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A B S T R A C T

Sleep is important for optimal cognitive functioning across the lifespan. Among older adults (≥55 years),
self-reported short and long sleep durations have been repeatedly, albeit inconsistently, reported to elevate
the risk for poor cognitive function. This meta-analytic review quantitatively summarizes the risk for poorer
cognitive function among short and long sleepers in older adults. Eligible publications were searched
online and manually. A total of 35 independent samples (N = 97,264) from 11 cross-sectional and seven
prospective cohort studies were included. Pooled odds ratios (OR) with 95% confidence intervals (CI) were
derived using random-effects models. Self-reported short and long sleep increased the odds for poor cog-
nitive function by 1.40 (CI = 1.27–1.56) and 1.58 times (CI = 1.43–1.74), respectively. Effect sizes varied across
studies and may have been moderated by both study type (cross-sectional and prospective) and cogni-
tive domain assessed. For cross-sectional studies, extreme sleep durations were significantly associated
with poorer multiple-domain performance, executive functions, verbal memory, and working memory
capacity. Prospective cohort studies revealed the significant long-term impact of short and long sleep
on multiple-domain performance only. These findings establish self-reported extreme sleep duration as
a risk factor for cognitive aging.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Rapid population aging is of rising concern in many developed
and developing nations in part because neurodegenerative dis-
eases increase with age and impose heavy socio-economic burdens.
While some lifestyle factors, such as physical exercise, have been
identified as moderators of age-related brain and cognitive aging
[1], the contribution of sleep is less clear. Previous research has re-
vealed adequate sleep to be vital for optimal cognitive function across
the lifespan [2–7]. Although the association between sleep and cog-
nitive function is likely to be bi-directional, it has been suggested
that alterations in sleep duration might occur prior to the appear-
ance of cognitive symptoms in Alzheimer’s Disease (AD) [8]. In fact,
almost half of older adults report at least one sleep problem [9],

and there is growing concern that sleep complaints and distur-
bances might have negative effects on cognition [10]. While many
studies on older adults show evidence for the negative impact of
self-reported short [11–25] and long [11–13,16,17,20,22,23,26–30]
sleep on cognitive function, others have failed to find relation-
ships between sleep and everyday functioning in this age group
[19,31].

In an attempt to resolve these heterogeneous findings, the present
study adopted meta-analytic procedures to review and quantify the
risk of self-reported short and long sleep for poor cognitive func-
tion in older adults. In addition, risk for poor cognitive function was
treated separately for cross-sectional and prospective studies in order
to estimate the association between extreme sleep durations and
current as well as future cognitive functioning. Since studies vary
widely in the cognitive tasks used, we grouped tasks into five types,
namely, those assessing multiple cognitive domains which provide
a general measure of cognitive function (such as the Mini-Mental
State Examination, MMSE), executive functions, verbal memory,
working memory capacity, and speed of processing. This allowed
us to examine whether the impact of self-reported sleep duration
varied across study types (cross-sectional vs prospective cohort) and
cognitive domains. We also evaluated whether age and gender might
account for between-study heterogeneity.
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2. Methods

2.1. Literature search

This meta-analysis was performed using the Preferred Report-
ing Items for Systematic Reviews and Meta-Analysis (PRISMA)
guidelines. We conducted computer and manual searches to locate
studies that examined the associations between self-reported sleep
duration and cognitive performance of older adults. We searched
three electronic databases, PUBMED, MEDLINE, and PsycINFO, for
relevant articles published between 1990 and mid-June 2014 using
combinations of one of the sleep-related keywords (‘sleep’ and ‘sleep
duration’) and one of the cognition-related keywords (‘cognition’,
‘cognitive performance’, ‘cognitive function’, ‘cognitive decline’, ‘mild
cognitive impairment’, ‘dementia’, and ‘Alzheimer’s Disease’). We
considered only full-length articles that were written in English. A
manual search was conducted on seven journals that were likely
to publish relevant studies. These journals were “Sleep”, “Journal
of Sleep Research”, “Journal of Clinical Sleep Medicine”, “Sleep Med-
icine”, “Alzheimer Disease and Associated Disorders”, “International
Journal of Geriatric Psychiatry”, and “Journal of American Geriat-
ric Psychiatry”. We also examined the reference lists of relevant
articles and review papers to identify other studies not found by
the electronic and manual searches.

2.2. Inclusion and exclusion criteria

Studies needed to fulfill the following criteria: (1) original article;
(2) either a cross-sectional study or a prospective cohort study with
sleep duration assessed at baseline and cognitive performance/
status assessed at least one year later; (3) assessment of sleep
duration in hours with self-reported measures; (4) objective as-
sessment of cognitive performance/status; (5) sleep duration as an
exposure variable and cognitive performance/status as a criterion
variable; (6) report of descriptive or inferential statistics that could
be converted to odds ratios (OR) and 95% confidence intervals (CI);
(7) participants aged 55 years and above; and (8) participants with
no sign of dementia at baseline.

We did not include cross-sectional studies that compared sleep
duration between cognitively intact persons, individuals with mild
cognitive impairment (MCI), AD, and dementia because differ-
ences in sleep in cognitively impaired and normal persons could
be a consequence of clinical conditions. However, we did include
studies which investigated whether sleep duration predicted inci-
dent AD [22] and dementia [11]. We also excluded studies which
examined cognitive impairment associated with sleep disorders
because of the potential co-morbidity with medical conditions, such
as mood disorders [32].

