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All spaces are compact Hausdorff. a is an uncountable cardinal or the symbol ~0. A continuous 

map 7:X+ Y is called an a-SpFi morphism if r-‘(G) is dense in X whenever G is a dense 

a-cozero set of Y. We thus have a category a-SpFi (spaces with the a-filter) which, like any 

category, has its monomorphisms; these need not be one-to-one. For general LY, we cannot say 

what the cy-SpFi monies are, but we show, and R.G. Woods showed, that co-SpFi manic means 

range-irreducible. The main theorem here is: X has no proper a-SpFi manic preimage if and 

only if X is a-disconnected. This generalizes (by putting in (Y = CO) the well-known fact: X has 

no proper irreducible preimage if and only if X is extremally disconnected. If, in our theorem, 

we restrict to Boolean spaces and apply Stone duality, we have the theorem of R. Lagrange, that 
in Boolean a-algebras, epimorphisms are surjective. 

The theory of spaces with filters has a lot of connections with ordered algebra-Boolean algebras 

of course, but also lattice-ordered groups and frames. This paper is a contribution to the 

development of this topological theory. 

AMS (MOS) Subj. Class.: Primary 18A20, 18830, 54C10, 54CO5; 

1. Spaces with filters 

X, Y and Z will denote compact Hausdorff spaces CY will denote an uncountable 

cardinal number or the symbol a; the meaning of (Y = 00 will be clear from, or 

explained in, the context. 

Definition 1.1. The category of spaces with filters, denoted SpFi, has for objects 

pairs (X, 9) where 9 is a filter base of dense subsets of X. A morphism T : (X, 9) + 

(Y, 2) is a continuous function from X into Y that inversely preserves the elements 

of the filter bases, i.e., 7-‘(H) E 3 for all H E 2t. 
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Definition 1.2. Let C(X) be the real-valued continuous functions on X. Let 

Coz(X) = {f~‘(R\{O}): f~ C(X)} be the set of cozero sets of X. A subset Vc X is 

said to be an a!-cozero set if V= IJ {U, : i E I, 111~ a, U, E Coz(X)}. Note that an 

o,-cozero set is a cozero set. By “111 COO” we mean “111 is unrestricted”, so that 

every open set is an co-cozero set. We denote the collection of cx-cozero sets by 

Coz,(X). Let $a,(X) be the filter base of the dense members of Coz,(X); thus 

9,(X) will denote the filter base of the dense open sets. Finally let cr-SpFi be the 

full subcategory of SpFi that has for objects pairs of the form (X, 9,(X)). 

Observe that a continuous function T : X + Y is a morphism in cY-SpFi if and 

only if T-‘(G) is dense in X for all G E 9,( Y). 

Definition 1.3. Let (X, 9) E lSpFi[ and let E be a closed subset of X. Let 9n E = 

{F n E: FE S}. This collection may or may not consist of dense subsets of E. If it 

does, we call E a SpFi subset of (X, 5). This means that (E, 9n E) E ISpFil and 

the inclusion, (E, 9n E) 9 (X, 9), is a SpFi morphism. If E is a SpFi subset of 

(X, 9,(X)), we simply say E is an cY-SpFi subset of X, and write E ca X. 

From this definition the following proposition is immediate. 

Proposition 1.4. The following are equivalent: 

(a) E cm X; 

(b) E is a SpFi subset of (X, 9) for all 9; 

(c) E is a regular closed subset of X. 

Also it has recently come to our attention that what we call an w,-SpFi subset 

of X, Veksler in [17], calls a P-set of X. 

Proposition 1.5. Let T : (X, 9) + ( Y, %) be a SpFi morphism and let E be a SpFi 

subset of (X, 9), then 

(a) T[E] is a SpFi subset of (Y, S’Q. 

(b) The injective 0 surjective factorization of r is a factorization in SpFi, as 

(X, 5) * (dxl, xn dXl)- (Y, 2). 

Proof. (a) Suppose 7: (X, 9) + (Y, %) is a SpFi morphism. Let E be a SpFi subset 

of (X, 5) and let H E 2’. Then 7-‘(H) E 9 so E n T-~(H) is dense in E. It follows 

that T[ E n T-‘(H)] is dense in T[ E]; and since T[ E n T-‘(H)] = T[ E] n H, we have 

that T[E] n H is also dense in T[E]. Hence T[E] is a SpFi subset of (Y, 2). 

