.6)

Next we discuss two cases.
Case1. inf{‖f (xk)‖2} > 0. In this case there exists aξ > 0 such that‖f (xk)‖2 � ξ for

all k. Then we have from (2.6)∥∥xk+1 − x∗∥∥2
2 �

∥∥xk − x∗∥∥2
2 −

(
1− 1

ρk

)∥∥xk+1 − xk
∥∥2

2.
2δξ
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Sinceρk tends to zero, there existsk̄ > 0 such that

1− 1

2δξ
ρk � 1/2, ∀k � k̄.

Therefore{‖xk − x∗‖2} is monotonically decreasing fork � k̄, and‖xk+1 − xk‖2 → 0 as
k → +∞. Hence we conclude thatxk → x̄ ask → +∞ andx̄ ∈ C ∩ BM .

Notice

−2
ρk

‖f (xk)‖2

〈
xk+1 − xk, f

(
xk

) − f (x∗)
〉

�
∥∥xk+1 − xk

∥∥2
2 +

(
ρk

‖f (xk)‖2

)2∥∥f
(
xk

) − f (x∗)
∥∥2

2.

From (2.3) we derive∥∥xk+1 − x∗∥∥2
2 �

∥∥xk − x∗∥∥2
2 − 2δ

ρk

‖f (xk)‖2

∥∥f
(
xk

) − f (x∗)
∥∥2

2

+
(

ρk

‖f (xk)‖2

)2∥∥f
(
xk

) − f (x∗)
∥∥2

2. (2.7)

Denoteτ = maxx∈C∩BM {‖f (x)‖2}, thenξ � ‖f (xk)‖2 � τ , ∀k. From (2.7) we get

∥∥xk+1 − x∗∥∥2
2 �

∥∥xk − x∗∥∥2
2 −

(
2
δρk

τ
−

(
ρk

ξ

)2)∥∥f
(
xk

) − f (x∗)
∥∥2

2. (2.8)

If inf {‖f (xk) − f (x∗)‖2} = 0, thenf (x̄) = f (x∗) which impliesx̄ is a solution of(1.1)

from (D1). Otherwise we have‖f (xk)−f (x∗)‖2 � σ for all k, whereσ > 0 is a constant
Thus we get from (2.8)

∥∥xk+1 − x∗∥∥2
2 �

∥∥xk − x∗∥∥2
2 −

(
2
δρk

τ
−

(
ρk

ξ

)2)
σ 2 (2.9)

for k � ¯̄k, where ¯̄k is a sufficiently large positive scalar.
Because

∑∞
k=1 ρk = ∞,

∑∞
k=1 ρ2

k < +∞, from (2.9) we deduce

∥∥x
¯̄k+l − x∗∥∥2

2 �
∥∥x

¯̄k − xk
∥∥2

2 −
(

2δ

τ

¯̄k+l−1∑
i=¯̄k

ρi − 1

ξ2

¯̄k+l−1∑
i=¯̄k

ρ2
i

)
σ 2

which leads to∥∥x
¯̄k+l − x∗∥∥2

2 < 0

for sufficiently largel. This contradiction shows that the case of‖f (xk) − f (x∗)‖2 � σ

for all k would not occur.
Case2. inf{‖f (xk)‖2} = 0. Since{xk} is bounded, there exists at least an accumula

point of{xk}. Consequently for every accumulation point¯̄x of {xk}, f ( ¯̄x) = 0 which means
¯̄x is a solution of (1.1). If this is not true, we assumexki → ¯̄x ∈ C as ki → +∞ with
f ( ¯̄x) �= 0. Since

xki+1 = PC

[
xki − ρki

ki
· f (

xki
)]
‖f (x )‖2
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by the algorithm, we havexki+1 → PC [ ¯̄x] = ¯̄x aski → +∞. Repeat this step, we obta
xk → ¯̄x, which contradicts inf{‖f (xk)‖2} = 0.

Combining these two Cases we obtain the desirable conclusions.
Furthermore, if (1.1) has no solution at whichf (x) vanishes, then we deduce from(B1)

and(D1) that the solution of(1.1) is unique. From above argument we conclude that{xk}
converges to this solution.�
Theorem 2.2. Let the setC be bounded and(A1), (B1) hold. Then(1.1) exists a solution
and{xk} is bounded. In addition, if(D1) holds, then the conclusions of Theorem2.1 remain
valid.