A few studies only partially met the inclusion criteria. For
example, the minimum age in some studies was below 55 years.
Also, in some studies, sleep duration was indicated by a subscale
score of a questionnaire, eg, the Pittsburgh Sleep Quality Index, or
the outcome variable was the change in cognitive performance from
baseline to follow-up. For these studies, we asked the authors for
data or findings which met the inclusion criteria. In the end, there
were five studies among which the minimum age was 39, and they
were retained in our data set (Table 1). Note that subsequent anal-
yses revealed no influence of the minimum age of the sample on
the effect sizes of self-reported short and long sleep (refer to Sections
3.2.1 and 3.3.1 for more details).

Tworoger et al. [21] and Devore et al. [12] both reported find-
ings from the Nurses’ Healthy Study. We used the former for
quantifying the cross-sectional associations between sleep dura-
tion and cognitive function; we used the latter for quantifying
the impact of sleep duration at baseline on cognitive function in
the future. Meta-analysis requires independence of effect sizes. In

the analyses where both the cross-sectional and the prospective
cohort studies were considered, we included Devore et al. [12] rather
than Tworoger et al. [21] for a more balanced sample number of
the two types of studies. Note that prospective cohort studies are
less frequent than cross-sectional studies. Similarly, for articles that
reported both cross-sectional and longitudinal associations between
sleep duration and cognitive function [12,15,19], we only included
the effect size representing the contribution of sleep duration at base-
line on cognition years later.

Two studies [16,17] used data from the Health 2000 Survey. We
included only the study that used more comprehensive cognitive
assessment [16]. Keage et al. [15] reported the risk for cognitive im-
pairment for short and long sleepers at the 2- and the 10-year follow-
ups. We included the OR at the 10-year follow-up only.

2.3. Data extraction

Data were extracted independently by two trained technicians,
and differences were resolved by discussion with J.C.L. Data ex-
tracted included the first author’s surname, year of publication,
country of origin and name of the cohort studied, study type (cross-
sectional or prospective cohort), baseline year, duration of follow-
up (0 for cross-sectional studies), sample size, age at baseline (mean
and range), gender, reference sleep duration category, shortest sleep
duration category, longest sleep duration category, the cognitive tasks
used, the relevant descriptive or inferential statistics for the sleep
duration groups, and covariates adjusted in the statistical analy-
sis. For studies that did not report OR, we converted the descriptive
or inferential statistics to OR using standard formulas [33]. For
example, for studies that used continuous measures for cognitive
performance, we first converted the descriptive statistics of the ref-
erence, short-, and long-sleep-duration groups into Cohen’s d and
then OR [33].

2.4. Definition of ‘short’ and ‘long’ sleep durations

While reference sleep durations ranged from 5 to 9 h across
studies, 7 h, 8 h, and 7–8 h were most commonly used (Table 1). For
studies that used multiple short-sleep-duration groups, we se-
lected the most extreme group for quantifying the effects of short
sleep [34,35], the mode being 5 h or less (Table 1). The same applied
to long sleep, with the most common category being 9 h or more
(Table 1).

2.5. Cognitive domains

The cognitive tasks used differed across studies (Table 1). To
classify these tasks into distinct cognitive domains, we catego-
rized tasks according to two handbooks on cognitive neuroscience
– Neuropsychological Assessment [36] and Cognitive Neuroscience:
The Biology of the Mind [37]. We assumed diagnoses of AD and de-
mentia to imply the existence of impairment in multiple cognitive
domains. To allow reliable estimates of effect sizes, a minimum of
four independent samples (k) were required for each cognitive
domain [38]. With these considerations, we derived the pooled OR
of self-reported short and long sleep for poor performance in five
types of cognitive tasks: (1) multiple cognitive domains; (2) exec-
utive functions; (3) verbal memory; (4) working memory capacity;
and (5) speed of processing (refer to Table S1 for the tasks in each
domain). One limitation of this approach was that separating studies
into cross-sectional and prospective studies could cause k to drop
below four. When this occurred, findings should be best treated
as preliminary.
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Table 1
Description of the studies included in the meta-analysis.

First
author

Publication
year

Country Cohort Study type Baseline
year

Follow- up
(year)

Sample
size

Baseline
mean
age
(range)

Gender Quality
score

Sleep duration (h) Cognitive task Adjusted
variablesa

Ref. Short
sleep

Long
sleep

Auyeung
[26]

2013 Hong Kong MrOs and
MsOs
(Hong
Kong)

Cross-
sectional

2002–2004 0 2918 73.9
(≥65)

Male,
female

14 7–7.9 <4 ≥10 Mini-Mental State Examination 1, 4, 20, 21,
31

Benito-Leon
[11]

2009 Spain NEDICES Prospective 1994–1995 3.2 3286 73.2
(≥65)

Male,
female

18 7 ≤5 ≥9 Dementia, Alzheimer’s Disease,
non-Alzheimer’s Disease type
dementia

1, 2, 4, 9,
11, 12, 14,
25, 29

Devore
[12]

2014 USA Nurses’
Health
Study

Prospective 1986 6 13052 61.1
(56–66)

Female 16 7 ≤5 ≥9 Telephone interview for
cognitive status, East Boston
Memory Test, Digit Span
Backwards Test

1, 4, 7–9,
11, 12

Faubel
[27]

2009 Spain – Cross-
sectional

2001 0 3210 71.6
(≥60)

Male,
female

16 7 ≤5 ≥11 Mini-Examen Cognoscitivo 1, 4, 6

Ferrie
[13]

