
JOURNAL OF COMPLEXITY 3, 146-182(1987)

Algorithmic and Complexity Issues of Robot Motion in
an Uncertain Environment*

VLADIMIR J. LUMELSKY

Center for Systems Science, Department of Electrical Engineering, Yale University,
New Haven, Connecticut 06520

This paper presents a survey of one approach to planning collision-free paths
for an automaton operating in an environment with obstacles. Path planning is one
of the central problems in robotics. Typically, the task is presented in the two- or
three-dimensional space, with the automaton being either an autonomous vehicle
or an arm manipulator with a fixed base. The multiplicity of approaches one finds
in this area revolves around two basic models: in one, called path planning with
complete information, perfect information about the geometry and positions of
the robot and the obstacles is assumed, whereas in the other, called path planning
with incomplete information, an element of uncertainty about the environment is
present. The approach surveyed here, called dynamic path planning, has been
developed in the last few years; it is based on the latter model and gives rise to
algorithmic and computational issues very different from those in the former
model. The approach produces provable (nonheuristic) path planning algorithms
for an automaton operating in a highly unstructured environment where no knowl-
edge about the obstacles is available beforehand and no constraints on the geome-
try of the obstacles are imposed. o 1987 Academic PPX, IIIC.

1. INTRODUCTION

The problem of planning collision-free paths for an automaton operat-
ing in an environment (a scene) with obstacles has become one of the key
issues in robotics in recent years. This interest is not surprising given the
direct relationship of the problem to many robot applications and to the
more general issue of programming complex automatic systems. The au-
tomaton can be an autonomous vehicle traveling along a two-dimensional
surface with hills and valleys, or it can be an industrial robot arm manipu-
lator which is required to avoid obstacles that are present in its work
space. Two basic models have emerged based on different assumptions

* Supported in part by the National Science Foundation under Grant DMC-8519542.

146
0885-064X/87 $3.00
Copyright 0 1987 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 147

about the information available for motion planning. This paper studies
algorithmic and complexity issues of robot motion in an uncertain envi-
ronment, in the context of a specific approach, called dynamic path plan-
ning. In this introductory section, the two basic models used in the litera-
ture on path planning are described, followed by a brief review of the state
of affairs in the two corresponding categories of works, and by the basic
idea of the approach of dynamic path planning; the approach is surveyed
in more detail in the following sections.

1.1 Path Planning Problem-Basic Models

Depending on which of the two following basic models is being used,
the current research on robot path planning can be classified into two
large categories. In the first model, called path planning with complete
information (another popular term is the Piano Movers problem), perfect
information about the moving automaton and the obstacles is assumed. In
the second model, called path planning with incomplete information, an
element of uncertainty is present, and the m issing data is typically pro-
vided by some source of local information (e.g., sensory feedback, such
as an ultrasound range finder or a vision module). Another important
distinction can be made between the provable (other terms-nonheuris-
tic, exact, algorithmic) and heuristic approaches.

The model with complete information (Piano Movers model) is formu-
lated as follows.’ Given a solid object (or a combination of such objects) in
two- or three-dimensional space, whose size, shape, and initial and target
position and orientation are fully described, and given a set of obstacles
whose shapes, positions, and orientations in space are likewise known,
the task is to find a continuous path for the object from the initial to the
target position while avoiding collisions with obstacles along the way. An
important assumption used in the model is that the surfaces of the moving
object and of the obstacles are algebraic; in most works, a stricter require-
ment of planar surfaces is imposed.

Because full information is assumed, the whole operation of path plan-
ning is a one-time, off-line operation. The main difficulty is not in proving
that an algorithm that would guarantee a solution exists, but in obtaining a
computationally efficient scheme. Reaching a solution means either find-
ing a path or concluding in finite time that no path exists. Given the fact
that the solution is always conceptually feasible, cases of arbitrary com-
plexity can be considered. Another apparent advantage to dealing with
complete information is that various optimization criteria (finding the
shortest path, or the m inimum-time path, or the safest path, etc.) can be
introduced easily.

I A good survey of the work on provable algorithms for the Piano Movers problem can be
found in [17]; specialized maze search algorithms are considered in [IS].

148 VLADIMIR J. LUMELSKY

The price to be paid for dealing with perfect information is quite high, in
terms of both the computational load and ensuing limitations. The re-
quirement that all the surfaces be algebraic comes from the fact that the
computational vehicle used in the Piano Movers model is that of the
connectivity graphs: the problem in question is first reduced to a finite list
of analytical entities (polynomial patches, sides of the polyhedra, space
cells free of obstacles, etc.), from which an appropriate connectivity
graph is produced. Then, a path is declared to exist if the start and the
destination nodes on the graph are connected. The computational com-
plexity of the problem is measured in terms of the structure and process-
ing characteristics of the corresponding connectivity graph.

From the application standpoint, unless there is reason to believe that
the obstacle boundaries are algebraic, an appropriate approximation must
be performed before the connectivity graph can be built. Because the
approximation itself depends on considerations that are secondary to the
path planning problem (for example, the accuracy of the presentation of
actual obstacles by polygons, or-a conflicting criterion-computational
costs of processing the resulting connectivity graph), it can introduce
problems of its own. For example, the operation of approximating nonlin-
ear surfaces with linear constraints itself requires time exponential in the
prescribed accuracy of approximation [21]. Also, the space of possible
approximations is not continuous in the approximation accuracy: in other
words, a slight change in the specified accuracy of the approximation can
cause a dramatic change in the positions of the nodes of the approximated
surfaces and eventually in the generated paths.

Measuring the computational burden in terms of complexity of the
connectivity graphs can create peculiar situations when the derived com-
putational complexity of a given task contradicts our intuitive notion of
problem complexity. Consider, for example, a circular obstacle A shown
in Fig. la. Assume that the algorithm to be used requires polygonal obsta-
cles, and so the obstacle is first approximated-say, by one of the poly-
gons B or C (Fig. 1). Now, according to Piano Movers algorithms, plan-
ning a path around the obstacle C is computationally more difficult than

FIG. 1. Which of the three obstacles, A, B, and C, would be easier to pass around?

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 149

planning a path around the obstacle B, because of the greater number of
nodes in C. Moreover, in the limit, increasing the accuracy of the polygon
approximation makes the computational burden go to infinity. On the
other hand, from the human and from the robotics control viewpoints,
walking around the circle A is actually easier than walking around the
obstacles B or C, because the latter require different decision-making
along the edges and at the nodes of the obstacles. Also, from the dy-
namics standpoint, there is an undesirable sharp change in the velocity
vector at the corners of the obstacles B and C.

The attractiveness of the model of path planning with incomplete infor-
mation for robotics lies in the possibility of naturally introducing a power-
ful notion of feedback control, and thus transforming the operation of
path planning into a continuous on-line process. In turn, using sensory
feedback in the control scheme allows one to ease the requirements on the
shape and location of the obstacles in the scene, and even to remove the
requirement that the obstacles be stationary. The fact that processing is
distributed over time and little information has to be processed at each
step makes the computational burden insignificant. Most of the work on
this model has been proceeding under an assumption that the incoming
partial information about the environment is of local character-for ex-
ample, robot sensors can provide information only about the robot’s im-
mediate surroundings, and so their operation naturally falls into this cate-
gory. Replacing global information by local information changes the
problem rather significantly. To start with, it is not clear whether an
algorithm exists which would guarantee reaching a global goal (here, the
robot target position) based on local means (the sensor information).

The question of reaching a global goal with local means presents a
fundamental problem, various formulations of which have been studied in
a number of areas: game theory (differential games and macroeconom-
its-e.g., [HI]; collective behavior -e.g., [19]), computer science (maze
search [14]), and studies in geometry [161. The difficult question of rela-
tionship between uncertainty and the algorithm complexity has been stud-
ied in [20].

One problem of dealing with incomplete information is that, because of
the dynamic character of the incoming (sensor) data, the path cannot be
preplanned, and so its global optimality is ruled out. Instead, one can
judge the algorithm performance based on how it compares with other
existing or theoretically feasible algorithms, or how optimal it is locally,
or how “reasonable” it appears from the human traveler standpoint.

Another inherent difficulty in designing algorithms for the model with
incomplete information is that the problem dimensionality cannot be
made arbitrarily high. Continuous path planning requires choosing a pre-
ferred direction of motion at each step. This dictates either availability of

150 VLADIMIR J. LUMELSKY

global information, or a limit on the number of alternatives. Because the
information about the obstacles is local, the former option is not available.
Instead, by imposing a constraint on the problem dimensionality, one
limits the number of alternatives available to the automaton at each step.

1.2. Path Planning With Complete Information: Previous Work

The computational complexity of the problem was first realized when
Reif [6] showed that the general Piano Movers problem is PSPACE-hard;
he also sketched a possible solution for moving a solid object in polyno-
mial time, by direct computation of the “forbidden” volumes in spaces of
higher dimensions.* Schwartz and Sharir [l] presented a polynomial-time
algorithm for a two-dimensional Piano Movers problem with convex poly-
gon obstacles. In a number of works (e.g., Lozano-Perez [2]), the solid
object is viewed as shrinking to a point while the obstacles are viewed as
expanding accordingly, to compensate for the shrinking object. The re-
sulting conjiguration space has higher dimensionality compared to the
original work space-one extra dimension per each degree of rotational
freedom. In general, the obstacles in the configuration space have non-
planar walls-even if the original obstacles are polyhedral. In order to
keep the problem manageable, various constraints are typically imposed.

