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Abstract

Vacuum expectation values of the surface energy—momentum tensor is investigated for a massless scalar field obeying mixed
boundary condition on a brane in de Sitter bulk. To generate the corresponding vacuum surface densities we use the conformal
relation between de Sitter and Rindler spacetimes.
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1. Introduction

de Sitter (dS) spacetime is the maximally symmetric solution of Einstein’s equation with a positive cosmological
constant. Recent astronomical observations of supernovae and cosmic microwave bacKrindidate that
the universe is accelerating and can be well approximated by a world with a positive cosmological constant. If
the universe would accelerate indefinitely, the standard cosmology leads to an asymptotic dS universe. de Sitter
spacetime plays an important role in the inflationary scenario, where an exponentially expanding approximately
dS spacetime is employed to solve a number of problems in standard cosmology. The quantum field theory on
dS spacetime is also of considerable interest. In particular, the inhomogeneities generated by fluctuations of a
quantum field during inflation provide an attractive mechanism for the structure formation in the universe. Another
motivation for investigations of dS based quantum theories is related to the recently proposed holographic duality
between quantum gravity on dS spacetime and a quantum field theory living on boundary identified with the
timelike infinity of dS spacetimg].
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The investigation of quantum effects in braneworld models is of considerable phenomenological interest, both
in particle physics and in cosmology. The braneworld corresponds to a manifold with dynamical boundaries and
all fields which propagate in the bulk will give Casimir-type contributions to the vacuum energy, and as a result
to the vacuum forces acting on the branes. In dependence of the type of a field and boundary conditions imposed,
these forces can either stabilize or destabilize the braneworld. In addition, the Casimir energy gives a contribution
to both the brane and bulk cosmological constants and, hence, has to be taken into account in the self-consisten
formulation of the braneworld dynamics. Motivated by these, the role of quantum effects in braneworld scenarios
has received a grate deal of attention. For conformally coupled scalar this effect was initially stu@ieih ithe
context of M-theory, and subsequently[#-18] for a background Randall-Sundrum geometry. The models with
dS and AdS brane, and higher-dimensional brane models are considered flyi@418] For a conformally
coupled bulk scalar the cosmological backreaction of the Casimir energy is investigi@eilii 3]

As a brane we take 4-dimensional hypersurface which is the conformal image of a plate moving with constant
proper acceleration in the Rindler spacetime. We will assume that the field is prepared in the state conformally
related to the Fulling—Rindler vacuum in the Rindler spacetime. To generate the vacuum expectation values in
dS bulk, we use the conformal relation between dS and Rindler spacédfifjemnd the results frorf20] for the
corresponding Rindler problem with mixed boundary conditions. Previously this method has been [2dd in
to derive the vacuum stress on parallel plates for a scalar field with Dirichlet boundary conditions in de Sitter
spacetime and in Reff10] to investigate the vacuum characteristics of the Casimir configuration on background of
conformally flat brane-world geometries for massless scalar field with Robin boundary conditions on plates.

The present Letter is organized as follows. In the next section the geometry of our problem and the conformal
relation between dS and Rindler spacetimes are discussed. The results are presented for the vacuum expectatio
values of the energy—momentum tensor for a scalar field induced by a plate uniformly accelerated through the
Fulling—Rindler vacuum. In SectioBy by using the formula relating the renormalized energy—momentum tensors
for conformally related problems in combination with the appropriate coordinate transformation, we derive expres-
sions for the vacuum energy—momentum tensor in dS space. The main results are rementioned and summarized i
Sectiord.