Proof. Sincef (x) is monotone and continuous onC, we know that (1.1) has a solution
long asC is bounded [1, Proposition 2.2.3], [7]. And obviously{xk} is bounded. So thi
corollary directly follows from Theorem 2.1.�
Theorem 2.3. If the setC is unbounded. Assume(A1), (B1), (C1) hold. Then(1.1) ex-
ists a solution and{xk} is bounded. In addition, if(D1) holds, then the conclusions
Theorem2.1 remain valid.

Proof. If f (x) = 0 for somex ∈ C, then clearlyx is a solution of (1.1). Otherwise, sinc
f (x) �= 0 for anyx ∈ C/D, it follows from (C1)〈

f (x), x − z
〉
> 0, ∀x ∈ C/D.

Hence(1.1) has a solution [1, Proposition 2.2.3], [7]. Additionally we see that{xk} is
bounded by Lemma 2.3. Thus we conclude thatthe conclusions of Theorem 2.1 rema
valid. �

Now we give an illustrative example, in which(A1), (B1), (C1), (D1) are satisfied, bu
f (x) is neither strongly monotone nor co-coercive.

Example 1 (see [6, p. 60]). Consider variational inequality problem(1.1) with f (x) =
1− e−x,C = (−∞,+∞).

We verify conditions(A1), (B1), (C1) and(D1).

(1) Obviouslyf (x) is continuous.
(2) For anyx, y ∈ C,〈

f (x) − f (y), x − y
〉 = (e−y − e−x)(x − y) � min(ex, ey)

∣∣f (x) − f (y)
∣∣2.

Denoteg(x, y) = min(ex, ey), then(B1) holds.
(3) Takez = 1 ∈ C andD = (−1,2), then〈

f (x), x − z
〉 = f (x)(x − 1) �

∣∣f (x)
∣∣ for anyx ∈ C/D.

So(C1) is satisfied. Moreoverf (x) �= 0 for anyx ∈ C/D.
(4) Forf (x) = 1− e−x , obviouslyf (x) = f (y) impliesx = y.
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If 〈f (x)−f (y), x −y〉 > 0 ∀x, y ∈ C andx �= y, thenf (x) is called strictly monotone
It is known that the solution of VI is unique under strict monotonicity provided VI ha
solution. In above example, it is easy to see thatf (x) is strictly monotone, so this proble
has a unique solution from Theorem 2.3. It is clear thatx∗ = 0 is the unique solution o
the problem. Sincef (x∗) = 0, so really it need not to check(D1). Then from Theorem 2.1
and Theorem 2.3 we know that the sequence{xk} produced by Algorithm 1 converges
the unique solutionx∗.

Remark. Note that in (2)g(x, y) tends to zero asx or y approaches−∞. Actually it is
easy to verify thatf (x) in example is neither strongly monotone nor co-coercive. There
Algorithm 1 is applicable toa broader class of VIs.

3. A relaxed basic projection algorithm with variable steps

For projection-type algorithms, whether or not the projection can be solved effic
is a crucial problem. Except for some particular situations, such asC is the nonnegative
orthantRn+, generally it is not a trivial work to compute a projection ontoC. Even it is
impossible in some cases to get an exact projection ontoC. If so, the overall efficiency
of a projection method will be seriously affected. To overcome this difficulty, some
act projection algorithms were proposed (see, e.g, [3,5,6,14]). Among them, the r
projection algorithm for solving(1.1) proposed by Fukushima [6] is quite attractive. T
essential idea of that method is to utilize outer approximations to the closed convexC.
In detail, atkth iteration, the projectionPC onto C is replaced byPCk while latter may
be solved easily. Fukushima established the convergence of his relaxed projectio
rithm with strong monotonicity and other assumptions. In [1, p. 1223] authors com
that “The computational advantages of the approach are evident but should be we
against the rather strong assumptions neededfor convergence.” Therefore it is significa
to weaken assumption conditions if it is permitted. Like in previous section, we here e
the Fukushima’s algorithm to a broader scope.

First we recall some notations.
Define the distance from a pointx ∈ Rn to C by

dist[x,C] = min
{‖x − z‖2 | z ∈ C

}
and denote for eachδ > 0

Cδ = {
x ∈ Rn | dist[x,C] < δ

}
.

Assume that the following conditions are satisfied.

(A2) f (x) is a mapping fromRn to itself and is continuous onCδ for someδ > 0.