Moravec [3] considers a path planning algorithm in two dimensions
with the object presented as a circle. Brooks [4], in his treatment of a two-
dimensional path planning problem with a convex polygon object and
convex polygon obstacles, uses a generalized cylinder presentation [5] to
reduce the problem to a graph search. A generalized cylinder is formed by
a volume swept by a cross section (in general, of varying shape and size)
moving along the cylinder axis (in general, a spine curve).

A version of the Piano Movers problem where the moving object is
allowed to consist of a number of free-hinged links is more difficult. On a
heuristic level, this version was started by Pieper [7] and then investigated
by Paul [8] because of its obvious relation to path generation and coordi-
nate transformation problems of robot arms with multiple degrees of free-
dom. Recently, new approaches for this versionwere considered in [9,
lo]. The most general algorithm (although very expensive computa-
tionally) for moving a free-hinged body was given by Schwartz and Sharir
[9]; the technique is based on the general method of cell decomposition;
the moving object and the obstacles are assumed to be limited by alge-
braic surfaces.

* Higher dimensions d appear when one takes into account the orientation of the moving
object along its way; d = 3 for the two-dimensional case, and d = 6 for the three-dimensional
case.

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 151

1.3. Path Planning With Incomplete Information: Previous Work

Works related to the model with incomplete information have come
primarily from the studies on autonomous vehicle navigation; so far, they
have been lim ited to various heuristics. In [ll-13,23,25,26], a two-dimen-
sional navigation problem is considered. Typically, obstacles are approxi-
mated by polygons; produced paths lie along the edges of the connectivity
graph formed by the straight line segments connecting the obstacle verti-
ces, the start point, and the target point, with a constraint on nonintersec-
tion of the graph edges with the obstacles. Path planning is lim ited to the
automaton’s immediate surroundings for which information on the scene
is available-for example, from a vision module. Within this lim ited area,
the problem is actually treated as one with complete information. Often,
the navigation problem is treated as a hierarchical problem [12,23], with
the upper level concerned with global navigation for which the informa-
tion is assumed available, and the lower level doing local navigation based
on sensory feedback. A heuristic procedure for moving a robot arm
among unknown obstacles is described in [24].

Although most of these algorithms are intended for use in unstructured
environments, no work has been done on handling more “natural” obsta-
cles of arbitrary shape, or the m inimum resources (sensory feedback,
memory, etc.) that are required to guarantee reasonable navigation. Con-
sequently, the range of applicability of various heuristic procedures for
robot motion planning is not clear. It should also be mentioned that,
having no theoretical assurances of the algorithm convergence, many
heuristic procedures actually rely on so-called common sense which, in
turn, is founded on the assumption that humans are good at orienting in
space and at solving geometrical search problems. This assumption is
questionable, however. There are many indications that human space
orientation capabilities are rather lim ited.3

The only nonheuristic algorithm for path planning in an uncertain envi-
ronment that this author is aware of is the Pledge algorithm described by
Abelson and diSessa [16]. The algorithm is shown to converge; no perfor-
mance estimates are presented. The algorithm addresses, however, a
problem different from ours-namely, how to escape from an arbitrary

3 This was also the conclusion reached in the experiments conducted at the Robotics
Laboratory at Yale University. The experiments involved two specially designed computer
games in which the subject had to move on the graphics screen a little autonomous vehicle or
a planar robot arm manipulator, from the starting to the target position, in a scene filled with
invisible obstacles. The system simulates tactile sensing-when the robot hits an obstacle,
the subject can see a little part of the obstacle around the point of contact. When lacking
global information and obvious directional clues, human subjects are confused and lose their
sense of orientation. Although no direct experiments with vision have been done, the results
suggest that in the orientation task vision would be of limited help.

152 VLADIMIR J. LUMELSKY

Start

a

‘Start

b C

FIG. 2. This intuitively reasonable algorithm (walk toward the target whenever you can)
will often work, (a), but it does not guarantee termination, (b), (c).

maze-and cannot be used to reach a specific point inside or outside the
“maze.”

The issue of convergence of motion planning algorithms with uncer-
tainty is not a trivial one. As the following example shows, a seemingly
reasonable strategy can suddenly produce rather disappointing results.
Consider this algorithm4 (see Fig. 2a):

1. Go directly to the target until one of the following occurs:
(a) The target is reached. The procedure stops.
(b) An obstacle is encountered. Go to Step 2.

2. Turn left and follow the obstacle boundary until one of the follow-
ing occurs:
(a) The target is reached. The procedure stops.
(b) The direction toward the target clears. Go to Step 1.

As one can see, depending on the scene, this strategy may or may not
succeed: in the scene shown in Fig. 2b, in spite of the fact that each of the
obstacles is of finite size, the strategy will take the automaton to infinity,
instead of the target; in the scene of Fig. 2c, the strategy will result in
infinite looping. It can be shown that attempts to fix this scheme with
minor modifications (say, alternate, “left-right-left . . . ,” instead of
turning always left at an obstacle, etc.) can make things even worse.

1.4. Dynamic Path Planning

The approach of dynamic path planning is based on the model with
incomplete information. In terms of the available information, the specific
model it uses can be viewed as diametrically opposite to the Piano Movers

4 The algorithm has frequently been suggested to me at various meetings.

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 153

model: instead of the full information about the obstacles assumed in the
latter model, no information about the obstacles is given to the automa-
ton, and no constraints are imposed on the shapes of the obstacles. The
only available input information includes the automaton’s own coordi-
nates and those of the target. The automaton’s capability for learning
about the environment is limited to the local information provided by the
automaton’s “sensors.” Although various noncontact sensors can fit the
model (ultrasound range finders, vision systems, etc.), to understand the
limits of the approach, it helps to consider the least informative “tactile
sensor.” In other words, in this version the automaton learns about the
presence of an obstacle only when it hits it.

The purely local information assumed in the model is indeed sufficient
for designing algorithms with guaranteed convergence. Using these algo-
rithms, the automaton is continuously analyzing the incoming information
about its surroundings and is continuously (dynamically) adjusting its
path-hence the name of the approach. The approach is somewhat simi-
lar to that utilized in [161 for treating geometric phenomena based on local
information. No approximation of the obstacles is done, and, conse-
quently, no connectivity graphs or other intermediate computational
structures appear. Since no reduction to a discrete space takes place, all
points of the scene are available for the purpose of path planning.

The key idea of the approach is to reduce the problem of path planning
to maneuvering a point automaton around simple closed curves represent-
ing the obstacles and lying in appropriate two-dimensional manifolds.
When the automaton meets such a curve it has only two choices for going
around it-turning left or turning right. Another important feature of the
topology of a simple closed curve is that, no matter what direction is
chosen for walking around the obstacle, it will eventually bring the autom-
aton back to the starting point. Essentially, we are exploiting the Jordan
Curve Theorem which states that any closed curve homeomorphic to a
circle drawn around and in the vicinity of a given point on an orientable
surface divides the surface into two separate domains, for which the
curve is their common boundary [22]. The algorithms for a point automa-
ton with a “tactile sensor” (called below basic algorithms) become the
foundation for a series of path planning algorithms for an autonomous
vehicle and various arm manipulators.

In the case of the autonomous vehicle, the surface along which it trav-
els is homeomorphic to a plane, and so no additional constructs are
needed. The final dimensions of the automaton can easily be accommo-
dated since no assumptions about the obstacles are made and every point
of the automaton’s body is assumed to be sensitive to contact with an
obstacle (see the next section). Handling the orientation of the automaton
along its way is more difficult, because adding orientation increases the

154 VLADIMIR J. LUMELSKY

dimensionality of the parameter space from two to three, and conse-
quently the problem cannot be reduced to maneuvering around simple
closed curves. If one assumes that the gaps between the obstacles are
such that the automaton can pass them without changing its orientation,
then the basic algorithms can be used to design converging path planning
procedures.

In the case of a robot arm manipulator, every point of the robot body is
subject to collision. Similar to the human arm, each point of the robot
“skin” is sensitive to contact (direct or at a distance, depending on the
sensory system) with an obstacle. Again, as with the autonomous vehicle,
assume that the proper orientation-in this case, of the arm end effec-
tor-can be done later, when the arm arrives in the vicinity of the target
position. Then, the planning is limited to that of position planning, or
gross motion planning. For the two-dimensional case, gross motion in-
volves two degrees of freedom, and for the three-dimensional case it
involves three degrees of freedom.

First, the problem is transformed into that of moving a point in the
image space. For a planar arm, the image space presents a two-dimen-
sional manifold in three-dimensional space. For a three-dimensional arm,
the image space is forcibly reduced to a two-dimensional manifold, using
the natural constraints imposed by the arm kinematics (e.g., the fact that
the arm links are connected sequentially and that the arm base is fixed).
The next step is to show that, given the kinematics of a specific arm
manipulator and independent of the shape of the actual obstacles in the
work space, the images of the obstacles in the image space form simple
closed curves. Once this is done, the basic algorithms can be utilized and
their convergence guaranteed provided that they are modified to take into
account the topology of the image space.