(b) The proof of (b) follows directly from (a) and the definition of a SpFi 

subset. 0 

We do not know if the converse to Proposition 1.5(a) is true in SpFi. However 

it is true in cY-SpFi. 
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Proposition 1.6. A continuous function T: X -+ Y is an cY-SpFi morphism $ and only 

ifE c”X implies T[E] c” Y. 

Proof. The necessity is provided by Proposition 1.5. On the other hand suppose T 

is not an L-u-SpFi morphism. Then there is a GE 9m( Y) such that T-‘(G) is not 

dense in X. It follows that there is a regular closed set, U, of X with U = X\T-‘( G). 

Now U~“X,~~~~[UI~G=~,SO~[U]~~Y. 0 

The issue of factorizations in a-SpFi as in Proposition 1.5(b) is more complicated, 

and is treated in the next section. 

2. cu-disconnected spaces 

Definition 2.1. X is said to be a-disconnected if F is open for all FE Coz,(X) (see 

Definition 1.2). 

Observe that w,-disconnected and a-disconnected, are respectively, the usual 

definitions of basically and extremally disconnected [5]. 

Definition 2.2. A closed set E c X is called a Pa-set if whenever {V, : i E I, III< a} 

is a family of neighborhoods of E, then nit, V, is also a neighborhood of E. The 

family of Pa-sets in X is denoted Pa(X). 

The definition of P,,-set is the usual definition of P-set that appears in the literature 

(see [15, 161). 

We now show that the a-SpFi subsets of an a-disconnected space are exactly 

the Pa-sets of X. We begin with a few preliminary propositions. The proofs of some 

of these are straightforward and are omitted. 

Proposition 2.3. Let K be closed in X. Then E E P,(X) implies E n K E P, (K ). 

Proposition 2.4. Let C be clopen in X. Then E E P,(X) implies E n C E Pa(X). 

Lemma 2.5. Let X be zero-dimensional, E E Pa(X), and let L be a dense Fe-subset 

0fX (i.e., L=U,,, Ki where the Ki are closed in X and (I( < Q)). Then E n L is 

dense in E. 

Proof. Let C be clopen in X and suppose C n E # 0. By Proposition 2.4 C n E E 

Pa(X). Weclaim LnCnE#@IfLnCnE=@,then CnEcniSIX\Ki=X\L. 

Since C n E E Pa(X), then X\L is a neighborhood of C n E, but this contradicts 

the density of L. 0 
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Proposition 2.6. Let X be a a-disconnected. Then E c”l X if and only if E E P,(X). 

Proof. Let E E P,(X). If GE 9(t,(X), then G is a dense F,-set so Lemma 2.5 implies 

that E n G is dense in E. Hence E ca X. 

Now suppose E & P,(X). Then, without loss of generality, we may assume that 

there is a family, {Zi : i E I, )I[ < a}, of zero-set neighborhoods of E such that ni,, Zi 

is not a neighborhood of E. Since X is a-disconnected U = [nie, Zi]” is clopen. It 

follows that G = [lJi,, X\Zi] u U E 9,(X). Furthermore, E n X\ U is a nonempty 

open set in E with (E n X\ U) n (E n G) = 0. Hence, E n G is not dense in E, i.e., 

E$*X. 0 

Lemma 2.7. Let X be a-disconnected, E ca X, and U E: Coz,(X). Then U n E E = 

flXnE. 

Proof. Suppose U n E E # fl” n E, then U n E E s 0” n E. Since 0” is open in 

X, then V = 0 x n E\mE is a nonempty open set in E. Now G = U u (X\ u “) 

is a member of 9,(X). It follows that G n E E 9,(E), but Vn G n E = 0. This 

contradicts the density of G n E in E. Hence U n EE = fl” n E. 0 

Corollary 2.8. Let X be a-disconnected and let E E P,(X), then: 

(a) E is also a-disconnected; 

(b) 9,(E)=4,(X)n E. 

Proof. (a) By Proposition 2.6, E c a X. Let V E Coz, (E); then V = U n E for some 

U E Coz,(X). By Lemma 2.7 we have VE = a” n E, which is open in E since 0” 

is open in X. 

(b) Againsince Ec”X wehave.9a,(X)nEc9a,(E).Let G~9~(E),then G= 

U n E for some U E Coz,(X). By the density of G in E and Lemma 2.7 we have 

E = GE = u” n E. It follows that G = E n [U u (X\ ox)]. Since U u (X\ u*) E 

9a,(X) we have _Fa,(E) c .9,(X) n E. Cl 

For (Y=o,, Corollary 2.8(a) was known to both Tzeng [15] and Veksler [16], 

and Corollary 2.8(b) to Tzeng. 

