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Isodipole textures are pairs of texture ensembles whose autocorrelations, and hence power spectra, 
are equal. Examples of readily discriminable isodipole textures are well known. Such 
discriminations appear to require feature extraction, since the isodipole condition eliminates 
ensemble differences in spatial frequency content. We studied the effects of phase decorrelation on 
VEP indices of discrimination of isodipole texture pairs. Phase decorrelation, which ranged from 
0.125n radians (slight randomization) to n radians (complete randomization), was introduced in 
two ways: by independent jittering of each spatial Fourier component, and by a product method, 
which preserved correlations among certain quadruples of spatial Fourier components, despite 
pairwise decorrelation. For the even/random isodipole texture pair, independent phase decorrela- 
tion greater than 0.5n radians markedly reduced VEP indices of texture discrimination for all 
check sizes, and eliminated them entirely for check sizes of 8 min or greater. However, the product 
method preserved texture discrimination signals even with complete pairwise randomization of 
spatial phases. For the triangle/random isodipole texture pair, both kinds of phase decorrelation 
eliminated VEP indices of texture discrimination. These results imply that isodipole texture 
discrimination is based on fundamentally local processing, and not on global Fourier amplitudes-- 
since the phase manipulations which efiminate texture discrimination preserve the Fourier 
amplitudes. The dependence of the antisymmetric response component (the odd harmonics) on 
phase decorrelation and texture type is consistent with a previously proposed model for feature 
extraction, and leads to constraints on how texture processing is modulated by contrast. The limited 
contribution of global spectral characteristics for small checks is consistent with a previously 
identified breakdown in scale-invariant processing. Copyright © 1996 Elsevier Science Ltd 
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INTRODUCTION 

The importance of spatial frequency analysis in early 
visual processing is well-recognized (Campbell & Green, 
1965; Kelly, 1972). For example, threshold behavior for a 
wide variety of visual patterns can be understood in terms 
of neural activity within a number of "channels", each of 
which extract a range of spatial frequencies from the 
visual image (Wilson & Bergen, 1979). However, 
viewing the visual system as a parallel collection of 
independent channels, each of which is selective for a 
narrow range of spatial frequencies, does not suffice to 
account for suprathreshold phenomena. For example, one 
can readily perceive the difference between compound 
gratings (gratings consisting of superimposed sinusoid- 
ally varying luminance patterns) which differ in the 
spatial phases of the gratings (Nachmias & Weber, 1975; 
Burr, 1980; Badcock, 1984a,b). Additionally, spatial 
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phase sensitivity is one of the important differences 
between foveal and extrafoveal vision (Rentschler & 
Treutwein, 1985; Bennett & Banks, 1987). 

Other evidence provides additional support for the 
importance of spatial phase in image recognition 
(Oppenheim & Lim, 1981; Field, 1987; Shapley et al., 
1990; Morgan et al., 1991). While amplitude is important 
for overall image appearance (Tadmor & Tolhurst, 1992), 
phase information determines the placement of local 
features. Manipulation of images of real scenes which 
preserves power spectra but distorts the phase spectra 
destroys recognition; destruction of spectral information 
accompanied by retained spatial phase information 
preserves a recognizable image. 

The above studies focused primarily on one-dimen- 
sional patterns or on natural scenes. In the studies 
described here, we investigate the extent to which the 
relative spatial phases of the individual Fourier compo- 
nents affect discrimination of visual textures. By 
restricting our attention to isodipole textures (Julesz et 
al., 1978)---ensembles of two-dimensional stimuli which 
are balanced for spatial frequency content--we focus our 
investigation on the nonlinear processes underlying early 
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visual processing. Because isodipole texture pairs have 
balanced second-order statistics, their discrimination 
cannot be due to differences in the overall power within 
any set of spatial frequency channels. Therefore, 
discrimination between isodipole textures must be due 
to: (i) higher-order statistics of individual Fourier 
components; or (ii) nonlinear local computations, or a 
combination of these possibilities. Since phase manip- 
ulations preserve the power spectrum, an observed 
dependence on relative spatial phase is inconsistent with 
mechanisms based on statistics of individual Fourier 
components (of any order). Conversely, specific models 
of local nonlinear mechanisms for feature extraction 
(Victor & Conte, 1991) predict specific patterns of 
dependence on spatial phase. 

