
JOURNAL OF ALGEBRA 7, 140-143 (1967) 

Do Simple Rings Have Unity Elements? 

J. C. ROBSON 

Department of Mathematics, The University, Leeds, England 

Communicated by A. W. Goldie 

Received October 20, 1966 

1. It is well known that a simple artinian ring has a unity element, and 
that a commutative simple ring, being a field, has a unity element. However, 
it can easily be seen that not every simple ring has a unity element, this being 
shown in the first proposition of this note. Nevertheless, it could be asked 
whether a simple right noetherian ring necessarily has a unity element and 
the answer (which comprises the main result of this note) is a qualified “yes”. 

2. There are simple integral domains which are not division rings-see, 
for example, [2]. Thus the following result demonstrates that there exist 
simple integral domains without unity elements. 

PROPOSITION. Let R be a simple integral domain which is not a division 
ring and let I be a proper nonzero right ideal of R. Then IR is a simple integral 
domain without a unity element. 

Proof. Let T be a nonzero ideal of IR. Then 

IR = I(RTIR) = (IR) T(IR) C T, 

and so T = IR and IR is a simple integral domain. 
Say IR has a unity element e. Then e is an idempotent. Thus ear = er for 

all r E R, and hence er = r since R is an integral domain. Therefore 

R=eRCIR*R=IRCI, 

which contradicts the assumption that I was a proper right ideal of R. So IR 
does not have a unity element. 

3. We will be using the concept of the characteristic of a simple ring. 
The next proposition, which considers the more general case of a prime ring, 
clarifies this concept. 
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PROPOSITION. Let s be a nonxero element of a prime ring R and suppose 
that there is a least positive integer m such that ms = 0. Then R has charactektk 
mandmisaprime. 

Proof. Let X = {x E R 1 mx = 0} and let mR = {mr 1 r E R). Evidently 
X and mR are ideals of R and XmR = 0. Now R is prime and X # 0, since 
s E X. Thus mR = 0, and so R has characteristic m. 

Assume that m is not a prime, m = mIm2, say. Then qRm,R = mR = 0. 
So either m,R = 0 or m,R = 0. But this contradicts the minimality of m. 
Therefore m is a prime. 

4. The next lemma is crucial for the proof of the main theorem. First 
we recall that a simple right noetherian ring R has a right quotient ring Q 
which is a simple artinian ring (see [Z]). Q has a unity element 1 and so has 
a nonzero center F. Since Q is simple, F is a field. 

LEMMA. Let R be a simple ring with a simple artinian right quotient ring Q, 
and let F be the center of Q. 

(i) For each nonxero element f E F, fR = Rf = R. 

(ii) The center of R is either F or zero. 

Proof. (i) f = ac-l for some a, c e R, c regular. Let X = {x E R 1 fx E R}. 
Then X is a nonzero right ideal of R since c E X. However, f E F, so 
X = {x E R 1 xf E R}. Hence X is an ideal of R, and therefore X = R. Thus 
fR & R. However Rf = fR and so fR is an ideal of R. But, since a E fR, fR is 
nonzero. Hence fR = Rf = R. 

(ii) Since Q is the right quotient ring of R, the center of R is contained 
in F. Thus, if f' is a nonzero element in the center of R, then f’ E F. Now F 
is a field, so f % = F. But, by (i), f % Z R. So F C R and thus F is the center 
of R. 

5. Continuing with the notation of the preceding section, it is not dif- 
ficult to see that R, Q and F must all have the same characteristic. If that 
characteristic is zero, then F is infinite, since it contains the rational field. 
Thus the corollary below will be an immediate consequence of the theorem. 

THEOREM. Let R be a simple rz’ght noetherian ring whose right quotient ring Q 
has an infinite center F. Then R has a unity element. 

COROLLARY. A simple right noetherian ting of characteristic zero has a 
unity element. 

Proof of Theorem. We will denote by N the subring of F generated by 1; 
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and we will say that an element f  EF is integral ooer N if there exist n, , 
n, ,..., n,,, EN, such that 

fm+l = n, +fn, + **. +f%, 

for some m > 0. There are two possibilities which must be considered sepa- 
rately. 

I. There is an element f  EF which is not integral over N. We note first 
that this includes the case when R has characteristic zero. For then N is the 
rational integers and 4 EF; but it is easily verified that $ is not integral over 
the rational integers. 

Now let x be any regular element of R, and consider the chain of right 
ideals of R, 

xR1 C xR1 + xfR’ C xR1 + xfR1 + xf aR1 C -a* , 

where xR1 denotes the right ideal of R generated by x. Since R is right 
noetherian, this chain terminates. So we see that 

xf m+l E xR’ + xfR1 + ... + 3cf”‘R’ 

for some m > 0. Thus 

xf m+l = x(10 + q,) + xf (rl + n,) + *.* + @‘@m + n,), ri E 4 ni E iv. 

But x is regular and so 

f  m+1 = (yo + s) +f(yl + 4 + *** +f”(rm + %J; 

I.e., 

f”” - (n, +f% + *** +f”l%J = ro +fi1 + ‘.. +f”t;n =g, 

say. Clearly g E F n R, using (i) of the lemma. Also g # 0 since f is not 
integral over N. Thus R has a nonzero center. So, by (ii) of the lemma, F is 
the center of R and 1 E R. 

II. Ewery element of F is integral over N. In this case we know that R 
has finite characteristic. So N is a finite fkld. But F is intinite, so there exists 
fi EF, fi $ N. Since fi is integral over N, N[fJ is also a finite field. So there 
exists fa E F, f,, 4 N[ f;l; and, once again, N[ fi , fs] is a finite field. In this way, 
we obtain an infinite sequence ( fi , fa , fs ,...} of elements of F such that 
fm+z 4 NCfi 3..-,fml- 

Consider the chain of right ideals of R, 

xR1 C xR1 + xflR1 _C xR1 + xf,Rl + xfeRl C -0. . 

Since R is right noetherian, this chain terminates. Therefore 

xf m+l E xR1 + xflR1 + .-. + xfmR1 for some m. 
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so 

FTL+~ = x(rO + no) + xfl(rl + 4 + - + xfm(ym + n,), 12 E R ni E N. 
Hence 

fin+1 - (no +fl*l + *** +fm*m) = yo +flyl + -** +fmrm =g, 

say. Clearly g E F n R; and g # 0 since f,,,+l $ N[f, ,..., fm]. Hence F is the 
center of R and 1 E R. 

It would now seem reasonable to conjecture that every simple right 
noetherian ring has a unity element. A search for a counter-example has 
revealed an interesting point-namely, that all the standard examples of 
simple noetherian rings (which are not artinian) have characteristic zero. 

6. As a further consequence of the lemma of Section 4, we obtain the 
following result. 

THEOREM. A simple ring which satisfies a polynomial identity is mtinian. 

Proof. Let the ring be R. By [3], R has a right and left quotient ring Q 
which is finite-dimensional over its center F. But, by the lemma, RF = R. 
So R is itself a finite-dimensional algebra over F. 

Let c be any regular element of R. For some integer m, the set c, c2,..,, cm 
is linearly dependent. So, for some integer k, 1 < k < m - 1, 

Ck = cR+lfk+I + *a* + ?fm, fk+l ,..vfm EF. 

Since c is regular, we see that 

1 =cfk+l+...+c-kf,,,ER. 

It follows that F C R, and hence right ideals of R are F-subspaces of R. So R 
is right artinian and, by symmetry, left artinian. 
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