Proposition 2.9. The category co-SpFi has injective 0 surjective factorizations. 

Proof. Let T : X + Y be an co-SpFi morphism. We claim that its injective 0 surjective 

factorization T = i 0 s (as in Proposition 1.5(b)) is in oo-SpFi. By Proposition 1.6, 

i : T[X] L, Y is an oo-SpFi morphism. Also s : (X, 9&X)) + (~[x], 9a,( Y) n T[X]) 

is an co-SpFi morphism; that is, by Proposition 1.4, T[X] is a regular closed set in 

Y SO 9,(T[x]) = 9a,( Y) n T[X]. 0 
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Unfortunately, for (Y < ~0, an cY-SpFi morphism need not have its injective 0 

surjective factorization in cu-SpFi: 

Example 2.10. There is an w,-SpFi morphism which does not have its injective 0 

surjective factorization in o, -SpFi. 

The space /3N\N = N* has the following properties (see [ 19, 3.23 and 3.281): 

(i) $,1(N*) = {N*}. 

(ii) There is a countable and relatively discrete set F c N*, and F is homeomorphic 

to PN. 

Pick a point p E F-F and let Y = PN, 0 /3N2 be the disjoint union of two copies 

of j3N. Define T: Y + N* by letting r map pN, homeomorphically onto F and PN, 

onto {p}. Since ,a,,@*) ={N*}, then r is an o,-SpFi morphism. We claim that 

s: Y + F is not an w,-SpFi morphism; for FE 9,,(P), but s-l(F) = PN, & 9,,(Y). 

The crux of Example 2.10 is that the codomain pN\N is not q-disconnected. For: 

Proposition 2.11. An c-u-SpFi morphism with an a-disconnected codomain has its 

injective 0 surjective factorization in cu-SpFi. 

Proof. Let r : X + Y be an cY-SpFi morphism and let Y be c-u-disconnected. The 

inclusion, i: T[X]-, Y, is an a-SpFi morphism by Proposition 1.5. Also, since 

7[X] c” Y and Y is a-disconnected, Proposition 2.6 implies r[X ] E P,( Y). 

So by Corollary 2.8(b), Ca,(~[x]) = 9a,( Y) n T[X]. Hence, s: (X, $a,(X)) + 

(r[X], 4, ( Y) n r[X]) is an a-SpFi morphism. •i 

There is, of course, much more to the issue of factorizations in cu-SpFi. For 

example, it is shown in [20] that co-SpFi has manic 0 extremal epic factorizations, 

and in [ 111 that an cY-SpFi morphism with an a-disconnected codomain has a manic 

0 extremal epic factorization. 

The following proposition is germane to this paper, but not needed for the main 

result. 

Proposition 2.12. Let X be a-disconnected and let E,, E2 E P,(X). Then 

E, n E>E P,(X). 

Proof. By Corollary 2.8(a), E2 is a-disconnected and by Proposition 2.3, E, n E2 E 

P,(E,). Then by Proposition 2.6, E, n E2 c ti E2. Since E*E P,(X), Proposition 2.6 

also implies E2 c O1 X. It follows by transitivity that E, n E, c a X. Applying Proposi- 

tion 2.6 yet again gives E, n E2 E P,(X). 0 

In [16] Veksler points out that if X is w,-disconnected, then P,,,,(X) forms a 

complete lattice. Actually, if X is a-disconnected, then P,(X) forms a complete 

distributive lattice; actually, for any X, {E: E c u X} forms a complete distributive 

lattice: a frame. This will be explored further in a forthcoming publication. 
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3. Monomorphic preimages 

In this section we prove the main result of the paper, Theorem 3.3 below. 

In general, recall that in a category, a morphism, 7, is manic if it is left cancellable, 

i.e., T 0 cpl = T 0 (p2 implies cpl = (p2. As indicated in the introduction, an cu-SpFi manic 

need not be one-to-one. This is visible in the proof of Theorem 3.3, but clearly a 

one-to-one cY-SpFi morphism is an cu-SpFi manic for all LY. 

The following proposition gives a condition sufficient but not necessary for 

monicity in SpFi. However, we show in Section 5 that this condition is necessary 

in cc-SpFi, but for (Y < co the situation remains unclear. 

