Do Simple Rings Have Unity Elements?

J. C. ROBSON

Department of Mathematics, The University, Leeds, England Communicated by A. W. Goldie Received October 20, 1966

1. It is well known that a simple artinian ring has a unity element, and that a commutative simple ring, being a field, has a unity element. However, it can easily be seen that not every simple ring has a unity element, this being shown in the first proposition of this note. Nevertheless, it could be asked whether a simple right noetherian ring necessarily has a unity element and the answer (which comprises the main result of this note) is a qualified "yes".

2. There are simple integral domains which are not division rings-see, for example, [2]. Thus the following result demonstrates that there exist simple integral domains without unity elements.

PROPOSITION. Let R be a simple integral domain which is not a division ring and let I be a proper nonzero right ideal of R. Then IR is a simple integral domain without a unity element.

Proof. Let T be a nonzero ideal of IR . Then

$$
IR = I(RTIR) = (IR) T(IR) \subseteq T,
$$

and so $T = IR$ and IR is a simple integral domain.

Say IR has a unity element e. Then e is an idempotent. Thus $e^2r = er$ for all $r \in R$, and hence $er = r$ since R is an integral domain. Therefore

$$
R = eR \subseteq IR \cdot R = IR \subseteq I,
$$

 w is a proper right interaction that I was a proper right interaction that I was a proper right interaction of R. So IR So which contradicts the assumption

 $\overline{}$ will be using the concept of the concept of the characteristic of the characteristic of a simple ring. The next proposition, which considers the more general case of a simple ring, The next proposition, which considers the more general case of a prime ring, clarifies this concept.

PROPOSITION. Let s be a nonzero element of a prime ring R and suppose that there is a least positive integer m such that ms $= 0$. Then R has characteristic m and m is a prime.

Proof. Let $X = \{x \in R \mid mx = 0\}$ and let $mR = \{mr \mid r \in R\}$. Evidently X and mR are ideals of R and $XmR = 0$. Now R is prime and $X \neq 0$, since $s \in X$. Thus $mR = 0$, and so R has characteristic m.

Assume that m is not a prime, $m = m_1 m_2$, say. Then $m_1 R m_2 R = mR = 0$. So either $m_1R = 0$ or $m_2R = 0$. But this contradicts the minimality of m. Therefore m is a prime.

4. The next lemma is crucial for the proof of the main theorem. First we recall that a simple right noetherian ring R has a right quotient ring Q which is a simple artinian ring (see $[I]$). Q has a unity element 1 and so has a nonzero center F . Since Q is simple, F is a field.

LEMMA. Let R be a simple ring with a simple artinian right quotient ring Q , and let F be the center of Q .

- (i) For each nonzero element $f \in F$, $fR = Rf = R$.
- (ii) The center of R is either F or zero.

Proof. (i) $f = ac^{-1}$ for some $a, c \in R$, c regular. Let $X = \{x \in R \mid fx \in R\}$. Then X is a nonzero right ideal of R since $c \in X$. However, $f \in F$, so $X = \{x \in R \mid xf \in R\}$. Hence X is an ideal of R, and therefore $X = R$. Thus $fR \subseteq R$. However $Rf = fR$ and so fR is an ideal of R. But, since $a \in fR$, fR is nonzero. Hence $f = Rf = R$.

(ii) Since Ω is the right quotient ring of R , the center of R is contained. In F. Thus, if f' is a nonzero element in the center of P , then $f' \in F$. Now F' in *F*. Thus, if *f'* is a nonzero element in the center of *R*, then $f' \in F$. Now *F* is a field, so $f'F = F$. But, by (i), $f'F \subseteq R$. So $F \subseteq R$ and thus *F* is the center of R.

5. Continuing with the notation of the preceding section, it is not difficult to see that R , Q and F must all have the same characteristic. If that characteristic is α in α in α in the rational field. The rational field α is interesting the rational field. T_{min} the corollary below will be an immediate consequence of the theorem.

 T_{min} and T_{min} be a simple ring whose ring α has an infinite center F. Then R has a unity element.

 A simple right noetherian ring of characteristic zero has a COROLLARY.
unity element.

Proof of Theorem. We will denote by N the subring of F generated by 1;

and we will say that an element $f \in F$ is *integral over* N if there exist n_0 , $n_1, ..., n_m \in N$, such that

$$
f^{m+1} = n_0 + fn_1 + \cdots + f^m n_m
$$

for some $m \geqslant 0$. There are two possibilities which must be considered separately.