2. Conformal relation between dS and Rindler problems

Consider a conformally coupled massless scalar {i¢ld satisfying the equation

3
2 (1)

on background of & + 1)-dimensional dS spacetime. In E@), V; is the operator of the covariant derivative,
andR is the Ricci scalar for the corresponding mefgj¢. In static coordinates’ = (¢, r, 6, 62, ¢) dS metric has
the form

(ViV' +¢R)p(x) =0, ¢=

2
dsgsz gikdx' dx* = <1 - r—)dtz -

2 2
—r°dS23, 2
a? " 3 2

2
-5
whered(2§ is the line element on the 3-dimensional unit sphere in Euclidean space, and the pasadefiees
the dS curvature radius. Note thRit= 12/a2. We will assume that the field satisfies the mixed boundary condition

(A +1'V))p(x) =0, ®)

on the brane, wherd, is a constant and’ is the unit inward normal to the brane. This type of conditions is an
extension of Dirichlet and Neumann boundary conditions and appears in a variety of situations, for example, the
Casimir effect for massless scalar filed with Robin boundary conditions on two parallel plates in de Sitter spacetime
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is calculated if21], the Robin type boundary condition in domain wall formation is investigatdd3h Mixed
boundary conditions naturally arise for scalar and fermion bulk fields in the Randall-Sundrum[eh&6e24]

To make maximum use of the flat spacetime calculations, first of all let us present the dS line element in the
form conformally related to the Rindler metric. With this aim we make the coordinate transforméation’’ =

(1,&, X/), X = (x/Z’ x/3, x/4)

2 2

o —r 2_ T

t .
T=—, f=——-—, X' = —sinfd cosy,
o 2 2
x'3= ésin@ sindcosp, x4 = ésine sind, sind sing, (4)
with the notation
2=1-"cow. (5)
o

Under this coordinate transformation the dS line element takes the form
dsis= gl dx'""dx'* = 2%(82dc? — dg? — ax'?). (6)
In this form the dS metric is manifestly conformally related to the Rindler spacetime with the line eléfﬁent
dsig=Q2%dsg, dsi=gRdx""dx'* =£2de? —dg? —ax'?, g, =2%R. @)

By using the standard transformation formula for the vacuum expectation values of the energy—momentum tensor
in conformally related problems (see, for instan@?2]), we can generate the results for dS spacetime from the
corresponding results for the Rindler spacetime. In this Letter as a Rindler counterpart we will take the vacuum
surface energy—momentum tensor induced by an infinite plate moving by uniform proper acceleration through the
Fulling—Rindler vacuum. We will assume that the plate is located in the right Rindler wedge and has the coordinate
£ = a. Observe that in coordinate$ the boundary = «a is presented by the hypersurface

\/az—r2:a<1—10089>, (8)

o

in dS spacetime. In Ref25] it was argued that the energy—momentum tensor for a scalar field on manifolds with
boundaries in addition to the bulk part contains a contribution located on the boundary. For the bausigtrg
surface part of the energy—momentum tensor is presented in thgZ6fm

T = 8(x; M) Tix ©)
with
ik = 9% Kix — (20 — 1/2)hirgon' Vi, (10)

and the “one-sided” delta-functidrx; d M) locates this tensor od/,. In Eq.(10), K;, is the extrinsic curvature

tensor of the boundargM, andh; is the corresponding induced metric. et (x), ¢ (x)} be a complete set of
positive and negative frequency solutions to the field equéfiprobeying boundary conditiof8). Herea denotes

a set of quantum numbers specifying the solution. By expanding the field operator over the eigenfypciions

using the standard commutation rules and the definition of the vacuum state, for the vacuum expectation value of
the surface energy—momentum tensor one finds

OIT™10) = 6(x: IM) (0l7k10),  (OlTikl0) = Y ik {0 (). 03 ()}, (11)

where |0) is the amplitude for the corresponding vacuum state, and the bilinear#gfm +/} on the right of
the second formula is determined by the classical energy—momentum (&@ydrhe surface energy—momentum
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tensor has a diagonal structure:

(017 10) = diag(z, 0, — p. — p, —p), (12)
with the surface energy densityand stresg, and the equation of state
2
=—|14 —=—|p, A=uaA,. 13
) [ +/4(4@—1)}” “h -