Proposition 3.1. Let T : (X, 9) + ( Y, x) be a morphism in SpFi. Suppose for all x1, 

x2 E X with x, # x2 there exist neighborhoods U,, U, of x1 and x2 respectively and an 

FE 9 such that r[ U, n F] n T[ U, n F] = 0. Then r is SpFi manic. 

Proof. Suppose r is not manic. Then there is a (Z,Z) E SpFi, and, there are 

morphisms cp,, (p2 from (2, 9) to (X, 9) such that 7’p1 = ~9~ and cp, # (p2_ So there 

is a z E 2 with q,(z) # q2(z). Let U, be a neighborhood of q,(z). Let FE 9. We 

claim that T[ U, n F] n T[ U, n F] # 0. Suppose not. Let V = cp;‘( U,) n (p;‘( U,). 

Then V is a neighborhood of z. Let L = p;‘(F) n p;‘(F). Then LE .P?. Since L is 

dense there is a z’ E L n V and cp,(z’) E U, n F so then T(P~(z') # T(P~(z') since T[ U, n 

F] n T[ U, n F] = 0. This contradicts r(p, = ~9~. 0 

Lemma 3.2. Let Y be a-disconnected and let T: X + Y be an cz-SpFi morphism. If U, 

and U, are regular closed sets in X such that T[ U,] n T[ U,] # 0, then T[ U, n G] n 

T[ U,] # 0 for all G E 4, (X). 

Proof. Since U, ca X, Proposition 1.6 implies r[ Ui] cc( Y and by Proposition 2.6, 

r[ Ui] E P, ( Y). Hence, by Proposition 2.3, E = T[ U,] n T[ U,] E Pa(~[ U,]). Let G E 

9a,(X). G is an F,-set, and U, n G is dense in U,, so U, n G is a dense F,-set in 

U, . It follows that T[ U, n G] is a dense F, in T[ U,]. So by Lemma 2.5, r[ U, n G] n 

E#B (actually TIUlnG]nE is dense in 7[U1nG]) and T[U,nG]n 

E~T[U,~G]~T[UJ. q 

Theorem 3.3. X is a-disconnected if and only if X has no proper (i.e., not one-to-one) 

c-u-SpFi manic preimage. 

Proof. Suppose X is not a-disconnected. Then there is a U E Coz,(X) with u not 

open. Consider the topological sum, Y = u@X - 0, of 0 and X - u. Let r : Y + X 

be the inclusion of each summand into X. This construction is used in [12, 181. T 

is irreducible, hence T is an a-SpFi morphism (see Corollary 5.3). We claim that T 

is also an a-SpFi manic. Since U E Coz, (X), then U E Coz, ( Y) and clearly G = U u 

(X\ 0) E 9a,(Y). For all y,, y, there are neighborhoods V, and V, of y, and y2 
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respectively, so that T( V, n G) n T( V,n G) = 0. We cad now use the argument 

employed in Proposition 3.1 (with G in the role of F) to conclude that T is an 

cY-SpFi manic. 

On the other hand, we claim that if T: Y + X is not one-to-one and X is 

a-disconnected, then T is not an cr-SpFi manic. 

Suppose 7 is not one-to-one. Let Z = {(yl, y2) E Y x Y: I = I}. Clearly the 

restricted projections r, ) Z : Z + Y have T~~~~Z=T~~~~Z, but T,IZ#T~/Z. So 

the claim will be true if the ~~ (Z are a-SpFi morphisms. This will be the case if 

r;‘(G)nZ is dense in Z for all GELS. We verify this for i=l. 

Let V c 2 be open. There are regular closed sets, U, and U,, of Y with ( U, x UJ n 

Z c V. Hence there are y, E U, and y, E U, such that I = I. Obviously T[ U,] n 

T[ U,] # 0; so by Lemma 3.2, 7[ U, n G] n 7[ U,] # 0 for all GE 9a,( Y). It follows 

that there are y; E U, A G and yb E U, such that (y:, y;) E Z and (y; , y;) E rTT;‘( G) n 

(U,X U,). Hence, (y;,y;)~ VnZn7-ry1(G) and so r,‘(G)nZ is dense in Z. 0 

Corollary 3.4. An cu-SpFi manic into an a-disconnected space is one-to-one. 