In studying the performance characteristics of the motion planning al-
gorithms, it is instructive to separate the issue of the computational com-
plexity of the algorithms from the issue of the quality of the produced
paths. In the Piano Movers model, the former issue is of utmost impor-
tance, whereas the latter issue is rarely addressed directly; the reason for
this is that, within the framework of the model, the best path can in
principle always be produced. In the model with incomplete information,
however, the importance of the two issues is reversed. Because only very
little information is available at each step, the computational burden of
the algorithms is rather modest; on the other hand, the quality of the
produced paths can vary greatly, and so the path efficiency of the algo-
rithms is very important.

Because the model used in dynamic path planning is continuous, the
criteria typically used for evaluating the algorithm performance-such as
computational complexity as a function of the number of vertices of the

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 155

obstacles, or the time or memory required-are not applicable. Instead, a
new performance criterion based on the length of the generated paths as a
function of the obstacle perimeters is introduced.

In the following sections, dynamic path planning is reviewed in more
detail. Most of the surveyed results have been presented in [28-401. For
proofs of specific statements and other details, the reader is referred to an
appropriate publication. The simplest case of planar motion for a point
automaton with the tactile sensor [28,33,40] is considered in Section 2.
For this case, the worst-case lower bound on the length of generated
paths is given. The bound applies to any path planning algorithm with
uncertainty and presents a powerful means for comparing performance of
various algorithms. This is followed by two basic algorithms for path
planning, for which upper bounds on their performance are given. Finally,
some details related to handling the final dimensions of the automaton and
the noncontact sensors, such as vision, are discussed.

In Section 3, the problem of dynamic path planning is formulated for
the case of two-dimensional arm manipulators, and two examples of how
the methodology can be used in designing path planning algorithms for
arms of different kinematics are shown; various parts of this work are
described in [29,32,37,38]. Section 4 describes briefly how the method can
be further generalized to simple three-dimensional arm manipulators
[34,39]. Section 5 addresses the experimental work, both in computer
simulation and in real robot systems [35,36].

2. MOVINGAPOINTAUTOMATON IN THE PLANE

2.1. Model

Environment. The scene is a plane with a set of obstacles and the points
Start (S) and Target (T) in it, Each obstacle is a simple closed curve of
finite length such that a straight line will cross it only in a finite number of
points; a case when the straight line coincides with a finite segment of the
obstacle boundary is not a “crossing.” (An equivalent term used in the
text for a simple closed curve is the obstacle boundary.) Obstacles do not
touch each other; that is, a point on an obstacle belongs to one, and only
one, obstacle. A scene can contain only a locally finite number of obsta-
cles; this means that any disc of finite radius intersects a finite set of
obstacles. Note that the model does not require that the set of obstacles is
finite.

Automaton. The automaton is a point; thus, any opening between two
distinct obstacles is passable. The only information the automaton is pro-
vided with by its sensors is (1) its current coordinates, (2) the fact of
contacting an obstacle. The automaton is also given the position of the

156 VLADIMIRJ. LUMELSKY

Target, and so it can always calculate its direction toward and distance
from the Target. The memory available for storing data or intermediate
results is limited to a few computer words. The motion capabilities of the
automaton include three possible actions: move toward the Target on a
straight line; move along the obstacle boundary; stop.

DEFINITION 2.1. A local direction is a once-and-for-all determined
direction for passing around an obstacle. For the two-dimensional prob-
lem, it can be either left or right. Because of the uncertainty involved,
every time the automaton meets an obstacle, there is no information or
criteria which could help it decide whether it should turn left or right to go
around the obstacle. For the sake of clarity, assume that the local direc-
tion of the automation is always left (as in Fig. 2).

DEFINITION 2.2. The automaton is said to dejine a hit point H on the
obstacle, when, while moving along a straight line toward the Target, the
automaton contacts the obstacle at the point H. It defines a leave point L
on the obstacle, when it leaves the obstacle at the point L in order to
continue its straight line walk toward the Target (see, for example, Fig. 3).

If the automaton moves along a straight line toward the Target and the
line touches some obstacle tangentially, then there is no need to invoke
the procedure for walking around the obstacle-the automaton just con-
tinues its straight line walk toward the Target. In other words, no H or L
points will be defined in this case. Because of that, no point of an obstacle
can be defined as both an H and an L point. In order to define an H or an L
point, the corresponding straight line has to produce a “real” crossing of
the obstacle; that is, in the vicinity of the crossing, a finite segment of the
line should lie inside the obstacle, and a finite segment of it should lie
outside the obstacle.

FIG. 3. Algorithm Bugl.

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 157

Notation. D is the (Euclidean) distance from the Start to the Target;
d(A, B) is the distance between points A and B of the same scene (thus,
&Start, Target) = D); d(A) is used as a shorthand notation for d(A,
Target): d(Ai) signifies the fact that the point A is located on the boundary
of the ith obstacle met by the automaton on its way to the Target; P is the
total length of the path generated by the automaton on its way from the
Start to the Target; pi is the perimeter of the ith obstacle met by the
automaton.

2.2. The Lower Bound for the Path Planning Problem

This lower bound, formulated in Theorem 2.1 below, determines the
best performance that can be expected in the worst case from any path
planning algorithm operating within the framework of our model [33,40].
The bound is formulated in terms of the length of the path generated by
the automaton on its way from the point Start to the point Target. The
bound is a powerful means for measuring performance of various path
planning procedures.

THEOREM 2.1. For any path planning algorithm satisfying the as-
sumptions of our model, any (however large) P > 0, any (however small)
D > 0, and any (however small) 6 > 0, there exists a scene for which the
algorithm will generate a path of length P such that

where D is the distance between the points Start and Target, and pi are
perimeters of the obstacles intersecting the disc of radius D centered at
the Target.

One point is worth mentioning. The information requirements of the
model above are formulated such that the same model could be used in
different statements and algorithms. Depending on the case in question,
the necessary and sufficient information can be less than that assumed in
the model. Specifically, for Theorem 2.1 to hold, the constraints on the
information available to the automaton can be relaxed significantly; the
required constraint is that at any time moment the automaton does not
have complete information about the scene.

2.3. First Basic Algorithm: Bug1

The procedure Bug1 [33] is to be executed at any point of a continuous
path. Figure 3 demonstrates the behavior of the automaton. When meet-
ing an ith obstacle, the automaton defines a hit point Hi, i = 1, 2,
When leaving the ith obstacle, to continue its travel toward the Target,

158 VLADIMIR J. LUMELSKY

the automaton defines a leave point Li ; initially, i = 1; L,, = Start. The
procedure uses three registers, RI , R2, R3, to store intermediate informa-
tion; all three are reset to zero when a new hit point, Hi, is defined.
Specifically, RI is used to store the coordinates of the current point, Qm ,
of the minimum distance between the obstacle boundary and the Target
(this takes one comparison at each path point); R2 integrates the length of
the obstacle boundary starting at Hi; and R3 integrates the length of the
obstacle boundary starting at Qm. The test for target reachability men-
tioned in Step 3 of the procedure is explained later in this section. The
procedure consists of the following steps.

1. From the point Li-l, move toward the Target along a straight line
until one of the following occurs:
(a) The Target is reached. The procedure stops.
(b) An obstacle is encountered and a hit point, Hi, is defined. Go

to Step 2.
2. Using the local direction, follow the obstacle boundary. If reach the

Target, stop. After having traversed the whole boundary and hav-
ing returned to Hi, define a new leave point Li = Qm . Go to Step 3.

3. Based on the content of the registers Rz and R3, determine the
shorter way along the boundary to Li, and use it to reach Lt. Apply
the test for target reachability. If the Target is not reachable, the
procedure stops. Otherwise, set i = i + 1 and go to Step 1.

LEMMA 2.1. Under Bugl, after the automaton leaves a leave point of
an obstacle in order to continue its way toward the Target, it never
returns to this obstacle again.

The lemma guarantees that the algorithm will never create cycles. A
corollary to the lemma suggests that, under Bugl, independent of the
geometry of an obstacle, the automaton defines on it not more than one hit
and not more than one leave point.

To produce an upper bound on the length of paths generated by Bug1 ,
an assurance is needed that on its way to the Target the automaton always
encounters only a finite number of obstacles. This is not obvious since,
while following the algorithm Bugl, the automaton can “look” at the
Target not only from different distances but also from different directions;
that is, besides moving toward the Target, it may also rotate around the
Target. Hence the following lemma.

LEMMA 2.2. Under Bugl, the automaton can meet only a finite num-
ber of obstacles on its way to the Target.

A corollary to the lemma states that the only obstacles that can be met
by the automaton are those which intersect the disc of radius D centered
at the Target. Together, Lemma 2.1, Lemma 2.2, and the corollary guar-

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 159

antee convergence of the algorithm Bug1 . The following theorem gives an
upper bound on the length of paths produced by Bugl.

THEOREM 2.2. The length of a path produced by the procedure Bug1
will never exceed the limit

P = D + 1.5 * 2 p;,

where Cipi refer to the perimeters of the obstacles intersecting the disc of
radius D centered at the Target.

It can be shown that the following necessary and sufficient condition
holds: if the automaton, after having arrived at the point Li in Step 3 of the
algorithm, discovers that the straight line (Li, Target) crosses some obsta-
cle at point Li, then the Target is not reachable-either the Start or the
Target point is trapped inside the ith obstacle. Based on that, the test for
target reachability used in Step 3 of the procedure is formulated as fol-
lows.