Here we take a plane boundary with coordingite a > 0 corresponding to a plate uniformly accelerated normal
to itself with the proper acceleratiarr . For a minimally coupled scalar field,corresponds to a cosmological
constant induced on the plate. In the conformally coupled case

(1 - %) (14)

The vacuum stress induced on the brane is as folloy2ay

p=p"+pP, (15)
where for the pole and finite contributions one has
R _ B4y p@) 444 16
pp 4\5‘ 4 R -1 =a S ( )
B as
Py = ARG + F O], (17)
and the coefficients are defined by following expressions
By = ! (18)
*T @) e/
T r K.(x)  1<n (=1)!'Uj(cosd)
D s 2 —s X — l
F ——co — | d d = - T 19
R (5)= > / xx / 2z |:Kz(x) +r; 15272 i| (19)
0 o =
; 3-2j
2 (3 (—=1)/ 1
&) =——r<—) Us—2jm <m+— —) 20
R-17750\2 /Z_:‘)F(j+1)l"(% Z M 2 (20)
1 /3\ Lt 3-2j
F(as) =__1-<_) Us_2im <m+ )
RO x\2 Zr(1+1)r(§—f) Z 8

1 3
X |:1p(m+2)+1//(j+1)—1ﬂ(m+§>—Iﬂ(§>i|
3

+%< > +Z)( 1)B< >ZU1m( %g) (21)

[=1,4—[=even =4

wherey (x) =dInT (x)/dx is the digamma function anB(x, y) is the beta function.
The surface energy per unit surface of the plate can be found integrating the energy density ftb), Eq.

E®Rsuh / d*x /Idetgir| (OIT"™°|0) = a(0/710) = ae. (22)
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3. Vacuum energy—momentum tensor in dS bulk

To find the VEV's induced by the surfa¢®) in dS spacetime, first we will consider the corresponding quantities
in the coordinatesz, &, X') with metric (6). These quantities can be found from the corresponding results in the
Rindler spacetime by using the standard transformation formula for the conformally related prfgf##gms

(T (&> #]) = 27T [l 9R])- (23)

If the classical energy—momentum tensor is traceless then the classical action is invariant under the conformal
transformation. It must be noted that trace anomalies in stress tensor i.e., the nonvafjisting conformally
invariant field after renormalization originate from some quantum behf26rThe trace anomaly is related to the
divergent part of effective action, in the absence of boundaries in odd spacetime dimensions the conformal anomaly
is absen{22] (see alsAppendix Aof the present Letter). Under the conformal transformagign= ngﬁc, the

¢r field will change by the rule

p(x') = 27¥%pr(x), (24)

where the conformal factor is given by express{bh The scalar fieldor(x"), satisfy following mixed boundary
condition

(AR+ BriikV))pr =0, &=a, ikV, =4, (25)

Now by comparing boundary conditiorf8) and (25) and taking into account E¢24), one obtains the relation
between the coefficients in the boundary conditions:

1 3
A=§<AR+§BRan1.Q>, B=Br, xE€S. (26)

To evaluate the expressiahVv; 2 we need the components of the normas to coordinates’. They can be found
by transforming the components= 8’1/_(2 in coordinates:’’;

nl = (o, 4 (cost — r/a), —L sine, 0, o). 27)
o or

Now it can be easily seen thettV; 22 = —va2 — r2/a? and, hence, the relation between the Robin coefficients in
the Rindler and dS problems takes the form

aARr 3aBRr

A=_2ER__CATR
w2—r2 2 a2

B = BRr. (28)

As for the energy—momentum tensor the spatial part is anisotropic, the corresponding part in coortiinaese
complicated:

(T Lgim. 1) = 2 (T} [gfr- @r]). i.k=0,3.4, (29)
cost) — r/a)? 1-r2/a? .
(Tt 1) = X TR, gr]) + 2L i o(r2 af om]) (30
— cosp) sing
(121101 = LN, gr )~ 73] o] @

