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Abstract

Vacuum expectation values of the surface energy–momentum tensor is investigated for a massless scalar field obey
boundary condition on a brane in de Sitter bulk. To generate the corresponding vacuum surface densities we use the
relation between de Sitter and Rindler spacetimes.
 2005 Published by Elsevier B.V.

PACS: 03.70.+k; 11.10.Kk

1. Introduction

de Sitter (dS) spacetime is the maximally symmetric solution of Einstein’s equation with a positive cosmo
constant. Recent astronomical observations of supernovae and cosmic microwave background[1] indicate that
the universe is accelerating and can be well approximated by a world with a positive cosmological con
the universe would accelerate indefinitely, the standard cosmology leads to an asymptotic dS universe.
spacetime plays an important role in the inflationary scenario, where an exponentially expanding approx
dS spacetime is employed to solve a number of problems in standard cosmology. The quantum field th
dS spacetime is also of considerable interest. In particular, the inhomogeneities generated by fluctuat
quantum field during inflation provide an attractive mechanism for the structure formation in the universe. A
motivation for investigations of dS based quantum theories is related to the recently proposed holographi
between quantum gravity on dS spacetime and a quantum field theory living on boundary identified w
timelike infinity of dS spacetime[2].
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The investigation of quantum effects in braneworld models is of considerable phenomenological intere
in particle physics and in cosmology. The braneworld corresponds to a manifold with dynamical boundar
all fields which propagate in the bulk will give Casimir-type contributions to the vacuum energy, and as a
to the vacuum forces acting on the branes. In dependence of the type of a field and boundary conditions
these forces can either stabilize or destabilize the braneworld. In addition, the Casimir energy gives a con
to both the brane and bulk cosmological constants and, hence, has to be taken into account in the self-c
formulation of the braneworld dynamics. Motivated by these, the role of quantum effects in braneworld sc
has received a grate deal of attention. For conformally coupled scalar this effect was initially studied in[3] in the
context of M-theory, and subsequently in[4–18] for a background Randall–Sundrum geometry. The models
dS and AdS brane, and higher-dimensional brane models are considered as well[11,13–18]. For a conformally
coupled bulk scalar the cosmological backreaction of the Casimir energy is investigated in[3,11,13].

As a brane we take 4-dimensional hypersurface which is the conformal image of a plate moving with c
proper acceleration in the Rindler spacetime. We will assume that the field is prepared in the state con
related to the Fulling–Rindler vacuum in the Rindler spacetime. To generate the vacuum expectation v
dS bulk, we use the conformal relation between dS and Rindler spacetimes[19] and the results from[20] for the
corresponding Rindler problem with mixed boundary conditions. Previously this method has been used[21]
to derive the vacuum stress on parallel plates for a scalar field with Dirichlet boundary conditions in de
spacetime and in Ref.[10] to investigate the vacuum characteristics of the Casimir configuration on backgro
conformally flat brane-world geometries for massless scalar field with Robin boundary conditions on plate

The present Letter is organized as follows. In the next section the geometry of our problem and the co
relation between dS and Rindler spacetimes are discussed. The results are presented for the vacuum e
values of the energy–momentum tensor for a scalar field induced by a plate uniformly accelerated thro
Fulling–Rindler vacuum. In Section3, by using the formula relating the renormalized energy–momentum te
for conformally related problems in combination with the appropriate coordinate transformation, we derive
sions for the vacuum energy–momentum tensor in dS space. The main results are rementioned and summ
Section4.

2. Conformal relation between dS and Rindler problems

Consider a conformally coupled massless scalar fieldϕ(x) satisfying the equation

(1)
(∇l∇ l + ζR

)
ϕ(x) = 0, ζ = 3

16
,

on background of a(4 + 1)-dimensional dS spacetime. In Eq.(1), ∇l is the operator of the covariant derivativ
andR is the Ricci scalar for the corresponding metricgik . In static coordinatesxi = (t, r, θ, θ2, φ) dS metric has
the form

(2)ds2
dS= gik dxi dxk =

(
1− r2

α2

)
dt2 − dr2

1− r2

α2

− r2 dΩ2
3,

wheredΩ2
3 is the line element on the 3-dimensional unit sphere in Euclidean space, and the parameterα defines

the dS curvature radius. Note thatR = 12/α2. We will assume that the field satisfies the mixed boundary cond