Test for Target reachability. If, while using the algorithm Bugl, after
having defined a point L on an obstacle, the automaton discovers that the
straight line segment (L, Target) crosses the obstacle at the point L, then
the Target is not reachable.

Analysis of the procedure Bug1 shows that the requirement that the
automaton has to know its own coordinates at any instance can be eased.
It suffices if the automaton is capable of positioning itself at the circle of a
given radius centered at the Target. In other words, what the automaton
needs in order to use Bug1 is only its direction toward and its distance
from the Target. Assume that instead of the coordinates of the current
point Qm of the minimum distance between the obstacle and the Target,
the register RI stores the minimum distance itself. In Step 3 of Bugl, then,
the automaton can reach point Qm by comparing its current distance from
the Target with the content of register RI. If more than one point of the
current obstacle lies at the minimum distance from the Target, any one of
them can be used as the leave point, without affecting the convergence of
the procedure.

2.4. Second Basic Algorithm: Bug2

The procedure Bug2 is executed at any point of a continuous path.
Unlike the procedure Bugl, in Bug2 the automaton can meet the same
obstacle i more than once, and consequently generate more than one hit
and leave point; actually, the algorithm has no way of distinguishing
between different obstacles. Because of this, the subscript i will be used
only when referring to more than one obstacle; in addition, the super-

160 VLADIMIR J. LUMELSKY

FIG. 4. Automaton’s path under the procedure Bug2.

scriptj will be used to indicate thejth occurrence of the hit or leave points
on the same or on a different obstacle. Initially,j = 1; Lo = Start. The test
for target reachability built into Steps 2b and 2c of the procedure is ex-
plained later in this section. One can follow the procedure using an exam-
ple shown in Fig. 4. The algorithm consists of the following steps.

1. From point Lj-I, move along the straight line (Start, Target) until
one of the following occurs:
(a) The Target is reached. The procedure stops.
(b) An obstacle is encountered and a hit point, Hj, is defined. Go

to Step 2.
2. Using the accepted local direction, follow the obstacle boundary

until one of the following occurs:
(a) The Target is reached. The procedure stops.
(b) The line (Start, Target) is met at a point Q such that the dis-

tance d(Q) < d(Hj), and the line (Q, Target) does not cross the
current obstacle at the point Q. Define the leave point Lj = Q.
Setj =j + 1. Go to Step 1.

(c) The automaton returns to Hj and thus completes a closed
curve (the obstacle boundary) without having defined the next
hit point, Hj+‘. The target is trapped and cannot be reached.
The procedure stops.

The relationship between obstacle perimeters and the length of paths
generated by Bug2 is not as simple as in the case of Bugl. Note that in
Bug1 the perimeter of an obstacle met by the automaton is covered at
least once, and never more than 1.5 times. In Bug2, however, the range is

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS

*T

FIG. 5. Automaton’s path in a maze-like obstacle, procedure Bugt. The obstacle com-
plexity is measured by the number of times, n,, the straight line (S, T) crosses it; here, ni =
10. At most, the path passes one segment, (HI, Ll), three times; that is. there are at most
two local cycles in this path.

much wider. A path segment around an obstacle generated by the automa-
ton is often shorter than the obstacle perimeter (as in Fig. 4). Sometimes,
when a straight line segment of the path meets the obstacle almost tangen-
tially and the automaton goes around the obstacle in a “wrong” direction,
the path can actually be equal to the obstacle’s full perimeter. Finally, as
Fig. 5 demonstrates, the situation can become even worse, and the au-
tomaton may have to pass along some segments of a maze-like obstacle
more than 0nce.j The performance of Bug2 is analyzed in the following
statements.

5 A procedure that combines positive characteristics of both algorithms, while compensat-
ing for tneir negative sides, is described in [28,40].

162 VLADIMIRJ. LUMELSKY

LEMMA 2.3. Under Bug2, on its way to the Target the automaton can
meet only a finite number of obstacles.

COROLLARY. The only obstacles that can be met by the automaton
under the algorithm Bug2 are those which intersect the disc of radius D
centered at the Target. Moreover, the only obstacles that can be met by
the automaton are those that intersect the straight line (Start, Target).

DEFINITION 2.3. For a given local direction, a local cycle is created
when the automaton has to pass some point of its path more than once, (In
the example in Fig. 4, no cycles are created; in Fig. 5, the path contains
local cycles .)

DEFINITION 2.4. The term in-position refers to such a mutual position
of the pair of points (Start, Target) and a given obstacle where (i) the
straight line segment (Start, Target) crosses the obstacle boundary at least
once, and (ii) either the Start or the Target lie inside the convex hull of the
obstacle. The term out-position refers to such a mutual position of the pair
(Start, Target) and the obstacle in which both points Start and Target lie
outside the convex hull of the obstacle. A given scene is referred to as an
in-position case if at least one obstacle in the scene, together with the
points Start and Target, creates an in-position condition; otherwise, the
scene presents an out-position case.

Let ni be the number of intersections between the straight line (Start,
Target) and the ith obstacle; thus, ni is a characteristic of the set (scene,
Start, Target) and not of a specific algorithm. Obviously, for any convex
obstacle Iti = 2. If an obstacle is not convex but still ni = 2, the path
generated by Bug2 can be as simple as that for a convex obstacle (Fig. 4,
obstacle ob2). It can become more complicated if ni > 2. In Fig. 5, the
segment of the boundary from H 1 to Ll , (H 1, Ll), will be passed three
times; segments (~51, ~52) and (H2, Hl) twice each; and segments (L2, L3)
and (H3, H2) once each.

LEMMA 2.4. Under Bug2, the automaton will pass any point of the ith
obstacle boundary at most nil2 times.

The lemma thus guarantees that the procedure terminates, and puts a
limit on the number of generated local cycles. Using the lemma, an upper
bound on the length of the paths generated by Bug2 can be produced.

THEOREM 2.3. The length of a path generated by Bug2 will never
exceed the limit

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 163

where pi refer to the perimeters of the obstacles intersecting the straight
line segment (Start, Target).

The theorem suggests that in some special scenes the procedure Bug2
may force the automaton to go around an obstacle any (large albeit finite)
number of times. An important question is, then, how typical such scenes
are, and, in particular, what characteristics of the scene influence the
length of the path. The following theorem and its corollary suggest that
the mutual position of the Start point, the Target point, and the obstacles
can affect the path length rather dramatically.

THEOREM 2.4. Under the procedure Bug2, in the case of an out-posi-
tion scene the automaton will pass any point of the obstacle boundary at
most once.

In other words, if the mutual position of the obstacles and of the points
Start and Target corresponds to an out-position scene, the estimate on the
length of the path for the procedure Bug2 reaches the lower bound (1). If
all the obstacles in the scene are convex, no in-position configurations can
appear, and the upper bound on the length of the path can be improved as
follows:

COROLLARY. If all the obstacles in the scene are convex then, in the
worst case, the length of the path produced by the procedure Bug2 is

P=D+cpi

and, on the average,

P = D + 0.5 * C pi, (5)

where pi refer to the perimeters of the obstacles intersecting the straight
line segment (Start, Target).

A necessary and sufficient condition similar to that presented for the
procedure Bug1 can be shown for Bug2; the condition helps establish the
test for target reachability incorporated in the algorithm.

Test for Target reachability. If, on the pth local cycle, p = 0, 1, . . . ,
after having defined a point Hi, the automaton returns to this point before
it defines at least the first two out of the possible set of points Lj, Hj+l,
. . .) Hk, it means that the automaton has been trapped and hence the
Target is not reachable.

164 VLADIMIR J. LUMELSKY

FIG. 6. Automaton’s path in the scene of Fig. 4 when additional (vision) information is
available.

2.5. Handling Noncontact Sensors and the Automaton’s Dimensions

Consider a case where, instead of tactile feedback, the automaton is
equipped with a sensor system that provides it with information within a
disc of radius ru (“radius of vision”) centered at the current position of the
automaton. Thus, within the disc r,, the automaton can observe obstacles
or the nearby Target, and estimate distances to them. Various sensors
provide this capability: vision systems, ultrasonic and infrared proximity
sensors, time-of-flight range finders, etc.

To assure convergence, the sensors have to be incorporated properly in
the path planning procedure. For example, for the algorithm Bug2, an
assurance is needed that the automaton will always be able to come back
to the straight line (Start, Target). With this in mind, incorporating a
“vision” sensor feedback in Bug2 is done as follows. At its current posi-
tion, the automaton reconstructs “mentally,” in the area it can observe,
the path segment that would have been generated if no vision were avail-
able, and replaces it with a straight line segment. If no obstacles interfere
with vision, the resulting segment will be of length ru exactly. Then, the
automaton makes a step in the chosen direction. The operation is re-
peated at each point of the path, resulting in a curved path which smooths
out the path of a “blind” automaton (Fig. 6). With such a modification,
convergence of the algorithm Bug2 is preserved.6 As one would expect,

6 Incidentally, the segment (A, B) of the path in Fig. 6 forms a curve called tracrrix; this
curve had been studied independently by Leibnitz and Huygens in the late 17th century. If

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 165

increasing the radius Y, produces shorter paths. In the lim it, with rv going
to infinity, locally optimum paths are produced; this results from the
simple fact that the distance between the current position of the automa-
ton and its next intermediate visible goal is always covered along a
straight line.