In view of the literature concerning the importance of 
relative spatial phase in other suprathreshold visual tasks, 
our finding that relative spatial phase plays a role in 
texture discrimination is not surprising. What is un- 
expected, however, is that one can manipulate spatial 
phases in a way which destroys all interrelations among 
the phases of pairs and triples of Fourier components, yet 
still retain strong discrimination. Such phase manipula- 
tions preserve visually apparent structure in one kind of 
isodipole texture [the "even" texture (Julesz et al., 
1978)], but not in another class [the "triangle" texture 
(Victor & Conte, 1991)]. As with studies of one- 
dimensional patterns (Badcock, 1984a,b; Morrone & 
Burr, 1988), there appears to be no need to postulate 
mechanisms which are specifically sensitive to spatial 
phase. Rather, these somewhat surprising results can be 
accounted for by a model for feature extraction that we 
have previously proposed (Victor & Conte, 1991). This 
model has as its key features two stages of nonlinearity: a 
small nonlinear subunit followed by a second stage at 
which the subunit outputs are combined in a cooperative 
fashion. The coupled dependence of response size on 
relative spatial phase and check size reveals additional 
information concerning the breakdown of scale--invar- 
iant processing at small check sizes. Furthermore, the 
difference between the dependence of response dynamics 
on stimulus contrast and on relative spatial phase 
provides new information concerning the cortical con- 
trast gain control. 

METHODS 

Visual stimuli 
The stimuli used in these studies are sequences of 

examples of isodipole textures--textures whose pairwise 
autocorrelations are identical (Julesz et al., 1978). The 
stimuli are derived from the standard "even" (Julesz et 
al., 1978), the "random", and the "triangle" (Victor & 
Conte, 1991) isodipole textures via the following 
sequential stages: 

(i) Fourier transformation; 
(ii) low-pass filtering; 

(iii) partial or complete randomization of the phases of 
the Fourier components; and 

(iv) inverse Fourier transformation. 

Examples of isodipole textures modified in this fashion 
are shown in Fig. 1. 

Isodipole textures 
The standard isodipole textures consist of assignment 

of one of two states (luminance values) to a square array 
of checks: the luminance L at the position x is given by 
L(x) =L0[1 +cf(x)], where Lo is the background 
luminance, c is the contrast, and f(x) is +1 or - 1 ,  
depending on the state of the check containing x. Check 
sizes ranged from 4 min (2 × 2 hardware pixels) to 32 min 
(16 × 16 hardware pixels). In the "random" texture, the 
state aij assigned to the check in the ith row and jth 
column is chosen randomly, and with equal probability, 
from the two possibilities _+ 1. 

In the "even" texture, the states ato (the first column) 
and aoj (the first row) are chosen randomly. Checks in the 
interior of the texture are assigned states according to the 
recursion rule 

a i ,  j : a i - l , j  " a i ,  j - 1  " a i - l , j - 1 .  (1) 

In the "triangle" texture, checks in the interior of the 
texture are assigned states according to the recursion rule 

a i ,  j = a i ,  j - 1  " a i - l , j - 1 .  (2) 

The fourth-order correlations induced by the recursion 
rule (1) and third-order correlations induced by the 
recursion rule (2) result in distinct patterns which are 
readily apparent to casual visual inspection, despite the 
absence of second-order correlations. 