2011 UK Whitehall
II

Cross-
sectional

1997–1999 0 5425 (45–69) Male,
female

14 7 ≤5 ≥9 Mini-Mental State
Examination, free recall test,
Alice Heim 4-I, Mill Hill
Vocabulary Test, phonemic
fluency task, semantic fluency
task

1, 2, 4–6,
8–12, 15,
16, 18, 24

Gildner
[14]

2014 China,
Ghana,
India,
Mexico,
Russia,
South
Africa

Study on
Global
Ageing and
Adult
Health

Cross-
sectional

2007–2010 0 30,200 66.76
(≥50)

Male,
female

15 6.6–7.5 <5.5 ≥8.5 Immediate verbal recall,
delayed verbal recall, digit
span forward, digit span
backward, verbal fluency

1, 4

Keage
[15]

2012 UK MRC
Cognitive
Function
and Aging

Prospective 1991–1993 10 1503 (65–94) Male,
female

16 >6.5 to
<8.5

≤6.5 ≥8.5 Mini-Mental State Examination 1, 4, 7–9,
11, 12

Kronholm
[16]

2009 Finland Health
2000
Survey

Cross-
sectional

2000–2001 0 2232 (≥55) Male,
female

16 7–8 <6 >9 Verbal fluency task, delayed
recall test

1, 4, 8–12,
14, 19, 22,
23, 32–35

Lambiase
[28]

2014 USA Healthy
Women
Study

Cross-
sectional

2010–2011 0 121 73.3
(68–77)

Female 13 7 ≤5 ≥9 Modified Mini-Mental State
Examination, Digit Symbol
Substitution Test, Trail Making
Test A and B, categorical
fluency task, alphabetic
fluency task

—

Lo
[18]

2014 Singapore Singapore-
Longitudinal
Aging Brain
Study

Prospective 2009–2011 2.1 66 67.4
(58–83)

Male,
female

16 ≥6.5 <6.5 – Symbol Digit Modalities Test,
Symbol Search Task, Trail
Making Test A and B, Category
verbal fluency test, design
fluency test, digit span test,
spatial span test, verbal paired
associates test, Rey Auditory
Verbal Learning Test, visual
reproduction test, visual paired
associates test

—

(continued on next page)
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Table 1 (continued)

First
author

Publication
year

Country Cohort Study type Baseline
year

Follow- up
(year)

Sample
size

Baseline
mean
age
(range)

Gender Quality
score

Sleep duration (h) Cognitive task Adjusted
variablesa

Ref. Short
sleep

Long
sleep

Loerbroks
[19]

2010 Germany HeiDE Prospective 1.0 689 72.3
(≥70)

Male,
female

13 7 ≤6 ≥9 Telephone interview for
cognitive status, East Boston
Memory Test [1], fluency task,
digit span backwards test

1, 4, 8, 9

Potvin
[20]

2012 Canada Survey on
Elders’
Health

Prospective 2005–2006 1 1,664 73.5
(65–96)

Male,
female

19 >5 to
<9

≤5 ≥9 Mini-Mental State Examination 1, 4, 12

Ramos
[29]

2013 USA Northern
Manhattan
Study

Cross-
sectional

2006 0 927 75
(≥45)

Male,
female

15 ≥6
to ≤8.9

<6 ≥9 Mini-Mental State Examination 1–4, 9, 13,
14, 19, 20,
26, 27

Saint
Martin
[31]

2012 France Prognostic
Indicator of
Cardiovascular
and
Cerebrovascular
Events Trial

Cross-
sectional

2001–2003 0 272 74.8
(≥71)

Male,
female

15 ≥7
to <8

≤5 ≥8 Mini-Mental State
Examination, Free and Cued
Selective Reminding Test,
Benton Visual Retention Test,
Trial Making Test A, Trial
Making Test B, Stroop Test,
categorical fluency task,
alphabetic fluency task, WAIS-
III Similarities Test

1, 2, 4

Schmutte
[30]

2007 USA Bronx
Aging
Study

Cross
sectional

1980–1983 0 222 79.4 (75–
85)

Male,
female

15 7–8 ≤5 9–10 Months backward, digit span
test, information, vocabulary,
similarities, selective
reminding, digit symbol, block
design, object assembly,
Purdue pegboard

1, 4, 8, 9,
11, 14, 21,
23, 30

Tworoger
[21]

2006 USA Nurses’
Health
Study

Cross-
sectional

2000 0 1,844 74.1 (70–
81)

Male,
female

15 7 ≤5 ≥9 Telephone Interview for
Cognitive Status, East Boston
Memory Test, Category fluency
task, digit span backwards test

—

Virta
[22]

2013 Finland Finnish
Twin
Cohort

Prospective 1975–1981 22.1 1,323 52.3
(≥39)

Male,
female

18 ≥7
to ≤8

<7 >8 Alzheimer’s Disease 1, 2, 4, 12,
28

Xu
[23]

2011 China Guangzhou
Bio-bank

Cross-
sectional

2003–2008 0 28,670 62.0 (50–
85)

Male,
female

15 7 ≤4 ≥10 Delayed word recall test 1, 2, 4–6,
8–12, 16–
18, 24

a 1 = age; 2 = sex; 3 = race; 4 = education; 5 = employment; 6 = occupation; 7 = shift work history; 8 = smoking; 9 = alcohol intake; 10 = caffeine intake; 11 = physical activity; 12 = body mass index; 13 = diabetes; 14 = hyper-
tension; 15 = high cholesterol; 16 = systolic blood pressure; 17 = high-density lipoprotein and low-density lipoprotein; 18 = fasting plasma glucose; 19 = medications; 20 = depression; 21 = hypnotic use; 22 = anxiolytic medication;
23 = mental health status; 24 = self-rated health; 25 = life satisfaction; 26 = medical insurance; 27 = risk for sleep-disordered breathing; 28 = cognition at baseline; 29 = apolipoprotein; 30 = living status; 31 = medical comorbidities;
32 = night-time awakening; 33 = number of social ties; 34 = head of family’s work status; 35 = number of chronic diseases.
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2.6. Study quality assessment