When obstacles interfere with vision, the generated straight line seg-
ment becomes shorter, and, in theory, can eventually be reduced to zero
by a “bad” set of obstacles. Consequently, all the estimates for path
lengths developed for the automaton with tactile sensing remain true for
the case with vision.

Now, consider an automaton of finite dimensions. Instead of the single
feedback sensor of a point automaton, the whole body of the “finite”
automaton is covered with sensors, so that every point of the body is
capable of detecting an obstacle. Assuming that no changes in the autom-
aton orientation along the path is allowed, the algorithms described above
can be used and their convergence is assured. This is primarily because
nowhere in the algorithms are the dimensions, shape, or positions of the
obstacles used.

For the actual algorithm, slight modifications in the definitions will be
needed. Define some point of the automaton-say, one of its corners or
its center of gravity-as the core point. Define the motion of the automa-
ton along the line (S, T) as that of moving the core point along (S, T). A hit
point is then defined as a point on the obstacle boundary which the autom-
aton, while moving along (S, T), meets first. A leave point-for example,
in the algorithm Bug2-is defined as a point on the obstacle boundary at
which the automaton, while passing around the obstacle, meets the line
(S, T) at a distance from the target shorter than that from the last hit point
to the target. In general, the actual path of a finite automaton will differ
from that of a point automaton. It is possible, for example, that, given a
set of obstacles and S and T positions, a finite automaton will produce
local cycles whereas a point automaton will not.

3. MOVING A PLANAR ARM MANIPULATOR

3.1. General

In this and the next sections, we will be concerned with robot arm
manipulators consisting of links connected by sliding and revolute joints.

one puts one end of a stick of the length r, at the point A and its second end at the point
where it meets the line (S, T) and then pulls the second end of the stick along (S, T), then the
first end of the stick will move along a tractrix.

166 VLADIMIR J. LUMELSKY

/ b

a b

d e

FIG. 7. Five kinematically distinct planar robot arms with revolute and sliding joints: (a)
Arm 1; (b) Arm 2; (c) Arm 3; (d) Arm 4; (e) Arm 5.

As was mentioned above, realization of the gross motion for a three-
dimensional arm requires a minimum of three degrees of freedom (that is,
three links and three joints), and for a planar arm it requires two degrees
of freedom. Out of 36 theoretically possible three-dimensional configura-
tions of arms with revolute and/or sliding joints, 12 are kinematically
useful and distinct [27]. The rest are not admissible, either because they
degenerate into one- or two-dimensional cases, or because they are equiv-
alent to some others. Out of these 12 types, only the following five combi-
nations are meaningful for the planar case: two revolute joints (an articu-
lated arm, Fig. 7a); two sliding joints (typically referred to as a Cartesian
arm, Fig. 7b); a revolute joint followed by a parallel sliding joint (Fig. 7~);
a revolute joint followed by a perpendicular sliding joint (Fig. 7d); and a
sliding joint followed by a revolute joint (Fig. 7e).

The basic algorithms presented in the previous section can be shown to

C

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 167

be applicable to these arm manipulators and their convergence is pre-
served provided that important modifications of the path planning proce-
dure are introduced for each of the types. As an example, the method will
be demonstrated on two of these arms (Figs. 7a and 7e).

The arm’s objective is to move from the position Start (S) to the posi-
tion Target (T); both S and T lie within the arm work space (W-space).
Only continuous motion of the robot links is allowed. The boundaries of
the W-space are defined by the arm configuration and by the dimensions
of the arm links. The arm body consists of two links, 11 and 12, and two
joints, Jo and Jr (Figs. 7a and 7e). Joint Jo is fixed and is the origin of the
reference system. Although the approach is applicable to links of arbi-
trary shape, assume for presentation purposes, that each link is a segment
of a straight line; the lengths of the links are 1, and 12, respectively.
Depending on the arm configuration, the length of a link may be constant
or variable.

An arm solution (or arm position) corresponding to a given point P in
the W-space is defined by a pair of variables-joint values, which are either
angles (as in Fig. 7a), or linear translations (as in Fig. 7b), or both (as in
Fig. 7e). An equivalent presentation for the same solution P is given by
the coordinates of the link endpoints, up and 6,,; b, also designates the
position of the arm endpoint.

Each of the obstacles present in the W-space is a simple closed curve.
The shapes of the obstacles are not known and are not constrained. The
number of obstacles in the W-space is finite. Any circle of a limited radius
or a straight line passing through the W-space has a finite number of
intersections with obstacles. Being rigid bodies, obstacles cannot inter-
sect each other; two or more obstacles may touch each other, in which
case for the arm they effectively present one obstacle. At any position of
the arm with respect to a set of obstacles, at least some arm motion is
assumed to be feasible.

The only information available to the arm includes its current position
and the target position T. The starting position S is known to be feasible.
Because of the obstacles, position T may or may not be feasible; also, it
may or may not be reachable from position S. The arm body is covered
with sensors that make it sensitive to contact with an obstacle; again,
assume that the sensors are tactile. The arm is capable of performing the
following actions: (i) move the arm endpoint through a prescribed simple
curve, called main line (M-line), connecting S and T; (ii) when the arm
body contacts an obstacle, identify the points of the arm body that are in
contact; (iii) follow the obstacle boundary.

Realizing the first of these actions may require computing coordinates
of consecutive points along the M-line and transforming them into the
corresponding joint values (using, for example, well-known procedures of
inverse kinematics). The sole purpose of the second operation is to pro-

168 VLADIMIR J. LUMELSKY

vide information needed to pass around the obstacle. Such identification
is a local operation that does not require global information about the
environment. (Recall that a blindfolded person can easily identify the
point of his body that touched an object.) When the arm endpoint follows
an obstacle boundary up to the W-space boundary, it is not clear whether
at the boundary the arm is still in contact with the obstacle. To avoid this
limit case, assume that no point of the W-space boundary may be a point
of contact between an obstacle and the arm endpoint.

DEFINITION 3.1. Passing around an obstacle is a continuous motion
of the arm during which the arm is in constant contact with some obstacle.

Because of the arm/obstacle interaction, some areas of the W-space,
though not occupied by the actual obstacles, may be inaccessible to the
arm endpoint. Such an area creates a shadow of the obstacle (see, e.g.,
the shaded area behind the obstacle A, Fig. 8a); for the arm endpoint, a
shadow presents as real an obstacle as points of the actual obstacle.

DEFINITION 3.2. A virtual obstacle X is an area (or areas) in W-space,
no points of which can be accessed by the arm endpoint because of the
arm’s possible interference with the actual obstacle(s) X. A virtual obsta-
cle consists of the corresponding actual obstacles and of their shadows.

DEFINITION 3.3. A virtual line is a curve in W-space which the arm
endpoint follows when the arm is passing around the obstacle.

The image space (Z-space) is a representation space in which the arm is
shrunk to a point.’ Any trajectory (path) and any virtual obstacle has its
corresponding image in I-space. To define uniquely the image of a virtual
line in I-space, the corresponding arm positions have to be added.

DEFINITION 3.4. A virtual boundary is a curve in I-space which repre-
sents the image of the corresponding virtual line. The virtual boundary
separates the virtual obstacle from the rest of the I-space.

In the path planning procedure, the arm will attempt to move its end-
point from point S to point T along the M-line. When, during the motion,
some point of the arm body meets an obstacle, in I-space this corresponds
to a point of intersection between the M-line image and the obstacle
virtual boundary. The point of intersection is said to define a hit point, H.
At the hit point, the arm has a choice of moving along the virtual bound-
ary in one of two directions: if facing the obstacle at the hit point, these
directions are “right” and “left.” The direction chosen for passing

’ To avoid confusion, we choose not to use the term “configuration space” employed in a
number of works (see, e.g., [2]); configuration space is meant to represent some Euclidean
space, whereas I-space represents a manifold. For example, defining a metric in I-space may
be quite different from that of the configuration space.

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 169

FIG. 8. Arm 1. (a) W-space. A, B, C-actual obstacles. (b) I-space images of the same
obstacles.

170 VLADIMIR J. LUMELSKY

around the obstacle is called the local direction. While following the
virtual boundary, the arm may meet the M-line again. If this occurs at a
distance from T which is shorter than that from the hit point to T (as
measured along the M-line) then the arm is said to define a leave point, L.
Hit and leave points come in pairs, (Hj, Lj), j = 1, 2, Denote Start
= Lo, with no corresponding Ho.

A pivotal point in the design of the dynamic path planning algorithms
for an arm manipulator is the proof that no matter how complicated the
virtual obstacles are, the corresponding virtual boundaries in I-space al-
ways form simple (the proofofsimpliciry) and closed (the pvoofofclosed-
ness) curves. Once this is done, the mechanisms of the basic algorithms
for moving a point in the plane presented in the previous section can be
utilized, and their convergence is assured. Additional modifications in the
path planning procedure might be needed, to reflect the topology of the
I-space in question. Specifically, one question to address is how many
simple closed curves can the image of an actual obstacle form in the
corresponding I-space.

3.2. Arm 1: Two Revolute Joints

The outer boundary of the W-space of this arm (Fig. 8a) presents a
circle of radius (Ii + 12); its inner boundary creates a circular “dead zone”
around the origin of radius 11, - 121. Both joint values, angles 8, and 02, can
increase or decrease indefinitely, 13~ = & + n * 27r ; IE = 0, 1, . . . ; k = 1,
2. In general, for any position of the arm endpoint in the W-space, except
for points along the W-space boundaries, there are two arm solutions.