(B2) There is a positive continuous functiong(x, y) onCδ such that〈
f (x) − f (y), x − y

〉
� g(x, y)

∥∥f (x) − f (y)
∥∥2

2, ∀x, y ∈ Cδ.

(C2) For somez ∈ C, there exists aβ > 0 and a bounded open setD ⊂ Rn such that〈
f (x), x − z

〉
� β · ∥∥f (x)

∥∥
2, for all x /∈ D.
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(D2) The setC is given by

C = {
x ∈ Rn | c(x) � 0

}
where c :Rn → R is a convex function and there exists a pointx0 such that
c(x0) < 0.

(E2) For anyx ∈ Rn, at least one subgradientg ∈ ∂c(x) can be calculated, where

∂c(x) = {
g ∈ Rn | c(y) � c(x) + 〈g,y − x〉, ∀y ∈ Rn

}
.

(F2) If there is a solutionx∗ of (1.1) with f (x∗) �= 0, thenf (x) = f (x∗) impliesx = x∗
for x ∈ C.

For convenience, we restate the algorithm proposed by Fukushima [6]. Then we
the convergence of the algorithm under above conditions.

Let {ρk} be that sequence given in previous section.

Algorithm 2.
Step0: Select a starting pointx1 and setk = 1;
Step1: Choosegk ∈ ∂c(xk) and let

Ck = {
x ∈ Rn | c(xk

) + 〈
gk, x − xk

〉
� 0

};
Step2: Obtain the projection ofxk − ρk

‖f (xk)‖2
f (xk) onto the halfspaceCk and let it be

xk+1, i.e.,

xk+1 = PCk

[
xk − ρk

‖f (xk)‖2
f

(
xk

)];

Step3: If xk+1 = xk, then terminate. Otherwise, setk = k + 1 and return to step 1.

It is obvious that{xk} is a solution of(1.1) providedxk+1 = xk for somek. So in the
sequel we assume that{xk} is an infinite sequence.

We carefully check the propositions and their proofs in [6] and find that under abov
conditions all lemmas and their proofs remain valid except the proof of Theorem
which f (x) was assumed to be strongly monotoneand the generated sequence{xk} was
proved to converge to the unique solution of (1.1). In this section we will show tha
assertion of Theorem 2 in [6] is still right under our assumptions. To this end we need re
some lemmas in [6]. In the rest part of this section we assume that all above condition

Lemma 3.1 (Lemma 3 in [6]).The sequence{xk} generated by Algorithm2 is bounded.

Lemma 3.2 (Lemma 4 in [6]).

lim
k→∞ dist

[
xk,C

] = 0.

Lemma 3.3 (Lemma 5 in [6]).

lim
k→∞

∥∥xk+1 − xk
∥∥

2 = 0.
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3.2)

2

Based above lemmas we may establish the convergence of Algorithm 2 under o
sumptions.

Theorem 3.1. Assume that(A2)–(F2) are satisfied. Then the sequence{xk} generated by
Algorithm2 converges to a solution of(1.1). Furthermore, if(1.1) has no solution at which
f (x) vanishes, then the solution of(1.1) is unique and{xk} converges to this solution.

Proof. From Theorem 2.3 we see that (1.1) has a solution. Letx∗ be a solution of (VI).
By Lemma 3.2, we havexk ∈ Cδ for all k sufficiently large, whereCδ is the set given in
conditions(A2) and(B2). From(B2) we have〈

f
(
xk

)
, xk+1 − x∗〉 � g

(
xk, x∗)∥∥(

f
(
xk

) − f (x∗)
)∥∥2 + 〈

f (x∗), xk − x∗〉
+〈

f
(
xk

)
, xk+1 − xk

〉
(3.1)

for sufficiently largek. Sinceg(x, y) is a positive continuous function onCδ and{xk} is
bounded, then there exists anη > 0 such thatg(xk, x∗) � η for sufficiently largek.