(3)
(
As + nl∇l

)
ϕ(x) = 0,

on the brane, whereAs is a constant andnl is the unit inward normal to the brane. This type of conditions is
extension of Dirichlet and Neumann boundary conditions and appears in a variety of situations, for exam
Casimir effect for massless scalar filed with Robin boundary conditions on two parallel plates in de Sitter sp



M.R. Setare / Physics Letters B 620 (2005) 111–117 113

t in the

m tensor
the

vacuum
ugh the

ordinate

s with

f

s
value of

m

is calculated in[21], the Robin type boundary condition in domain wall formation is investigated in[23]. Mixed
boundary conditions naturally arise for scalar and fermion bulk fields in the Randall–Sundrum model[9,10,24].
To make maximum use of the flat spacetime calculations, first of all let us present the dS line elemen
form conformally related to the Rindler metric. With this aim we make the coordinate transformationxi → x′ i =
(τ, ξ,x′), x′ = (x′2, x′3, x′4)

τ = t

α
, ξ =

√
α2 − r2

Ω
, x′2 = r

Ω
sinθ cosθ2,

(4)x′3 = r

Ω
sinθ sinθ2 cosφ, x′4 = r

Ω
sinθ sinθ2 sinθ2 sinφ,

with the notation

(5)Ω = 1− r

α
cosθ.

Under this coordinate transformation the dS line element takes the form

(6)ds2
dS= g′

ik dx′ i dx′k = Ω2(ξ2 dτ2 − dξ2 − dx′2).
In this form the dS metric is manifestly conformally related to the Rindler spacetime with the line elementds2

R:

(7)ds2
dS= Ω2 ds2

R, ds2
R = gR

ikdx′ i dx′k = ξ2 dτ2 − dξ2 − dx′2, g′
ik = Ω2gR

ik.

By using the standard transformation formula for the vacuum expectation values of the energy–momentu
in conformally related problems (see, for instance,[22]), we can generate the results for dS spacetime from
corresponding results for the Rindler spacetime. In this Letter as a Rindler counterpart we will take the
surface energy–momentum tensor induced by an infinite plate moving by uniform proper acceleration thro
Fulling–Rindler vacuum. We will assume that the plate is located in the right Rindler wedge and has the co
ξ = a. Observe that in coordinatesxi the boundaryξ = a is presented by the hypersurface

(8)
√

α2 − r2 = a

(
1− r

α
cosθ

)
,

in dS spacetime. In Ref.[25] it was argued that the energy–momentum tensor for a scalar field on manifold
boundaries in addition to the bulk part contains a contribution located on the boundary. For the boundary∂Ms the
surface part of the energy–momentum tensor is presented in the form[25]

(9)T
(surf)
ik = δ(x; ∂Ms)τik

with

(10)τik = ζϕ2Kik − (2ζ − 1/2)hikϕnl∇lϕ,

and the “one-sided” delta-functionδ(x; ∂Ms) locates this tensor on∂Ms . In Eq.(10), Kik is the extrinsic curvature
tensor of the boundary∂Ms andhik is the corresponding induced metric. Let{ϕα(x),ϕ∗

α(x)} be a complete set o
positive and negative frequency solutions to the field equation(1), obeying boundary condition(3). Hereα denotes
a set of quantum numbers specifying the solution. By expanding the field operator over the eigenfunctionϕα(x),
using the standard commutation rules and the definition of the vacuum state, for the vacuum expectation
the surface energy–momentum tensor one finds

(11)〈0|T (surf)
ik |0〉 = δ(x; ∂Ms)〈0|τik|0〉, 〈0|τik|0〉 =

∑
α

τik

{
ϕα(x),ϕ∗

α(x)
}
,

where|0〉 is the amplitude for the corresponding vacuum state, and the bilinear formτik{ϕ,ψ} on the right of
the second formula is determined by the classical energy–momentum tensor(10). The surface energy–momentu
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(12)〈0|τ k
l |0〉 = diag(ε,0,−p,−p,−p),

with the surface energy densityε and stressp, and the equation of state

(13)ε = −
[
1+ 2ζ

A(4ζ − 1)

]
p, A = aAs.

Here we take a plane boundary with coordinateξ = a > 0 corresponding to a plate uniformly accelerated nor
to itself with the proper accelerationa−1. For a minimally coupled scalar field,ε corresponds to a cosmologic
constant induced on the plate. In the conformally coupled case

(14)ε = −
(

1− 3

2A

)
p.