The combination of the arm kinematics and the obstacles creates a
complicated pattern of areas inaccessible to the arm endpoint. Even with
full information on the obstacles, these areas would present difficulties for
direct analysis. When the arm is passing around an obstacle, it may create
a single shadow or more than one subshadows. The latter are shown in
Fig. 8a as two disconnected shaded areas behind the circular obstacle B.
Note that with the same position but a smaller diameter of B, or with B of
the same diameter positioned slightly further from the origin, both sub-
shadows would merge into a single shadow. Obstacles may interact in
creating shadows; this occurs, for example, in Fig. 8a (obstacles A and B,
point 67; here, point b, is the end of a (straight line) segment of the length
12 which starts at up and is tangential to the obstacle). Therefore, as far as
the arm is concerned, obstacles A and B in Fig. 8a present one virtual
obstacle. The virtual line of this obstacle is defined by the points bp , p =
1,2,. . .) 20, and its virtual boundary is defined by the corresponding
link positions (up, bp). It is easy to see how a set of quite simple actual
obstacles can produce extremely complicated virtual obstacles and virtual
lines.

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 171

FIG. 9. Image space of Arm 1.

A set of two independent angular variables can be represented by a
common torus, with a pair of values of the variables uniquely defining a
point on the surface of the torus. The I-space of the Arm 1 (Fig. 9) is
represented by the surface of a torus whose two independent variables are
0, and &. Since one point in the W-space corresponds, in general, to two
arm solutions, this creates two image points in I-space. The following two
statements form the base of the path planning procedure for Arm 1.

THEOREM 3.1. Any virtual boundary in the I-space of Arm I can con-
sist only of simple closed curves.

LEMMA 3.1. Any virtual boundary in the I-space of Arm 1 can be
formed by no more than two simple closed curves.

The proofs of these statements [37] are based on the Jordan Curve
Theorem and on the topology of a common torus (specifically, on thejrst
connectivity number of the torus [22]). In Fig. 8b, images of the actual
obstacles of Fig. 8a are shown. Note that in I-space the obstacles A and B
form a single closed curve (these are called Type Z obstacles) whereas the
obstacle C forms a band-like structure lim ited by two simple closed
curves (these are called Type ZZ obstacles). The path planning procedure
has to be able to recognize and appropriately handle each type of obsta-

172 VLADIMIR J. LUMELSKY

cle. This is necessary because if the arm, while passing around an obsta-
cle, completes a full circle without ever meeting the M-line, it may mean
that the target cannot be reached, or that “somewhere” there is another
closed curve belonging to the same virtual boundary, which has not yet
been investigated but which has to be investigated before any conclusions
are drawn.

To do the obstacle type recognition, two counters, C1 and C2, corre-
sponding to the angles 81 and 02, respectively, are used. When the arm is
traveling in free space, the contents of the counters are zeros. Once the
arm hits an obstacle, both counters are turned on, and, while the arm
follows a closed curve of the virtual boundary, each counter integrates its
angle, taking into account the sign. After completing a closed curve, the
content of the counter Ck must be nk . 277, Ink] = 0, 1, 2, . . . (Fig. 8b). For
a given closed curve, the resulting values of the pair (C, , CZ) define its
arm joints range (or, simply, range) (ni , Q). The range defines the type of
the obstacle as follows: for a Type I obstacle, its range is (0,O); for a Type
II obstacle, its range iS (ni , nz), with either nk = 0 and l?r-kl = 1, or InkI = 1
and jnj-kj = 1, 2, . . . ; k = 1, 2.

To locate the second closed curve of a Type II obstacle, the notion of
complementary M-lines is introduced. Although no restrictions are im-
posed on the choice of the M-line, for specificity, a straight line in the
plane of variables 81 and 02 is being used. In I-space, this M-line forms a
line segment corresponding to an imaginary tight thread connecting points
S and T. There are, however, three more ways to have a tight thread
between S and T on the torus surface (Fig. 9). These three are obtained
by switching the direction of change of one or both angles 81 and 62. In
Fig. 9, the segment MI corresponds to the global minimum, and the other
three segments, Mz, M3, and M4, to local minima of the Euclidean dis-
tance (in the plane (& , 02)) between the points S and T. Two segments, MP
and Mq, are said to be complementary over the angle ek if the 6k compo-
nents of MP and Mq add to 27~. In the algorithm, to find the second closed
curve of a Type II obstacle, an M-line complementary to the current M-
line is selected; altogether, no more than two M-lines are ever used to
produce the path.

The test for target reachability is based on the following facts. For a
Type I obstacle, completing a closed curve of the obstacle virtual bound-
ary without ever meeting the M-line suggests that the target is “inside”
the obstacle (e.g., the obstacle forms a ring in the torus surface, with the
target point inside the ring) and thus cannot be reached. A similar conclu-
sion is made for a Type II obstacle if two closed curves have been passed
without ever meeting the M-line.

Similar to the case of an autonomous vehicle, the algorithm for Arm 1
can be shown to create local cycles in some special cases when the rela-

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 173

tive positions of the points S, T, and of the obstacles form in I-space a
combination similar to the in-position case (see the previous section). A
local cycle is created when the arm image point in I-space comes back to a
previously defined hit point and at this moment the content of one or both
of its counters, Ck, is differen from nk * 277, Ink/ = 0, 1,2, . . . ; k = 1,2. In
such cases, complicated virtual obstacles similar to the maze-like obstacle
shown in Fig. 5 can appear-albeit in I-space. The number of local cycles
is always finite, and the convergence of the algoritm is preserved [31,37].

Now, the whole path planning procedure for Arm 1 can be formulated.
The hit and leave points, Hj and Lj, are numbered in the order of their
occurrence; Lo = S. If a complementary M-line is introduced, the arm
starts again at point S, and the numbering starts over. Distance d(P, Q)
between points P and Q is Euclidean distance in the plane of variables 8,
and f&. A flag is used to indicate that, in the case of a Type II obstacle, one
of the two closed curves of the current virtual boundary has been pro-
cessed. The procedure consists of the following steps.

1. All four complementary M-lines are ordered as follows: MI is the
shortest of the segments Ml, M2, M3, M4 ; MI complements Ml
over the angle & ; M3 complements MI over 81; M4 complements Ml
over both 81 and 192. Go to Step 2.

2. MI-line is designated as the M-line. The flag is set down. Setj = 1.
Go to Step 3.

3. Counters C, and C2 are set to zero. From point Lj-’ , the arm moves
along the M-line until one of the following occurs:
(a) The target is reached. The procedure stops.
(b) An obstacle is encountered and a hit point, Hj, is defined. Go

to Step 4.
4. Counters C, and C2 are turned on. The arm follows the virtual

boundary until one of the following occurs:
(a) The target is reached. The procedure stops.
(b) M-line is met at a distance d from T such that d < d(Hj, T);

point LJ’ is defined. Increment j. Go to Step 3.
(c) The arm returns to Hj (i.e., a closed curve along the virtual

boundary has been completed) without ever meeting the M-
line. Go to Step 5.

5. Examine the obstacle range accumulated in the counters C1 and C2.
One of the following takes place:
(a) The range is (0, 0) (i.e., this is a Type I obstacle). The target

cannot be reached. The procedure stops.
(b) The range is not (0,O) and the flag is up (i.e., this is the second

closed curve of the virtual boundary of a Type II obstacle).
The target cannot be reached. The procedure stops.

174 VLADIMIR J. LUMELSKY

The remaining three events relate to the case when the range is
not (0, 0) and the flag is down (i.e., the first closed curve of the
virtual boundary of a Type II obstacle is being processed).

(c) The range is (0, nz); In21 2 1 - an integer; designate the shorter
of i& and M4 as the M-line. Go to Step 6.

(d) The range is (ni , 0); /IZ] / 2 1; designate the shorter of M2 or M4
as the M-line. Go to Step 6.

(e) The range is (n,, nz); Inil, In21 2 1; designate the shortest of
M2, M3, or M4 as the M-line. Go to Step 6.

6. The arm moves back to Start. Set the flag up. Set j = 1. Go to
Step 3.

3.3. Arm 5: Sliding Link Followed by a Revolute Link

A more detailed sketch of the arm of Fig. 7e is shown in Fig. 10. The
first joint value is the variable length of the first link, 1, ; 0 5 1, I llmax. The
second joint value is the angle 0 2. The length of the second link, lz, is
constant. The boundary of the W-space of this arm is a combination of a
rectangle whose sides are equal to 1 lmax and 212, respectively, and of two
semicircles of radius l2 attached to the rectangle as shown in Fig. 10.
Assume that no obstacle can interfere with the arm outside of the W-
space.

Two circles of radius 12 centered at the limit positions 0 or 0, of the link
11 are called the limit areas of the W-space. Note that any point belonging
to a limit area has only one corresponding arm solution, whereas any
point outside the limit areas has two possible arm solutions (compare
points P and PI, Fig. 10). For the path planning purposes, this peculiarity
makes the arm distinct from the other planar arms.