Let ε be an arbitrary positive number. Sincex∗ is a solution of(1.1). From Lemmas 3.1
and 3.2 it follows〈

f (x∗), xk − x∗〉 � −ε (3.2)

for all sufficiently largek.
Moreover sincef (x) is continuous onCδ , from Lemmas 3.1, 3.2, and 3.3 we obtain〈

f
(
xk

)
, xk+1 − xk

〉
� −∥∥f

(
xk

)∥∥
2

∥∥xk+1 − xk
∥∥

2 � −ε (3.3)

for all k large enough. Consequently we derive following inequality from (3.1), (
and (3.3)〈

f
(
xk

)
, xk+1 − x∗〉 � η

∥∥f
(
xk

) − f (x∗)
∥∥2

2 − 2ε (3.4)

for all k large enough.
If inf {‖f (xk) − f (x∗)‖2} > 0, then there exists aγ > 0, such that∥∥f

(
xk

) − f (x∗)
∥∥ � γ for all k,

then it follows from (3.4)〈
f

(
xk

)
, xk+1 − x∗〉 � ηγ − 2ε (3.5)

for all sufficiently largek.
SinceC ⊆ Ck for all k andx∗ ∈ C, thenx∗ ∈ PCk(x∗).
Since{f (xk)} is bounded, let‖f (xk)‖2 � M for all k. Then we obtain from Lemma 2.

∥∥xk+1 − x∗∥∥2
2 =

∥∥∥∥PCk

[
xk − ρk

‖f (xk)‖2
f

(
xk

)] − PCk(x∗)
∥∥∥∥

2

2

�
∥∥∥∥xk − ρk

‖f (xk)‖2
f

(
xk

) − x∗
∥∥∥∥

2

2

−
∥∥∥∥xk+1 −

(
xk − ρk

k
f

(
xk

))∥∥∥∥
2

‖f (x )‖2 2
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�
∥∥xk − x∗∥∥2

2 − 2
ρk

‖f (xk)‖2

〈
f

(
xk

)
, xk+1 − x∗〉

�
∥∥xk − x∗∥∥2

2 − 2ρk
(ηγ − 2ε)

M
= ∥∥xk − x∗∥∥2

2 − ηγ

M
ρk (3.6)

for all sufficiently largek, and last equality follows with takingε = ηγ /4.
Let k0 be a large positive constant and (3.5) holds fork � k0. By adding the inequalitie

(3.6) fromk0 to k0 + l we get

∥∥xk0+l+1 − x∗∥∥2
2 �

∥∥xk0 − x∗∥∥2
2 − ηγ

M

k0+l∑
i=k0

ρi

for any l > 0. However it is impossible since
∑∞

k=k0
ρk = +∞. So we conclude tha

inf{‖f (xk) − f (x∗)‖2} = 0. Since{xk} is bounded and‖xk+1 − xk‖ → 0 ask → +∞
by Lemma 3.3. Thenxk → x̄ ask → +∞. Thereforef (x̄) = f (x∗). This implies that̄x is
a solution of(1.1) from condition(F2).

Furthermore, if (1.1) has no solution at whichf (x) vanishes, then from(B2) and(D2)

we conclude that the solution of(1.1) is unique and so{xk} converges to this solution.
This completes the proof.�

Theorem 3.2. Let the setC be bounded. Then(1.1)has a solution and the conclusions
Theorem3.1 remain valid.

Theorem 3.3. If the setC is unbounded. Then(1.1)exists a solution and the conclusio
of Theorem3.1 remain valid.

Remark. It is easily verified that for Example 1 all conditions in this section are satis
Then the sequence{xk} by Algorithm 2 is convergent. Howeverf (x) = 1 − e−x is not
strongly monotone onCδ . Therefore our result shows that Fukushima’s algorithm app
in a broader scope.

4. An application

In this section we apply Algorithms 1 and 2 to the Split Feasibility Problem (SFP)
Let C andQ be the closed convex subsets inRn andRm, respectively. The SFP is t

find x ∈ C with Ax ∈ Q if suchx exist, whereA is a realm by n matrix [8–11]. A number
of image reconstruction problems can be formulated as SFP. In [11], Censor and E
used their multidistance method to obtain iterative algorithms for solving the SFP.
algorithms, as well as others obtained later (see, e.g., [10]) involve matrix inverses at ea
step. In [8,9], Byrne proposed an iterative method, called the CQ algorithm, to solv
SFP. The feature of the CQ algorithm is that matrix inverses are not involved. Th
algorithm solving the SFP may be restated as follows [8,9]):