The vacuum stress induced on the brane is as following[20]

(15)p = p(R)
p + p

(R)
f ,

where for the pole and finite contributions one has

(16)p(R)
p = B4

4sa4
AF

(as)
R,−1, A = aAs,

(17)p
(R)
f = B4

4a4
A

[
F

(as)
R,0 + F

(1)
R (0)

]
,

and the coefficients are defined by following expressions

(18)B4 = 1

(4π)3/2�(3/2)
,

(19)F
(1)
R (s) = − 1

π
cos

πs

2

∞∫
0

dx x2

∞∫
ρ

dz z−s

[
Kz(x)

K̄z(x)
+ 1

r

N∑
l=0

(−1)lUl(cosθ)

(1+ r2)l/2

]
,

(20)F
(as)
R,−1 = − 2

π
�

(
3

2

) 1∑
j=0

(−1)j

�(j + 1)�(3
2 − j)

3−2j∑
m=0

U3−2j,mB

(
m + 1

2
,

3

2

)
,

F
(as)
R,0 = − 1

π
�

(
3

2

) 1∑
j=0

(−1)j

�(j + 1)�(3
2 − j)

3−2j∑
m=0

U3−2j,mB

(
m + 1

2
,

3

2

)

×
[
ψ(m + 2) + ψ(j + 1) − ψ

(
m + 1

2

)
− ψ

(
3

2

)]

(21)+ 1

π

(
3∑

l=1,4−l=even

+
N∑

l=4

)
(−1)lB

(
l − 3

2
,

3

2

) l∑
m=0

UlmB

(
m + 1

2
,

3

2

)
,

whereψ(x) = d ln�(x)/dx is the digamma function andB(x, y) is the beta function.
The surface energy per unit surface of the plate can be found integrating the energy density from Eq.(11),

(22)E(R,surf) =
∫

d4x
√|detgik|〈0|T (surf)0

0 |0〉 = a〈0|τ0
0 |0〉 = aε.
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To find the VEV’s induced by the surface(8) in dS spacetime, first we will consider the corresponding quant
in the coordinates(τ, ξ,x′) with metric (6). These quantities can be found from the corresponding results i
Rindler spacetime by using the standard transformation formula for the conformally related problems[22]:

(23)
〈
T k

i

[
g′

lm,ϕ
]〉 = Ω−5〈T k

i

[
gR

lm,ϕR
]〉
.

If the classical energy–momentum tensor is traceless then the classical action is invariant under the c
transformation. It must be noted that trace anomalies in stress tensor i.e., the nonvanishingT i

i for a conformally
invariant field after renormalization originate from some quantum behavior[26]. The trace anomaly is related to th
divergent part of effective action, in the absence of boundaries in odd spacetime dimensions the conformal
is absent[22] (see alsoAppendix Aof the present Letter). Under the conformal transformationg′

ik = Ω2gR
ik , the

ϕR field will change by the rule

(24)ϕ(x′) = Ω−3/2ϕR(x′),

where the conformal factor is given by expression(5). The scalar fieldϕR(x′), satisfy following mixed boundary
condition

(25)
(
AR + BRńl

R∇′
l

)
ϕR = 0, ξ = a, ńl

R∇′
l = δl

1.

Now by comparing boundary conditions(3) and(25) and taking into account Eq.(24), one obtains the relatio
between the coefficients in the boundary conditions:

(26)A = 1

Ω

(
AR + 3

2
BRnl∇lΩ

)
, B = BR, x ∈ S.

To evaluate the expressionnl∇lΩ we need the components of the normal toS in coordinatesxi . They can be found
by transforming the componentsńl = δl

1/Ω in coordinatesx′ i :

(27)nl =
(

0,
a

α
(cosθ − r/α),− a

αr
sinθ,0,0

)
.

Now it can be easily seen thatnl∇lΩ = −√
α2 − r2/α2 and, hence, the relation between the Robin coefficien

the Rindler and dS problems takes the form

(28)A = aAR√
α2 − r2

− 3

2

aBR

α2
, B = BR.