For a given actual obstacle, the corresponding virtual obstacle, virtual
line, and virtual boundary are defined as above. An obstacle is considered
to be inside the limit area if only one arm solution exists for any point of
the obstacle virtual line. It is considered to be outside the limit area if two
arm solutions exist for any point of the obstacle virtual line. An intermedi-
ate situation, when some points of the virtual line have one solution, and
some other points have two solutions, is referred to as being partially
inside the limit area.

The I-space of Arm 5 presents the surface of a cylinder whose height is
equal to the maximum length of the first link, llmax . Vertical motion along
the cylinder surface corresponds to changing the first joint value, Ii ; hori-
zontal motion, parallel to the cylinder base circles, corresponds to chang-
ing the second joint value, (32 (Fig. llb). No matter whether or not the
virtual line of an obstacle has self-intersections, the corresponding virtual
boundary in I-space is formed by one or two simple curves. Depending on

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 175

IAX

-

FIG. 10. W-space of Arm 5. Any point (such as P) within the circles whose centers are 0
and O,, and whose radius is 12, has one corresponding arm solution. Any point (such as P,)
outside these circles has two corresponding arm solutions, except on the border of W-space.

whether the obstacle in question is inside, partially inside, or outside the
limit areas, its virtual boundary may or may not include segments of the
base circles as its part (Fig. 1 lb). A segment of the virtual boundary which
is a part of a base circle cannot be accessed by the arm. Therefore, some
virtual boundaries (such as A in Fig. 11) form closed curves which can be
traced by the arm fully, and some others (such as B and C, Fig. 11) form
open simple curves whose endpoints correspond to one of the limit values
of 1,.

Similar to Arm 1, define the M-line as a straight line in the plane of the
joint variables II and &, that is, as a function 19~ = p . II + q, with the

176 VLADIMIR J. LUMELSKY

a 24 b

FIG. 11. Arm. 5. (a) W-space; shown are M-lines M, and Mz, and link positions during
passing around obstacles A, B, and C. (b) I-space images of the same M-lines and of virtual
obstacles.

coefficients p and q determined from the coordinates of the points S and
T. The image of this M-line,8 denoted as the Mr-line in Figs. 1 la and 1 lb,
is a geodesic line between the points S and T in the surface of the I-space
clyinder. If, because of the obstacles, T cannot be reached from S using
this M-line, a complementary M-line (denoted as the M2-line) can be tried;

* From a practical standpoint, a straight line in W-space is less convenient because often a
continuous motion of both links cannot be maintained. For example, in Fig. lla, it is not
possible to move the arm endpoint between the points S and T along a straight line: some-
where, a discontinuity takes place in the motion of one or both links.

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 177

the Mz-line is defined similarly to the M,-line, with the second coordinate
of the point T being (62 - 274 instead of 02.

A number of special cases of interaction between the arm and the
obstacles can appear, which require separate handling in the algorithm.
These cases’are as follows [32,38]:

l The virtual obstacle forms a swath that connects both base circles of
the I-space cylinder; in this case, the virtual boundary includes two sim-
ple open curves.

l The virtual obstacle forms a band around the I-space cylinder; the
virtual boundary includes two simple closed curves, one of which is the
circumference of one of the base circles.

. Two bands similar to the one above are formed, adjoining the oppo-
site base circles of the I-space cylinder; depending on the obstacles, the
bands may or may not be connected.

l The combination of the topology of the virtual obstacle(s) and their
mutual position in respect to the M-line and the points S and T is such that
local cycles appear (see Section 2).

To save space, the resulting path planning procedure for Arm 5 is not
presented here. The algorithm is somewhat different from that for Arm 1
above; its complexity is about the same, and its performance, in terms of
the length of paths in I-space, is given by the estimates presented in
Section 2.

4. THREE-DIMENSIONAL ARM MANIPULATORS

The fact that maneuvering a body around another body in three-dimen-
sional space presents an infinite number of alternatives, precludes direct
application of the strategy of following simple closed curves in the image
space. However, natural constraints imposed by the arm kinematics (e.g.,
the fact that the arm links are connected sequentially and that the arm
base is fixed), may still allow one to reduce the problem to the cases
above.

One special case of three-dimensional arm manipulators is a class of
arms with two links and two joints, connected such that the arm body
moves in three-dimensional space. One example from this class would be
an arm with one link and a spherical joint at the arm base; this joint is
equivalent to two revolute joints. The work space of this arm-that is, a
set of points reachable by the arm endpoint-is the surface of a sphere of
radius equal to the length of the link. On the other hand, the body of the
arm moves in the three-dimensional space inside the sphere and thus can
interact with three-dimensional obstacles. (Such arms have been dubbed
2&dimensional arms.) The I-space of this arm is similar to that of Arm 1 in

178 VLADIMIRJ. LUMELSKY

Section 3; there is also similarity in how one proves simplicity and closed-
ness of the virtual boundaries required for assuring convergence of the
resulting path planning procedure [39].

Another relatively simple type of three-dimensional robot arms is a
Cartesian robot. This arm consists of three links sliding along three mutu-
ally perpendicular axes. Assume that the desired motion (the M-line) of
the arm endpoint between the starting and target positions is along a
straight line. The various ways that the links interact with the obstacles
can be divided into three cases, with the actual motion presenting some
combination of these cases. The resulting trajectory of the arm endpoint is
a three-dimensional curve [34]. The three cases are as follows:

l The first link (counting from the arm base) is in contact with an
obstacle. This degenerate case simply means that the target cannot be
reached.

l The second link is in contact with an obstacle. In this case, only the
first two links must participate in the path planning operation, thus reduc-
ing the problem to the two-dimensional case; the motion of the third link
can, in principle, be arbitrary.

l The third link, or any combination of links including the third link, is
in contact with obstacles. All three links must participate in the path
planning. In this case, the motion is planned such that the arm endpoint
moves in the plane containing the third link and the M-line, and perpen-
dicular to the plane of the axes of the other two links. One additional
assumption introduced here is that a fully retracted link cannot interfere
with obstacles. With this assumption, which is plausible, from the practi-
cal standpoint, the advantage of the plane above is that it assures conver-
gence of the planning procedure.

5. EXPERIMENTAL VALIDATION OFTHEALGORITHMS

The dynamic path planning algorithms have been extensively studied
using a software package ROPAS (stands for Robot PAth Simulation)
developed at the Yale University Robotics Laboratory for simulating sen-
sor-based robot motion planning and collision avoidance. ROPAS is im-
plemented in C language on the DEC MicroVAX II Workstation. It can
simulate the behavior of an autonomous vehicle or a multi-link robot arm
manipulator equipped with a tactile or proximity (vision) sensing capabil-
ity; in the case of the arm, the whole “skin” of the arm body is sensitive.
The user can interactively build and modify the environment, define the
robot structure and its start and target positions, choose and run one of
the motion planning algorithms, and document different aspects of the
current run. Simultaneously with an animated real-time motion of the

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 179

robot on the graphics screen, the user can observe the corresponding
motion in the image space (see Section 3).

The package includes two computer games (see Introduction) whose
purpose is to test human capabilities for path planning and collision avoid-
ance in an uncertain environment. For example, immediately after an
experiment with a human subject, the experimenter can check how the
same problem would be solved by a robot equipped with the same sensing
capabilities and having the same information about the environment. With
one or two exceptions, the computer algorithm performed consistently
better than human subjects. Interestingly, but not surprisingly, moving a
robot arm was, for the subjects, a significantly more difficult task than
moving a compact autonomous “bug” -although, from the standpoint of
dynamic path planning, these tasks are roughly of comparable complex-
ity. Human subjects are especially confused when multiple points of the
robot body are simultaneously in contact with obstacles.

Our experiments with hardware are in their preliminary stage, both for
the autonomous vehicle and for the robot arm manipulator. In the latter
case, the body of the arm (General Electric robot arm, model P-5) is
covered with panel modules each containing 8 to 16 infrared proximity
sensors. Each sensor is an active device consisting of an infrared LED,
which modulates a signal into the space to be sensed, and a photodetec-
tor, which detects the signal reflected from a near object. The resulting
sensing capability is, therefore, different from those in humans; it
amounts to a lim ited “vision” capability within a distance of 3-7 in.,
available at every point of the robot body. In other words, the sensor

Sensor placement

Sensor placement

FIG. 12. (a) Sensor placement on the robot arm (first stage). (b) Blowups of one sensor
module.

180 VLADIMIRJ.LUMELSKY

system forms a kind of aura similar to that provided by the hairs on the leg
of an insect. A sketch of the robot arm with the sensors on it and of one
sensor module is shown in Fig. 12.

Computationally, operating a multi-sensor system in real time has two
distinct modes-one corresponding to “passive sensing” computations
for the whole array of sensors during the arm motion far from obstacles,
and the other corresponding to the processing of data for the sensors that
are in the vicinity of obstacles. Although neither of these modes is compu-
tationally expensive, handling a large number of sensors presents a sepa-
rate control problem.

CONCLUSION

Until recently, provable (nonheuristic) algorithms have been described
only for the path planning model with complete information (Piano Mov-
ers model). The approach of dynamic path planning demonstrates that the
model with incomplete information also presents a rich source of theoreti-
cally sound algorithms. Moreover, the ability of dynamic path planning
algorithms to naturally incorporate sensory feedback and to operate in
real time makes the approach an attractive candidate for robotics applica-
tions in unstructured and changing environments.