N (r /o — cOSH)2

o7 (L8 #r]) (32)

1-r?/a?
(T laum. 91) = 7 sirPo( T [, om])
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4. Conclusion

In the present Letter we have investigated the surface Casimir densities in dS spacetime for a conformally cou-
pled massless scalar field which satisfies the Robin boundary congjion a hypersurface described by KE8).
The coefficients in the boundary condition are given by relat{@83 with constantsAg and Br and, in general,
depend on the point of the hypersurface. The latter is the conformal image of the flat boundary moving by uniform
proper acceleration in the Minkowski spacetime. We have assumed that the field in dS spacetime is in the state con-
formally related to the Fulling—Rindler vacuum. The energy—momentum tensor in dS spacetime is generated from
the corresponding results in the Rindler spacetime by using the standard formula for the energy—momentum ten-
sors in conformally related problems in combination with the appropriate coordinate transformation. The Rindler
energy—momentum tensor is taken from Refl], where the general case of the curvature coupling parameter
is considered. For a minimally coupled scalar field, the surface energy—momentum tensor induced by quantum
vacuum effects corresponds to a source of a cosmological constant type located on the plate and with the cosmo-
logical constant determined by the proper acceleration of the plate. By using the conformal relation between the
Rindler and dS spacetimes and the results ff@nj, in Ref.[17] the vacuum expectation value of the bulk energy—
momentum tensor is evaluated for a conformally coupled scalar field which satisfies the Robin boundary condition
on a curved brane in dS spacetime. By making use the same technigue and the conformal properties of the surface
energy—momentum tensor, from the results of[2@ we have obtained the surface vacuum energy—momentum
tensor induced on the brane in dS spacetime, which is a conformal image of a uniformly accelerated plate in the
Minkowski spacetime. As it has been shown recentl{2i8] (see alsq17,29)), the surface densities induced by
guantum fluctuations of bulk fields can serve as a natural mechanism for the generation of cosmological constant
in braneworld models of the Randall-Sundrum type with the value in good agreement with recent cosmological
observations.

Appendix A

As we have seen in previous sections the vacuum expectation values of the surface energy—momentum tensoi
contain pole and finite contributions. The remaining pole term is a characteristic feature for the zeta function
regularization method and has been found for many other case of boundary geometries. In the conformally coupled
case, fluctuations of the stress tensor trace is as

(T} (x)) = cK (x), (A1)
wherec is a constant, and
K (x) = ¢ (s]A)(x)]s=0, (A.2)

here¢(s|A) is the zeta function related to an elliptic operatbi{30]. One can represent the zeta function as
following

_ 1 i s—1
{(,Y|A)_%/dtt K (1), (A.3)
0
where
1 \32
K(t):(ﬁ) Xk:exq—kkt), (A.4)

is the heat kernel in four dimension, thg's are the one-particle energies with the quantum numbétow the
ultraviolet divergences of the vacuum energy are determined from the behavior of the integran@iriJat the
lower integration limit and, hence, from the asymptotic expansion of the heat kernebfdr
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1 \32 ;

K@)~|— Bit". A.

) ( 47”) > B (A.5)
k=0,1/21,...

This expansion is known for a very general manifold, if the underling manifold is without boundary, only coeffi-
cients with integer numbers enter, otherwise half integer poweacd present. Thd,, are given by

By :/dvak(x) + f dscr(y), (A.6)
M oM
the Seely—de Witt coefficientg, vanish for half-odd integers, these coefficients are independent of the applied
boundary condition, but the coefficients do depend on the spin of the field in eq{22i84,32] The coefficients
¢y are functions of the second fundamental form of the boundary (extrinsic curvature), the induced geometry on
the boundary (intrinsic curvature), and the nature of boundary condition imposed. The simplestdiranadic;
coefficients for a manifold with boundary are giver{22].
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