As for the energy–momentum tensor the spatial part is anisotropic, the corresponding part in coordinatesxi is more
complicated:

(29)
〈
T k

i [glm,ϕ]〉 = Ω−5〈T k
i

[
gR

lm,ϕR
]〉
, i, k = 0,3,4,

(30)
〈
T 1

1 [glm,ϕ]〉 = (cosθ − r/α)2

Ω7

〈
T 1

1

[
gR

lm,ϕR
]〉 + 1− r2/α2

Ω7 sin2 θ
〈
T 2

2

[
gR

lm,ϕR
]〉
,

(31)
〈
T 2

1 [glm,ϕ]〉 = (r/α − cosθ)sinθ

rΩ7

{〈
T 1

1

[
gR

lm,ϕR
]〉 − 〈

T 2
2

[
gR

lm,ϕR
]〉}

,

(32)
〈
T 2

2 [glm,ϕ]〉 = 1− r2/α2

Ω7 sin2 θ
〈
T 1

1

[
gR

lm,ϕR
]〉 + (r/α − cosθ)2

Ω7

〈
T 2

2

[
gR

lm,ϕR
]〉
.
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4. Conclusion

In the present Letter we have investigated the surface Casimir densities in dS spacetime for a conform
pled massless scalar field which satisfies the Robin boundary condition(3) on a hypersurface described by Eq.(8).
The coefficients in the boundary condition are given by relations(28) with constantsAR andBR and, in general
depend on the point of the hypersurface. The latter is the conformal image of the flat boundary moving by
proper acceleration in the Minkowski spacetime. We have assumed that the field in dS spacetime is in the s
formally related to the Fulling–Rindler vacuum. The energy–momentum tensor in dS spacetime is genera
the corresponding results in the Rindler spacetime by using the standard formula for the energy–momen
sors in conformally related problems in combination with the appropriate coordinate transformation. The
energy–momentum tensor is taken from Ref.[21], where the general case of the curvature coupling param
is considered. For a minimally coupled scalar field, the surface energy–momentum tensor induced by q
vacuum effects corresponds to a source of a cosmological constant type located on the plate and with th
logical constant determined by the proper acceleration of the plate. By using the conformal relation betw
Rindler and dS spacetimes and the results from[27], in Ref.[17] the vacuum expectation value of the bulk energ
momentum tensor is evaluated for a conformally coupled scalar field which satisfies the Robin boundary c
on a curved brane in dS spacetime. By making use the same technique and the conformal properties of th
energy–momentum tensor, from the results of the[20] we have obtained the surface vacuum energy–momen
tensor induced on the brane in dS spacetime, which is a conformal image of a uniformly accelerated pla
Minkowski spacetime. As it has been shown recently in[28] (see also[17,29]), the surface densities induced
quantum fluctuations of bulk fields can serve as a natural mechanism for the generation of cosmological
in braneworld models of the Randall–Sundrum type with the value in good agreement with recent cosm
observations.

Appendix A

As we have seen in previous sections the vacuum expectation values of the surface energy–momentu
contain pole and finite contributions. The remaining pole term is a characteristic feature for the zeta f
regularization method and has been found for many other case of boundary geometries. In the conformally
case, fluctuations of the stress tensor trace is as

(A.1)
〈
T i

i (x)
〉 = cK(x),

wherec is a constant, and

(A.2)K(x) = ζ(s|A)(x)|s=0,

hereζ(s|A) is the zeta function related to an elliptic operatorA [30]. One can represent the zeta function
following

(A.3)ζ(s|A) = 1

�(s)

∞∫
0

dt ts−1K(t),

where

(A.4)K(t) =
(

1

4πt

)3/2 ∑
k

exp(−λkt),

is the heat kernel in four dimension, theλk ’s are the one-particle energies with the quantum numberk. Now the
ultraviolet divergences of the vacuum energy are determined from the behavior of the integrand in Eq.(A.1) at the
lower integration limit and, hence, from the asymptotic expansion of the heat kernel fort → 0
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(A.5)K(t) ∼
(

1

4πt

)3/2 ∑
k=0,1/2,1,...

Bkt
k.

This expansion is known for a very general manifold, if the underling manifold is without boundary, only c
cients with integer numbers enter, otherwise half integer power oft are present. TheBk are given by

(A.6)Bk =
∫
M

dv ak(x) +
∫

∂M

ds ck(y),

the Seely–de Witt coefficientsak vanish for half-odd integers, these coefficients are independent of the a
boundary condition, but the coefficients do depend on the spin of the field in equation[22,31,32]. The coefficients
ck are functions of the second fundamental form of the boundary (extrinsic curvature), the induced geom
the boundary (intrinsic curvature), and the nature of boundary condition imposed. The simplest first ofak andck

coefficients for a manifold with boundary are given in[22].
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