The quality of the studies included in the meta-analyses was as-
sessed using a modified version of the Downs & Black Quality Index
score system [39]. The original scale was developed for assessing
the quality of both randomized and non-randomized studies. Thus,
some of the items were not applicable to the current meta-analyses
(Table S2). The modified scale has five subscales covering report-
ing, external validity, bias, confounding, and power, and has a
maximum score of 16 for cross-sectional studies and 19 for pro-
spective cohort studies. All the studies were of satisfactory
quality (score for cross-sectional studies: 13–16; prospective studies:
13–19; Table 1).

2.7. Statistical analyses

Random-effects meta-analyses were performed using Compre-
hensive Meta-Analysis Version 2.2 (Biostat, Englewood, NJ). The effect
size reported here was OR. Since a ‘pure’ cognitive task rarely exists,
cognitive tasks categorized into different domains may still recruit
similar cognitive processes, eg, attention, and their measures may
be correlated. Thus, for studies which used multiple cognitive mea-
sures, we performed intra-study meta-analyses [40,41] to combine
all the ORs to form an independent effect size of the overall impact
of self-reported short or long sleep on cognitive performance. For
studies that used multiple tasks for the same cognitive domain, we
meta-analyzed the results to generate an independent effect size
for this domain. For those studies that used multiple statistical
models, results from the most restricted model, ie, the largest number
of covariates, were used to provide an estimate of the unique con-
tribution of sleep to cognitive functions.

While the cognitive tasks used varied across studies, a majori-
ty used the MMSE or variants of it (Table S1). The MMSE includes
tests of executive functions and verbal memory. As tasks may share
similar cognitive processes resulting in correlated measures of per-
formance, two main meta-analyses were performed to compute the
effect size for the overall impact of self-reported short and long sleep
on cognitive function. Between-study heterogeneity in effect sizes
was indexed by Q statistic and I2 value. A significant Q value indi-
cates that the effect sizes are heterogeneous. I2 ranges between 0
and 100%, with 25%, 50%, and 75%, respectively, indicating low, mod-
erate, and high levels of heterogeneity [42]. We assessed the
possibility of publication bias using three techniques. We gener-
ated funnel plots for the effects of self-reported short and long sleep
separately. In a funnel plot, the effect sizes (log OR in our case) of
all studies are plotted against their standard errors. If there is no
publication bias, the plot will be funnel shaped, since studies with
larger samples will show less variability in effect sizes, while those
with smaller samples will have more variable effect sizes [43,44].
We used Egger’s test of intercept [45] and the ‘trim and fill’ method
[43,46] to, respectively, quantify and identify funnel plot asymmetry.

Four moderator analyses were performed to determine whether
specific features of a study or the cognitive domain assessed af-
fected the effect sizes of short and long sleep. First, we performed
meta-regression using the random-effects model (methods of
moments) to determine whether the minimum age of the samples
moderated the associations between sleep duration and cognitive
function. Mean age was not used since this information was missing
for five of the 35 samples. Second, we used meta-regression to
examine the effects of gender by using the percentage of male par-
ticipants in each sample. In these meta-regressions, the estimated
slope indicates the change in log OR for every one-point increase
in minimum age or percentage of male participants. Third, we
derived effect sizes of self-reported short and long sleep separate-
ly for the cross-sectional and the prospective cohort studies. This
allowed us to quantify the cross-sectional associations of short and

long sleep with cognitive function, as well as the long-term impact
of extreme sleep durations. Finally, to investigate whether certain
cognitive domains were more sensitive to the effects of extreme sleep
durations, we quantified the effect sizes of short and long sleep on
performance in tasks assessing multiple cognitive domains, exec-
utive functions, verbal memory, working memory capacity, and speed
of processing. This was done for all the cross-sectional and the pro-
spective cohort studies both separately and combined.

3. Results

3.1. Characteristics of included studies

Eighteen studies met all the selection criteria (Fig. 1). Of these,
11 were cross-sectional, and seven used a prospective cohort design
(Table 1). Some studies reported statistics separately for males and
females, and one reported data from six countries, resulting in a total
of 35 independent samples (26 cross-sectional and nine prospec-
tive). Overall, the meta-analysis included 97,624 individuals from
14 countries (five studies from the USA, three from China, two each
from the UK, Spain, and Finland, and one each from France, Ghana,
India, Mexico, Russia, South Africa, Germany, Singapore, and Canada).
For the prospective cohort studies, mean follow-up duration ranged
from 1 to 22 years.

3.2. Self-reported short sleep and cognitive function

3.2.1. Overall short sleep effect
ORs of self-reported short sleep for poor overall cognitive func-

tion from 35 samples (18 studies; N = 97,624) are illustrated in Fig. 2a.
The odds for poor cognitive function were 1.40-times higher among
short sleepers than normal sleepers (OR = 1.40, 95% CI = 1.27–
1.56; Table 2). There was no evidence for publication bias (Fig. 3a;
Egger’s test: p = 0.71). The ‘trim and fill’ method suggested no missing
study. There was significant heterogeneity in effect sizes across
studies (Q = 55.82, p = 0.01, I2 = 39.09%). Moderator analyses showed
that neither age (slope = 0.00; p = 0.91) nor gender (slope = 0.00;
p = 0.49) affected the overall effect size of short sleep.