Proof. Let 7: Y + X be an cu-SpFi manic and let X be a-disconnected. Then, by 

Proposition 1.6, T[ Y] ca X; so by Proposition 2.6 and Corollary 2.8(a), T[ Y] is 

also cY-disconnected. Now, by Proposition 2.11, the factorization, T = i 0 s, is in 

cY-SpFi; so s is an a-SpFi manic. Then by Theorem 3.3, s, and therefore T, is 

one-to-one. 0 

4. Lagrange’s theorem 

We explain how Theorem 3.3 is a generalization of a rather important theorem 

about Boolean algebras, Corollary 4.3(b) below. Our discussion, however, goes 

beyond a proof of Corollary 4.3(b). 

Let a-BA stand for the category whose objects are Boolean algebras, whose 

morphisms are the Boolean homomorphisms which preserve the existing suprema 

of sets of cardinal <(u. Let a-BA(cu) be the full subcategory of (Y-BA whose objects 

are cY-complete, i.e., have suprema existing for each set of cardinal <(u. (In our 

notation, w- BA = w- BA( w ) = BA.) 

Let BS be the full subcategory of compact Hausdorff spaces whose objects are 

Boolean spaces, i.e., zero-dimensional (and compact). We have, of course, the 

functors 

BAABS 
Cl0p 

of Stone duality [14]. 

Let cu-SpFi n BS be the full subcategory of a-SpFi whose objects are Boolean 

spaces. 
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Proposition 4.1. (a) [14, 22.71. &.G (BAl is a-complete if and only if S(a) is a- 

disconnected. 

(b) (from [14, 22.51). Stone duality restricts to a duality of a-BA with a-SpFi n BS. 

Corollary 4.2. (a) A Boolean homomorphism cp is an epic of a-BA if and only if its 

Stone dual S(q) is a manic of a-SpFi. 

(b) A Boolean algebra has no proper a-BA-epic extension if and only if its Stone 

space has no proper cY-SpFi-manic preimage. 

Proof. (a) Proposition 4.1(b) implies that cp is CY-BA epic if and only if S(q) is 

cY-SpFin BS manic. It remains to see that a manic f, of cY-SpFin BS is actually 

cy-SpFi manic. Suppose g, h E cu-SpFi have f 0 g = f 0 h. As discussed in the next 

section: Let ($ V) be the absolute of dom g = dom h; T is co-SpFi, hence cY-SpFi. 

We thus have f 0 g 0 T = f 0 h 0 T in cY-SpFi, whence g 0 v = h 0 T. But r is surjective 

hence epic (wherever), so g = h. 

(b) Stone duality interchanges embeddings with surjections. Apply (a). 0 

We finally use Theorem 3.3: 

Corollary 4.3. (a) A Boolean algebra d is a-complete if and only if & has no proper 

CY-BA-epic extension. 

(b) Let cp : s-d+ 93 be epic in (Y-BA, with & a-complete. Then cp is surjective. 

(c) [lo]. In a-BA(a), epic means subjective. 

Proof. (a) Corollary 4.2(b), Theorem 3.3, and Proposition 4.1(a). 

(b) Corollary 4.2(a), Proposition 4.1(a), and Corollary 3.4. 

(c) Epics are surjective, by (a). The converse holds even at the level of sets. 0 

Note that hiding in the proof of Corollary 4.3(b) is the a-BA-dual of Proposition 

2.11: If cp E (Y-BA has a-complete domain, then the injective 0 surjective factorization 

of cp has both factors in a-BA. (The dual of Example 2.10 shows the need for the 

cr-completeness of the domain.) 

5. The aMpFi monies 

We now characterize co-SpFi monies. For (Y <co, there are serious complicati&s 

and the situation is not clear. 

Definition 5.1. A continuous map T : X + Y is said to be range-irreducible (see [20]) 

if whenever K is a proper closed set of X, then T[ K] # T[X]. T is called irreducible 

if T is range-irreducible and surjective. 
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The following Proposition 5.2 and Theorem 5.5 are well known. (See, e.g. [6] 

or L71.1 

Proposition 5.2. X + Y be irreducible and let H be a dense subset of Y, then 

r-‘(H) is dense in X. Moreover, if U is an open subset of X, then there is an open 

subset, V, of Y such that T-‘(V) c U and F’(V) = U. 

Corollary 5.3. If a map T : X + Y is irreducible, then r is an cw-SpFi morphism for all 

CY, i.e., r is an co-SpFi morphism. 

Proposition 5.4 [13]. Let T: X + Y be continuous and let y : Y+ Z be irreducible. 