I. There is an element $f \in F$ which is not integral over N. We note first that this includes the case when R has characteristic zero. For then N is the rational integers and $\frac{1}{2} \in F$; but it is easily verified that $\frac{1}{2}$ is not integral over the rational integers.

Now let x be any regular element of R , and consider the chain of right ideals of R,

$$
xR^1 \subseteq xR^1 + xfR^1 \subseteq xR^1 + xfR^1 + xf^2R^1 \subseteq \cdots,
$$

where $xR¹$ denotes the right ideal of R generated by x. Since R is right noetherian, this chain terminates. So we see that

$$
xf^{m+1} \in xR^1 + xfR^1 + \cdots + xf^mR^1
$$

for some $m \geqslant 0$. Thus

$$
xf^{m+1} = x(r_0 + n_0) + xf(r_1 + n_1) + \cdots + xf^m(r_m + n_m), \quad r_i \in R, \quad n_i \in N.
$$

But x is regular and so

$$
f^{m+1} = (r_0 + n_0) + f(r_1 + n_1) + \cdots + f^m(r_m + n_m);
$$

I.e.,

$$
f^{m+1}-(n_0+fn_1+\cdots+f^m n_m)=r_0+fr_1+\cdots+f^m r_m=g,
$$

say. Clearly $g \in F \cap R$, using (i) of the lemma. Also $g \neq 0$ since f is not integral over N. Thus R has a nonzero center. So, by (ii) of the lemma, F is the center of R and $1 \in R$.

II. Every element of F is integral over N . In this case we know that R has finite characteristic. So N is a finite field. But F is infinite, so there exists $f_1 \in F$, $f_1 \notin N$. Since f_1 is integral over N, $N[f_1]$ is also a finite field. So there exists $f_2 \in F$, $f_2 \notin N[f_1]$; and, once again, $N[f_1, f_2]$ is a finite field. In this way, we obtain an infinite sequence $\{f_1, f_2, f_3, ...\}$ of elements of F such that $f_{m+1} \notin N[f_1, ..., f_m].$

Consider the chain of right ideals of R,

$$
xR^1\subseteq xR^1+xf_1R^1\subseteq xR^1+xf_1R^1+xf_2R^1\subseteq\cdots.
$$

Since R is right noetherian, this chain terminates. Therefore

$$
xf_{m+1} \in xR^1 + xf_1R^1 + \cdots + xf_mR^1 \quad \text{for some} \quad m.
$$

$$
xf_{m+1} = x(r_0 + n_0) + xf_1(r_1 + n_1) + \cdots + xf_m(r_m + n_m), \quad r_i \in R, \quad n_i \in N.
$$

Hence

 $f_{m+1} - (n_0 + f_1 n_1 + \cdots + f_m n_m) = r_0 + f_1 r_1 + \cdots + f_m r_m = g,$

say. Clearly $g \in F \cap R$; and $g \neq 0$ since $f_{m+1} \notin N[f_1, ..., f_m]$. Hence F is the center of R and $1 \in R$.

It would now seem reasonable to conjecture that every simple right noetherian ring has a unity element. A search for a counter-example has revealed an interesting point-namely, that all the standard examples of simple noetherian rings (which are not artinian) have characteristic zero.

6. As a further consequence of the lemma of Section 4, we obtain the following result.

THEOREM. A simple ring which satisfies a polynomial identity is artinian.

Proof. Let the ring be R. By [3], R has a right and left quotient ring Q. which is finite-dimensional over its center F. But, by the lemma, $RF = R$. So R is itself a finite-dimensional algebra over F .

Let c be any regular element of R. For some integer m , the set c, c^2 ,..., c^m is linearly dependent. So, for some integer $k, 1 \leq k \leq m - 1$,

$$
c^k = c^{k+1} f_{k+1} + \cdots + c^m f_m, \quad f_{k+1}, \ldots, f_m \in F.
$$

Since c is regular, we see that

$$
1 = cf_{k+1} + \cdots + c^{m-k}f_m \in R.
$$

It follows that $F \subseteq R$, and hence right ideals of R are F-subspaces of R. So R is right artinian and, by symmetry, left artinian.

REFERENCES

- 1. GOLDIB, A. W. The structure of prime rings under ascending chain conditions. $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ (1958), 589408. $2. 100.$ Extending the non-commutative polynomials. J. London Math. Sot. J. London Math. Sot. J. London Math. Sot. $\frac{1}{2}$
- 12 (1937), 264-266.
264-266. $\frac{3.6}{2}$ Positive rings satisfying a polynomial identity. Process satisfying a polynomial identity. Proc. Am. Math. So
- 1.901111 , 1.901111