3.2.2. Overall short sleep effect: by study type
Study type alone did not account for the between-study heter-

ogeneity. In the subgroup analyses where we quantified the effect
size of self-reported short sleep on performance for cross-sectional
and prospective cohort studies separately (Table 2), cross-sectional
studies showed 1.42-times higher odds for poor cognitive func-
tion for short relative to normal sleepers (OR = 1.42, 95% CI = 1.28–
1.59). Prospective cohort studies also revealed that short sleep posed
1.45-times higher odds for poor cognitive function later in life
(OR = 1.45, 95% CI = 1.13–1.87). Thus, the cross-sectional associa-
tions and the long-term impact of self-reported short sleep on
cognitive performance were similar.

Among the prospective cohort studies, the follow-up duration
ranged from 1 to 22 years, allowing us to explore whether this factor
affected the effect size of short sleep duration. The OR from studies
with shorter follow-up periods (<6 years; k = 6) was 1.60 (95%
CI = 1.14–2.24), while the OR from studies with longer follow-up
period (≥6 years; k = 3) was 1.38 (95% CI = 0.91–2.07). The latter as-
sociation just missed statistical significance; however, this finding
should be treated as preliminary given that the determination of
effect size was based on only three independent samples.

3.2.3. Short sleep effect: by cognitive domain
The effect sizes of self-reported short sleep appeared to vary

across cognitive domains (Table 2). Short sleep was significantly as-
sociated with poorer performance in multiple-domain tasks
(OR = 1.28, 95% CI = 1.07–1.53). Since we assumed that impairment
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in multiple cognitive domains was associated with AD and demen-
tia, to determine whether these clinical conditions might have
inflated the risk for poor performance in this domain, we also cal-
culated a pooled OR excluding the two relevant studies [11,22]. This
OR was of a similar magnitude and remained statistically signifi-
cant (OR = 1.24, 95% CI = 1.02–1.50).

Other than performance in multiple-domain tasks, we also found
significant associations between short sleep duration and poor ex-
ecutive function, verbal memory, and working memory capacity, with
ORs ranging from 1.33 to 1.35 (Table 2). However, no significant as-
sociation was found for speed of processing. This is most likely due
to the smaller number of studies (k = 6) investigating the contri-
bution of sleep duration to this cognitive domain as the OR for speed
of processing was of similar magnitude to the other domains.

3.2.4. Short sleep effect: by cognitive domain and study type
The associations between self-reported short sleep and perfor-

mance on various cognitive domains were still observed when we
considered cross-sectional studies only (Table 2). Self-reported short
sleep was associated with higher odds for deficits in multiple-
domain tasks, executive functions, verbal memory, and working
memory capacity, with ORs ranging from 1.30 to 1.38. A signifi-
cant association was not present for speed of processing.

In prospective cohort studies, self-reported short sleepers showed
elevated risk for poor performance only in multiple-domain tasks
(OR = 1.44, 95% CI = 1.02–2.04). No significant association was found

in other domains (Table 2), and this was likely due to the small
number of prospective cohort studies which assessed perfor-
mance in these cognitive domains (k = 2–4).

3.3. Self-reported long sleep and cognitive function

3.3.1. Overall long sleep effect
ORs of self-reported long sleep for poor overall cognitive func-

tion from 33 samples (17 studies; N = 97,558) are shown in Fig. 2b.
Long sleep was associated with 1.58-times higher odds for poor cog-
nitive function (OR = 1.58, 95% CI = 1.43–1.74; Table 2). Although the
‘trim and fill’ method identified that one study on the right side of
the funnel plot should be placed on the left side in order to achieve
symmetry (adjusted OR = 1.50, 95% CI = 1.41–1.60), the Egger’s test
was not significant (Fig. 3b; Egger’s test: p = 0.18). Therefore, we con-
cluded that there was no strong evidence for publication bias. Effect
sizes across studies were heterogeneous (Q = 61.62, p = 0.001,
I2 = 48.07%). However, neither age (slope = −0.01; p = 0.26) nor gender
(slope = 0.00; p = 0.41) appeared to moderate the relationship
between self-reported long sleep and poor cognitive performance.

3.3.2. Overall long sleep effect: by study type
Study type alone could not explain the heterogeneity in the effect

sizes of self-reported long sleep across studies. The odds for poor
cognitive function among long sleepers were both significant from
the cross-sectional (OR = 1.61, 95% CI = 1.48–1.76) and the prospective

Fig. 1. Flow chart indicating the results of the systematic literature search with inclusion and exclusion of studies. PSQI, Pittsburgh Sleep Quality Index.
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cohort studies (OR = 1.47, 95% CI = 1.08–2.00). This suggested sim-
ilarity in the cross-sectional associations and the long-term impact
of self-reported long sleep on cognitive performance.

To explore whether the follow-up durations in prospective cohort
studies influenced the effect size of long sleep duration, we derived
pooled ORs separately for studies with shorter (<6 years: k = 4) and
longer (≥6 years: k = 3) follow-up. Long sleep duration appeared to

have stronger impact on cognitive performance in studies with
shorter follow-up (OR = 1.81, 95% CI = 1.14–2.86 vs OR = 1.25, 95%
CI = 0.93–1.67). However, it is worth noting that only three inde-
pendent samples contributed to the pooled ORs for longer follow-
up; thus, this association and the apparent difference in findings
due to different follow-up durations should be interpreted with
caution.