Supposefurther that y 0 T is an a-SpFi morphism. Then, r is also an co-SpFi morphism. 

Proof. Let GE 9,( Y). Since y is irreducible, Proposition 5.2 implies there is a 

HE 9&X) such that y-‘(H) c G. Now since y 0 7 is an co-SpFi morphism 

r-‘(y-‘(H)) is dense in X and clearly r-‘(y-l(H)) c F’(G). Hence 7-‘(G) is 

dense in X and 7 is an cc-SpFi morphism. Cl 

Theorem 5.5 (Gleason [6]). The co-disconnected (i.e., extremally disconnected) spaces 

are the projectives in the category of compact Hausdorflspaces. 

For each X there is an cc-disconnected space, EX, and an irreducible map 

cpx : EX ++ X. The pair (EX, cpx) is essentially unique (and projective resolution, 

or absolute, of X). 

The following was obtained independently by Woods in [20]. 

Proposition 5.6. An a-SpFi morphism T: X + Y is co-SpFi manic zfand only zfr is 

range-irreducible. 

Proof. Suppose T is not oo-SpFi manic. Then there exists a space 2 and ccSpFi 

morphisms, (Y, and (Ye, with ~,#a, such that ai:Z+X and T~CY,=T~CY~. Since 

(Y, # LYE there is a z E Z with a,(z) # &z(z). It follows that there is a regular closed 

set, U, of z with z E U and cu,[ U] n a*[ U] = 0. Now by Proposition 1.6, a,[ U] ca’ X, 

i.e., (Y~[ U] is a regular closed set in X, but then ~[X\((Y,[ U])‘] = T[X]. So r is not 

range-irreducible. 

To prove the other implication we use the theory of the absolute, (EX, cpx), of X. 

Let 7: X + Y be an a-SpFi manic. Then by Corollary 5.3 and the sufficiency of 

Proposition 5.6, 7 0 cpx : EX + Y is also an cc-SpFi manic. By projectivity (Theorem 

5.5) there is a map y : EX + EY such that T 0 cp x = cpy 0 y. By Proposition 5.4, y is 

an co-SpFi morphism; moreover y is an co-SpFi manic by being the first factor of 

an co-SpFi manic. Now by Corollary 3.4, y must be one-to-one. Hence, y is 

range-irreducible. It follows that T 0 cpx = ‘py 0 y is range-irreducible, and thereby, 

it follows that 7 is range-irreducible. 0 
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The following also appears in [20], but seems to be originally from [13]. 

Corollary 5.7. The a-disconnected spaces form a monocorejlective subcategory of 

a-SpFi. 

Proof. Proposition 5.6 and Theorem 5.5 imply that (EX, cpx) is the co-SpFi 

monocoreflection of X. 0 

Remark 5.8. We show in [ 1 l] that the cr-disconnected spaces form a monocoreflec- 

tive subcategory of a-SpFi. This result was known implicitly for a-SpFi n BS. If 

2 E ]BSI, then the a-SpFi monocoreflection of 2, denoted (m&T, qz), “is” the Stone 

dual of the free a-regular extension of the Boolean algebra Clap(Z). See [14, 211 

and Section 4 here. 

Proposition 5.9. Let T: X + Y be an oo-SpFi morphism, then the following are 

equivalent : 

(i) 7 is manic. 

(ii) For x, , x2 E X with x, # x2 there exist neighborhoods U, and U, of x, and x2 

respectively in X and a G E 9&X) such that T[ U, n G] n T[ U, n G] = 0. 

Proof. (ii)*(i), Proposition 3.1. 

(i)+(ii) By Proposition 5.6, 7 is range-irreducible. Choose open neighborhoods, 

U, and U,, of x, and x2 respectively, with the closures of the LJi disjoint. By 

Proposition 5.2 there are & open in Y such that l?‘, = r-‘( vi). It follows that the 

Vi are disjoint. Choose an open set, V, in Y disjoint from VI u V, such that 

Vu V, u V, is dense in Y. So r-‘( V) is disjoint from r-‘( Vi), hence from its closure 

which contains Ui. Now let G = r-‘( Vu VI v V,). GE .9&X) and 

T[ ui n G] = r[ ui n T-‘(V) u T-‘( v,) u T-I( v,)] 

=T[U,nT-‘(Vi)]C v,. 

Hence r[U1nG]nr[U~nG]=@ 0 
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