Let x0 be arbitrary. Fork = 0,1, . . . , let

xk+1 = PC

[
xk − γAT (I − PQ)Axk

]
, (4.1)
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whereγ ∈ (0,2/ρ(AT A) andρ(AT A) denotes the spectral radius ofAT A.
It is known thatx is a solution of following variational inequality problem: to findx ∈ C

such that〈
AT (I − PQ)Ax,y − x

〉
� 0 for all y ∈ C, (4.2)

if and only if x is a solution of the SFP whenever the SFP has a solution (see [9]).
By Lemma 2.1, (4.2) may be equivalently written as

x = PC

[
x − γAT (I − PQ)Ax

]
. (4.3)

Furthermore, it has been known from [9, Lemma 8.1] thatf (x) = AT (I − PQ)Ax is co-
coercive inRn with constant 1/ρ(AT A), i.e.,〈

f (x) − f (y), x − y
〉
� 1

ρ(AT A)

∥∥f (x) − f (y)
∥∥2

2.

Therefore the CQ algorithm is really a particular case of (2.2). Hence the convergence
the CQ algorithm immediately follows from [1, Theorem 12.1.8]. In [9] Byrne propos
different proof based on Dolidze’s Theorem [9,13] for his CQ algorithm. However it is
trivial work to gain theρ(AT A). For practical reasons a quick method to estimateρ(AT A)

was given by Byrne [8,9]. However Byrne’s method is only available forA beingε-sparse.
For generalA, it may cost a large of amount of computation to obtainρ(AT A). Therefore
it is meaning to present an improvement of the CQ algorithm without the requirem
knowledge ofρ(AT A).

Since(4.1) is a special case of (2.2), it is natural to apply Algorithm 1 or Algorithm
to solve the SFP. Of course, to guarantee the convergence, it is essential to check
the conditions in Section 2 or Section 3 are satisfied. Obviouslyf (x) = AT (I − PQ)Ax

is continuous inRn andf (x) = 0 wheneverx is a solution of the SFP. Hence it is on
necessary to verify if(C1) or (C2) holds for the convergence of Algorithm 1 or Algorithm
with f (x) = AT (I − PQ)Ax.

Lemma 4.1. Assume thatQ is bounded andA is anm by n matrix with full column rank.
Then for any givenz ∈ C, there exists a bounded setD ⊆ Rn such that〈

AT (I − PQ)Ax,x − z
〉
�

∥∥AT (I − PQ)Ax
∥∥

2 for all x /∈ D.

Proof. First we have〈
AT (I − PQ)Ax,x − z

〉
= 〈

(I − PQ)Ax,Ax − Az
〉

= xT AT Ax − 〈Ax,Az〉 − 〈
PQ(Ax),Ax

〉 + 〈
PQ(Ax),Az

〉
.

SinceA has full column rank, thenAT A is positive definite. Note thatQ is bounded, henc
there is a big closed ballD = {x ∈ Rn | ‖x‖2 � d} such that

xT AT Ax − 〈Ax,Az〉 − 〈
PQ(Ax),Ax

〉 + 〈
PQ(Ax),Az

〉
�

∥∥AT Ax
∥∥

2 + ∥∥AT PQ(Ax)
∥∥

2

�
∥∥AT (I − PQ)Ax

∥∥ for all x /∈ D
2
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That is〈

AT (I − PQ)Ax,x − z
〉
�

∥∥AT (I − PQ)Ax
∥∥

2 for all x /∈ D. �
Therefore we immediately get following theorem from Lemma 4.1 and Theorem 2.1

Theorem 4.1. AssumeQ is bounded andA is an m by n matrix with full column rank.
Then the sequence{xk} generated by Algorithm1 with f (x) = AT (I − PQ)Ax converges
to a solution of the SFP whenever the SFP has a solution.

When apply Algorithm 2 to solve the SFP, one needs note that mappingf (x) itself contains
an exact orthogonal projectionPQ. If we suppose thatPC can be solved without grea
expense, then we have following theorem from Lemma 4.1 and Theorem 3.1.

Theorem 4.2. AssumeQ is bounded andA is an m by n matrix with full column rank,
conditions(E2), (F2) hold. Then the sequence{xk} generated by Algorithm2 converges
to a solution of the SFP provided the SFP has a solution.

In [22], the relaxed version of the CQ algorithm is given, where the projectionsPC and
PQ are replaced byPCk andPQk respectively atkth iteration,Ck andQk are the halfspace
associated withC andQ respectively. The convergence of the relaxed CQ algorith
established under mild assumptions. When applying Algorithm 2 to solve the SFP
using theQk in place ofQ in f (x) = AT (I −PQ)Ax, whether or not the convergence s
holds is a subject deserving research.
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