Fig. 2. Forest plots showing all studies relating self-reported (a) short and (b) long sleep to poor cognitive function as compared to a reference group. Results are expressed
as odds ratios (OR) and 95% confidence intervals (CI). Higher ORs indicate greater risks for poor cognitive performance relative to the reference group.

Table 2
Odds ratios (95% confidence interval) of self-reported short and long sleep for poor cognitive performance.

Cross-sectional and prospective combined Cross-sectional Prospective

k OR 95% CI k OR 95% k OR 95% CI

Overalla

Short sleep 35 1.40 1.27 1.56 27 1.42 1.28 1.59 9 1.45 1.13 1.87
Long sleep 33 1.58 1.43 1.74 27 1.61 1.48 1.76 7 1.47 1.08 2.00

Multiple cognitive domainsa

Short sleep 19 1.28 1.07 1.53 11 1.30 1.05 1.59 9 1.44 1.02 2.04
Long sleep 17 1.42 1.13 1.78 11 1.36 0.98 1.89 7 1.43 1.04 1.97

Executive functions
Short sleep 22 1.33 1.22 1.46 20 1.33 1.21 1.47 2 1.69 0.69 4.11
Long sleep 20 1.47 1.29 1.68 20 1.47 1.29 1.68 — — — —

Verbal memorya

Short sleep 23 1.33 1.19 1.49 20 1.38 1.25 1.53 4 1.00 0.86 1.16
Long sleep 21 1.47 1.31 1.66 20 1.49 1.33 1.67 2 1.28 0.76 2.13

Working memory capacity
Short sleep 15 1.35 1.15 1.59 13 1.38 1.17 1.62 2 0.78 0.32 1.88
Long sleep 13 1.34 1.22 1.47 13 1.34 1.22 1.47 — — — —

Speed of processing
Short sleep 6 1.36 0.88 2.12 4 1.31 0.79 2.19 2 1.53 0.63 3.72
Long sleep 4 1.69 0.90 3.17 4 1.69 0.90 3.17 — — — —

k, number of independent samples; OR, odds ratio; CI, confidence intervals.
a For these cognitive domains, data from Tworoger et al. [21] and Devore et al. [12], who studied the same cohort, were respectively included in the meta-analyses of

cross-sectional and prospective cohort studies. For the combined analyses, to ensure independence of effect sizes across studies, only data from Devore et al. [12] was in-
cluded since prospective cohort studies were under-represented.
Odds ratios in bold were statistically significant at p < 0.05.
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3.3.3. Long sleep effect: by cognitive domain
Cognitive domain seemed to contribute to the heterogeneity in

the effect sizes of long sleep on cognitive performance. Subgroup
analyses revealed that long sleep increased the odds for poor
multiple-domain performance by 1.42-times (95% CI = 1.13–1.78),
and this OR was of a similar magnitude even after studies linking
long sleep with incident AD and dementia were removed (OR = 1.35,
95% CI = 1.06–1.73).

We also found significant associations between long sleep and
poor executive function, verbal memory, and working memory ca-
pacity, with ORs ranging between 1.34 and 1.47 (Table 2). In contrast,
long sleep did not significantly affect the odds for slower process-
ing speed (Table 2), although the OR appeared to be greatest among
all the domains studied (OR = 1.69, 95% CI = 0.90–3.17). This was likely
a result of the small number of independent samples (k = 4) avail-
able for analysis.

3.3.4. Long sleep effect: by cognitive domain and study type
The effects of self-reported long sleep also seemed to vary across

cognitive domains when we performed subgroup analyses sepa-
rately for the two types of studies. For cross-sectional studies, self-
reported long sleep was associated with poorer executive function,
verbal memory, and working memory capacity, with ORs ranging
from 1.34 to 1.49 (Table 2). Long sleep did not affect the odds for
slower processing speed (Table 2). The association between long
sleep and poor multiple-domain performance in cross-sectional
studies was marginally non-significant (OR = 1.36, 95% CI = 0.98-
1.89), but was similar in magnitude to the significant OR reported

in prospective cohort studies (OR = 1.43, 95% CI = 1.04–1.97). Note
that no prospective cohort study has reported the impact of self-
reported long sleep on executive functions, working memory
capacity, or speed of processing, and only two samples investi-
gated the long-term impact of long sleep on verbal memory.

4. Discussion

The present study quantitatively reviews the last decade of data
on the association between self-reported short and long sleep on
cognitive performance among older adults. Overall, self-reported
short and long sleep elevated the odds for poor cognitive function
by 1.40-times and 1.58-times, respectively. These effect sizes are con-
sidered in the small range by convention [47]. Although it has been
previously shown that age and gender might affect sleep duration
[48–50], the findings from this meta-analysis revealed minimal in-
fluence of these demographic factors on the association between
sleep duration and cognitive function. Extreme sleep durations had
broad impact across multiple cognitive domains including execu-
tive function, verbal memory, and working memory capacity.
Although speed of processing appeared spared, this result is likely
a result of the paucity of studies specifically addressing this domain.
Most of these significant associations remained significant when
only cross-sectional studies were considered. The long-term impact
of self-reported short and long sleep on overall cognitive perfor-
mance was significant, but was limited to multiple-domain
performance probably due to the small number of prospective cohort
studies investigating the long-term contribution of extreme sleep
durations to specific cognitive domains.

4.1. Potential explanations for the association between sleep
duration and cognitive function

The biological mechanisms underlying the association between
extreme sleep durations and poorer cognitive function in older adults
remain unclear. However, progress has been made in uncovering
putative pathways.