The development of the two basic models of motion planning-one
with complete information and the other with incomplete information-
has so far been proceeding along profoundly different avenues. Nearly
every characteristic of the suggested methods (algorithms themselves,
ways of measuring the algorithm performance, computational complexity
issues, etc.) in both categories of works is remarkably distinct. A natural
question then is: Why is this so?

There are two possible answers. First, the model with incomplete infor-
mation accepts a continuous formulation, according to which an obstacle
is a continuous curve or surface, and not a discretized set of nodes, faces,
cells, etc., which are mandatory in the Piano Movers model. This changes
the underlying methodology from the graph search to the exploitation of
the topological characteristics of appropriate manifolds. It also results in a
dramatic difference in the tools utilized and the methods of analysis of the
algorithm performance.

Second, the two models exhibit an interesting intolerance to the addi-
tion or subtraction of extra information. The Piano Movers problem can-
not be properly formulated in the presence of even “tiny” uncertainty.
On the other hand, the algorithms of dynamic path planning as presented
above do not seem to allow a natural mechanism for taking advantage of
additional information-for example, using global partial information
from a map stored in the robot’s memory. Hence, as they stand at
present, the two models are incompatible, although much would be

ROBOT MOTION IN UNCERTAIN ENVIRONMENTS 181

gained if they could be combined. This raises an array of questions, which
are likely to be addressed in future research.

REFERENCES

1. SCHWARTZ, J. T., AND SHARIR, M. (1983), On the “Piano Movers” problem. I. The
case of a two-dimensional rigid polygonal body moving amidst polygonal barriers,
Comm. Pure Appl. Math. 36, 345-398.

2. LOZANO-PEREZ, T., AND WESLEY, M. (1979), An algorithm for planning collision-free
paths among polyhedral obstacles, Comm. ACM 22, 560-570.

3. MORAVEC, H. (1983), The Stanford cart and the CMU rover, Proc. IEEE71, No. 7,872-
874.

4. BROOKS, R. A. (1983), Solving the find-path problem by good representation of free
space, IEEE Trans. Systems Man Cybernet. 13, No. 3.

5. BINFORD, T. 0. (1971), Visual perception by computer, in “Proceedings, IEEE Conf.
on Systems, Science, and Cybernetics, Miami, Florida, December.”

6. REIF, J. (1979), Complexity of the Mover’s Problem and generalizations, in “Proceed-
ings, 20th Symposium of the Foundations of Computer Science (FOCS).

7. PIEPER, D. L. (1968), “The Kinematics of Manipulators Under Computer Control,”
Ph.D. thesis, Stanford University, October.

8. PAUL, R. (1972), “Modeling Trajectory Calculation and Servoing of a Computer con-
trolled Arm,” Ph.D. thesis, Stanford University, Nov.

9. SCHWARTZ, J. T., AND SHARIR, M. (1983) On the “Piano Movers” problem. II. Gen-
eral techniques for computing topological properties of real algebraic manifolds, Adu. in
Appl. Math., No. 4, 298-351.

10. HOPCROFT, J., JOSEPH, D., AND WHITESIDES, S. (1982), On the movement of robot
arms in 2-dimensional bounded regions, in “Proceedings, IEEE Foundations of Com-
puter Science Conf., Chicago, November.”

11. BULLOCK, B., KEIRSEY, D., MITCHELL, J., NUSSMEIER, T., AND TSENG, D. (1983),
Autonomous vehicle control: An overview of the Hughes project, in “Proceedings,
IEEE Computer Society Conf. Trends and Applications, 1983: Automating Intelligent
Behavior, Gaithersburg, Maryland, May.”

12. THOMPSON, A. M. (1977), The navigation system of the JPL robot, in “Proceedings, 5th
Joint International Conf. on Artificial Intelligence, Cambridge, Massachusetts, Au-
gust.”

13. KERSEY, D. M., KOCH, E., MCKISSON, J., MEYSTEL, A. M., AND MITCHELL, J. S. B.
(1984), Algorithm of navigation for a mobile robot, in “Proceedings, IEEE International
Conf. on Robotics, Atlanta, Georgia, March.”

14. BLUM, M., AND KOZEN, D. (1978), On the power of the compass (or, Why mazes are
easier to search than graphs), in “Proceedings, 19th Annual Symposium on Foundation
of Computer Science (FOCS), Ann Arbor, Michigan.”

15. LIPSKI, W., AND PREPARATA, F. (1981), Segments, rectangles, contours, J. Algorirhms
2, 63-76.

16. ABELSON, H., AND DISESSP, A. (1980), “Turtle Geometry,” pp. 179-199, MIT Press.
17. YAP, C. (1986). Algorithmic Motion Planning (Survey), In “Advances in robotics, Vol.

I: Algorithmic and Geometric Aspects” (J. Schwartz and C. Yap, Eds.), Lawrence
Erlbaum Assoc., Hillsdale, N.J.

18. MEIJDAM, L., AND DE ZEEUW, A. (1986) On expectations, information, and dynamic
game equilibria, in “Dynamic Games and Applications in Economics” (T. Basar, Ed.),
Springer-Verlag.

19. MOORE, E. (1964), The firing squad synchronization problem, in “Sequential Mu-
chines” (E. Moore, Ed.), Reading, MA.

182 VLADIMIR J. LUMELSKY

20. TRAUB, J., WASILKOWSKI, G., AND WOZNIAKOWSKI, H. (1983), “Information, Uncer-
tainty, Complexity,” Addison-Wesley.

21. REIF, J. (1986), A survey on advances in the theory of computational robotics, in
“Adaptive and Learning Systems” (K. Narendra, Ed.), Plenum, New York.

22. MASSEY, W. S. (1967) “Algebraic Topology,” Harcourt, Brace, & World, New York.
23. CROWLEY, G. L. (1985), Navigation for an intelligent mobile robot, IEEE J. Robotics

Automation RA-1, No. 1, March.
24. PETROV, A. A., AND SIROTA, I. M. (1981) Control of a robot manipulator with obstacle

avoidance under little information about the environment, in “Proceedings, VIII Con-
gress of IFAC, Kyoto, Japan, v.XIV.”

25. CHATILA, R. (1982), Path planning and environment learning in a mobile robot system,
in “Proceedings, European Conf. on Artificial Intelligence, Torsey, France.”

26. CHATTERGY, R. (1985), Some heuristics for the navigation of a robot, Internat. J.
Robotics Res. 4, No. 1, 59-66.

27. MILENKOVIC, V., AND HUANG, B. (1983), Kinematics of major robot linkage, in “Pro-
ceedings, 13th International Symposium on Industrial Robots and Robots 7 Conf., Chi-
cago, April.”

28. LUMELSKY, V., AND STEPANOV, A. (1984), Effect of uncertainty on continuous path
planning for an autonomous vehicle, in “Proceedings, 23rd IEEE Conf. on Decision and
Control, Las Vegas, Nevada, December.”

29. LUMELSKY, V. (1985), On path planning for a planar robot arm with uncertainty, in
“SIAM Conf. on Geometric Modeling and Robotics, Albany, New York, July.”

30. LUMELSKY, V. (1985), On non-heuristic motion planning in unknown environment, in
“Proceedings, IFAC Symposium on Robot Control, Barcelona, Spain, November.”

31. LUMELSKY, V. (1986), Continuous robot motion planning in unknown environment, in
“Adaptive and Learning Systems: Theory and Applications” (K. Narendra, Ed.),
Plenum, New York.

32. LUMELSKY, V. (1985), Effect of robot kinematics on motion planning in unknown envi-
ronment, in “Proceedings. 24th IEEE Conf. on Decision and Control, Fort Lauderdale,
Florida, December.”

33. LUMELSKY, V., AND STEPANOV, A. (1986) Dynamic path planning for a mobile automa-
ton with limited information on the environment, IEEE Trans. Automat. Control AC-31,
No. 11, November.

34. LUMELSKY, V. (1986), Continuous motion planning in unknown environment for a 3D
Cartesian robot arm, in “Proceedings, IEEE International Conf. on Robotics and Auto-
mation, San Francisco, April.”

35. SUN, K., AND LUMELSKY, V. (1986), Simulating sensor-based robot motion amongst
unknown obstacles, in “Proceedings, NATO Workshop on Languages for Sensor-
Based Control in Robotics, Pisa, Italy, September.”

36. SUN, K., AND LUMELSKY, V. (1987), Computer simulation of sensor-based robot colli-
sion avoidance in an unknown environment, Robotica, Oxford Univ. Press, to appear.

37. LUMELSKY, V. (1987), Dynamic path planning for a planar articulated robot arm moving
amidst unknown obstacles, Automatica, J. IFAC (International Federation of Auto-
matic Conrrol), Sept.

38. LUMELSKY, V. (1987), Effect of kinematics on dynamic path planning for planar robot
arms moving amidst unknown obstacles, IEEE J. Robotics Automation RA-3, No. 3,
June.

39. LUMELSKY, V., AND SUN, K. (1987). Gross motion planning for a simple 3D articulated
robot arm moving amidst unknown arbitrarily shaped obstacles, in “Proceedings, IEEE
International Conf. on Robotics and Automation, Raleigh, North Carolina, April.”

40. LUMELSKY, V., AND STEPANOV, A. (1987) Path planning strategies for a point mobile
automaton moving amidst unknown obstacles of arbitrary shape, Algorithmica,
Springer-Verlag, to appear.