4.1.1. Effects of short sleep on the brain
Short sleep has negative effects on brain morphometry, activa-

tion, and physiology. In community-dwelling older adults, short sleep
has been associated with a higher rate of ventricular expansion and
faster decline in global cognitive score [18]. Poor sleep quality has
been associated with higher rates of cortical atrophy in frontal, tem-
poral, and parietal lobes [51]. Relative to short sleepers, older adults
who slept for 8 h evidenced greater parahippocampal and inferior
frontal activation during a verbal encoding task for optimal perfor-
mance [52].

Recently, sleep has also been found to be important for the clear-
ance of beta-amyloid from the brain [53]. This clearance can be
attenuated following acute total sleep deprivation [53,54]. These ex-
perimental findings were buttressed by an epidemiological study
that reported a cross-sectional association between self-reported
short sleep duration and greater amyloid burden in community-
dwelling older adults [55]. Amyloid deposition in brain regions that
control sleep could in principle aggravate disruption of sleep, setting
up a vicious cycle [8]. Indeed, using a Drosophila model of AD, a
recent study demonstrated that accumulation of beta-amyloid results
in reduced and fragmented sleep, and sleep deprivation for one week
increases beta-amyloid burden, suggesting a bi-directional rela-
tionship between sleep and cognition [56]. However, the long-
term effects of chronic short sleep on amyloid accumulation in
humans remain to be clarified.

Fig. 3. Funnel plots for meta-analyses of self-reported (a) short and (b) long sleep
and poor cognitive function.
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4.1.2. Effects of short and long sleep via systemic inflammation
Several cohort studies on older adults have linked chronic, low

grade inflammation evidenced by elevated levels of inflammatory
markers, such as interleukin-6 (IL-6) and C-reactive protein (CRP),
with negative effects on brain structure [57], as well as increased
risk for vascular dementia and AD [58]. However, one large study
did not find an association between inflammatory markers and cog-
nitive decline [59]. Elevated levels of IL-6 and CRP have been found
in sleep-deprived individuals [60,61], as well as long sleepers [62],
suggesting a possible link between short and long sleep, in-
creased inflammation, and impaired cognition. However, a recent
longitudinal study that recruited relatively healthy older adults did
not find any significant associations between high-sensitivity CRP,
and sleep duration, brain volumes or performance in five cogni-
tive domains [18].

4.1.3. Medical comorbidities associated with extreme sleep durations
Cardiometabolic disease and depression associated with extreme

sleep durations might have adverse effects on cognitive function.
Both short and long sleep have been found to adversely affect
cardiometabolic health [34,63], which can in turn have negative
effects on brain aging and cognition [1,64]. Insomnia or hypersom-
nia are prominent symptoms in major depressive disorder [65] which
can by itself give rise to cognitive impairment [66]. In addition, long-
standing depression elevates the risk for later dementia via multiple
mechanisms including hippocampal atrophy, amyloid deposition,
increased inflammation, and elevated risk of vascular disease [67].

4.1.4. Overlapping neural correlates for decreasing sleep and
performance with age

With increasing age, sleep becomes fragmented and this has been
attributed to the interaction between attenuated homeostatic sleep
drive and weaker circadian sleep-promoting signals in the early
morning [68]. Circadian wake-promoting signals in the afternoon
and evening also become weaker, leading older adults to fall asleep
more readily during the wake maintenance zone, and to report higher
levels of sleepiness in the late afternoon and evening than their
younger counterparts [69]. Such fragmentation in rest–activity
rhythm has been associated with slower processing speed, poorer
memory, and poorer executive function [70]. Furthermore, sleep frag-
mentation elevates the risk of incident AD and the rate of cognitive
decline in older adults [71].

The locus coeruleus is important for the regulation of arousal
[72,73] and there is evidence for its contribution to cognitive per-
formance [74,75], the latter possibly related to the neuronal
projection from the locus coeruleus to the prefrontal cortex (PFC;
[73]). A recent animal study showed that sleep deprivation can result
in neuronal loss in the locus coeruleus [76], which may lead to neg-
ative cognitive consequences. This is a candidate mechanism
explaining how self-reported short sleep might lead to poorer cog-
nitive function in older adults.

The high prevalence of sleep problems among individuals with
MCI [77], AD, and other dementias [78], sundowning (ie, in-
creased confusion and restlessness in the evening) among patients
with AD [79], and the high conversion rates of patients with REM
sleep behavior disorder to various forms of dementia [80,81] all
suggest that common brain areas may underlie disrupted sleep–
wake regulation and neurodegenerative diseases [10,82].

4.2. Broad effects of sleep duration on cognitive performance

We showed here that self-reported extreme sleep durations had
significant associations with poorer multiple-domain perfor-
mance, executive functions, verbal memory, and working memory
capacity. The significant association with multiple-domain perfor-
mance was likely due to the effects of sleep duration on the

sub-domains assessed in these tasks. Most of the studies included
in this meta-analysis used the MMSE or its variant to measure
multiple-domain performance (Table S1). The broad-based effect on
multiple cognitive functions is consistent with the multi-regional
[51] or non-localized [18] associations between poor sleep quality
or shorter sleep duration and faster brain aging in older adults.

Although the hippocampus, which supports declarative memory
is vulnerable to multiple insults [1], our meta-analysis on sleep du-
ration and cognition in older adults did not uncover a specific
predilection to memory impairment. The small number of studies
examining speed of processing may not have provided sufficient in-
formation as to whether self-reported short and long sleep
contributes to slower processing speed, a cognitive domain that
shows strong age-related decline [83].

It has been argued that because sleep loss invokes functional defi-
cits in working memory and executive functions that are supported
by the PFC [84], this part of the brain might be particularly sensi-
tive to sleep loss [85]. While the results of the present meta-
analysis support contribution of extreme sleep durations to
degradation of these cognitive domains, the effect is not dispro-
portionate to verbal memory.

4.3. Limitations and future studies

Our meta-analysis has several limitations. First, sleep duration
was based on self-report. Most epidemiological studies evaluated
sleep with subjective measures possibly because of the low cost and
ease of administration. However, it is still not clear what leads
someone to declare not sleeping 7–8 h when prompted with a ques-
tion as simple as “how many hours of sleep do you get each night?”
[86]. To further complicate the situation, response to this simple
question may not even reflect the actual amount of sleep as dis-
crepancies between subjective and objective measures of sleep exist
[87]. Reasons for self-reported short sleep duration include, but are
not limited to, lower sleep need, busy work schedule, sleep disor-
ders, and medical conditions. Self-reported long sleep duration may
indicate health problems. For example, patients with major de-
pressive disorder tend to either over-estimate or underestimate the
amount of sleep [88]. Despite these limitations of self-reported sleep
duration, the present data may provide some insights into the in-
teractions between sleep and cognition in older adults.

Second, we focused on the association between self-reported
sleep duration and cognitive performance, although a number of
studies have also found poor self-reported sleep quality and sleep
complaints to be associated with poor cognitive function in older
adults [14,20,22,23,25,26,30,31,89–97]. Only a handful of studies have
examined the contribution of sleep macrostructure to older adults’
cognitive function. More stage 1 sleep [98] and less rapid eye move-
ment (REM) sleep [98,99] are associated with poorer cognitive
function. In addition, we and others have shown that less slow wave
sleep (SWS) is associated with impaired sleep-dependent memory
consolidation [100] and more frequent false memory recollection
[101]. The contribution of sleep microstructure to older adults’ cog-
nitive function is also not well characterized. Some recent evidence
has suggested an association of lower spindle and slow wave density
with poorer performance in executive functions, attention, and verbal
memory [99].

Third, studies varied widely in the question probing sleep du-
ration, making it impossible to unify the operational definition of
sleep duration. While most studies assessed average or habitual sleep
duration without specifying the time window this was observed for
References 11–13, 15, 16, 19, 21–23, 26, 27, and 30; others speci-
fied the previous night [28], two nights [14], four weeks [29], or one
month [18,20,31]. Moreover, some studies measured nocturnal sleep
duration only [13–15,18–20,26,28–31], while others assessed sleep
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duration per day or in a 24-h period and thus, included daytime
naps [11,12,17,21–23,27]. Findings regarding the effects of daytime
napping on cognitive performance in older adults are heteroge-
neous. Cross-sectional studies have shown that both frequent and
long naps are associated with higher risks for poor cognitive func-
tion [23,102]. In contrast, in a prospective cohort study where
cognitive performance was tracked over time, older adults who
napped at baseline had lower risk for cognitive decline at the 2- and
the 10-year follow-up visits [15]. The equivocal nature of these results
remains to be explained, but may be partly due to differences in the
reasons for taking a nap across individuals. While for older adults
with disrupted nocturnal sleep, naps are needed to satisfy their sleep
needs, others may doze off during the day because of health issues
or lack of stimulation.

Other than the differences in how sleep duration was assessed,
studies also varied considerably in their definition of old age, the
confounding factors considered, the duration of follow-up (for pro-
spective cohort studies), and the sleep duration categories used. For
example, while most studies involving older adults screened out par-
ticipants with signs of dementia, those including younger participants
might not, and could have included participants with incipient cog-
nitive impairment. However, findings from our meta-regression
analyses did not reveal any significant contribution of the minimum
age of the samples to the differences in effect sizes across studies.
It is also worth noting that where possible, we used the statistical
models that included the largest number of covariates for a better
estimate of the unique contribution of self-reported sleep dura-
tion to cognitive function. This analytic strategy cannot benefit
studies that did not record health variables. We also explored the
possible influence of follow-up durations on the sleep–cognition as-
sociations in prospective cohort studies. It appears that extreme sleep
durations do not contribute to cognitive function beyond six years
of sleep measurement; however, these findings were from three
studies only. To take into account of the diversity across studies in
the sleep duration categories used, we selected the most extreme
category for the quantification of effect size. While this might result
in inflated effect sizes, setting arbitrary cutoffs for short and long
sleep duration, eg, <6 or >9 h, would exclude studies that did not
use such a categorization scheme, and might underestimate the
impact of extreme sleep durations on cognition.

Finally, the number of independent samples from cross-sectional
studies contributing to our meta-analysis was almost three-times
more than that from prospective cohort studies (26 vs 9). Most of
the prospective studies only used a general measure of cognition,
eg, MMSE [15,20], or diagnosis of AD [22] or dementia [11]. In only
three prospective studies was performance in specific cognitive
domains assessed [12,18,19], limiting the possibility of quantify-
ing the long-term impact of extreme sleep durations on specific
domains. Future studies should adopt a prospective cohort design
and use a more comprehensive cognitive test battery.

5. Conclusion

Both short and long sleep, as assessed by self-report, are asso-
ciated with poorer cognitive performance in older adults. These
findings suggest the possibility that having good sleep hygiene and
establishing good sleep habits may reduce cognitive deficits asso-
ciated with aging.
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