Fourier transformation 
To extract the Fourier components of the texture 

examples, we considered them to be periodic, with a 
period P equal to the extent of the display. This period 
was a multiple of the check size h, so that P = Nh, for 
some integer N. In these experiments, N = 16, 32, 64, and 
128 for the four check sizes. The function f(x) which 
determines the contrast of the image at the position x 
is therefore periodic, and its Fourier representation 
funblurred (J~ is given by 

funblurred(j) = ~---~ l~f(x)e-27r~J'x/Pdx (3) 

This integral ranges over two dimensions--in this case, 
a square of side length P. The (vector) argumentj is a pair 
of integers (jl, j2) which enumerate the spatial frequen- 
cies that are consistent with the repeat P. 

Low-pass spatial filtering 
Altering the phases of the Fourier components of the 

textures can lead to very high contrast values and 
oscillations at edges ("ringing"). For this reason, we 
applied spatial low-pass filtering of the textures prior to 
manipulation of the phases. The low-pass filter chosen 
had a roll-off at 4 c/deg, independent of check size. For 
the display size used (256x256pixels subtending 
8.8x8.8 deg), this represented 32 cycles per screen, 



HIGH-ORDER PHASE CORRELATIONS 1617 

Phase jitter = 0 .125 Phase jitter = 1.0 ~ Phase jitter = 1.0 x product method 

Even 
texture 

Triangle 
texture 

FIGURE 1. Examples of the stimuli used in this study. (a) An example of the even texture subjected to blurring followed by a 
small amount (0 = 0.125n) of phase decorrelation via the independent algorithm. (b) An example of the even texture subjected to 
blurring followed by maximal (0 = 70 phase decorrelation via the independent algorithm. (c) An example of the even texture 
subjected to blurring followed by maximal phase decorrelation via the product method algorithm. (d), (e), and (f) examples of 

the triangle texture subjected to the phase manipulations of (a), (b), and (c). 

and was 1/4 of the Nyquist frequency of the pixel display. 
That is, the Fourier components fblurred(J') of the low-pass 
filtered texture are given by 

j?blurred(j) = e-t/12Rb2'=/aj~unblurred(j), (4) 

where Rblur =1/32. 
The statistical properties referred to above are proper- 

ties of the ensemble of textures of any given class: power 
spectra averaged over all examples of even textures 
created according to rule (1), or all examples of triangle 
textures created according to rule (2), are identical to 
power spectra averaged over all random textures. 
However, the power spectrum of individual samples of 
the even or triangle textures typically deviates from the 
power spectrum of individual samples of the random 
texture. One of the aims of this work is to determine to 
what extent these individual differences in the power 
spectrum play a role in texture discrimination. Low-pass 
filtering does not limit our ability to distinguish between 
the effects of phase manipulation and the effects of 
deviations of the power spectra of individual texture 
examples from that of the ensemble. Since the power 
spectrum depends on the amplitude (but not on the phase) 
of the spatial Fourier components, any effects of the 
phase manipulations described cannot be due to changes 
in the power spectrum, and the low-pass filtering affects 

the power spectrum of structured and random textures 
identically. 

Phase manipulation 
Next, the phases of each Fourier component J?blu~ed(J') 

are altered by an amount fl(j') to provide the Fourier 
components of a phase-jittered texture sample fjittered(J'): 

fjittered(j) = e~fl(J)fblurred(j) (5) 

We used two kinds of phase manipulation. In the first 
kind of phase jittering, which we call "independent" 
phase jittering, the phase shift/~(j) associated with each 
Fourier component fblu~ed(J) was chosen uniformly from 
the distribution [ -  0, 0], subject only to the constraint 

~3(j) = - f l ( - j )  (6) 

This constraint is required to ensure that the resulting 
Fourier coefficients correspond to a real image. The 
parameter 0 controls the amount of phase jitter: 0 = 0 
corresponds to no transformation of the image; 0 = 7t 
corresponds to complete phase randomization. Addition- 
ally, we used a "product method" to jitter the phases. In 
the product method, the phase shifts fl(j) are required to 
conform to equation (6) and to 

fl(j) = ill(j1) +/32(j2) (7) 

As in the "independent" phase-jittering method, the 
phase shifts at two distinct frequencies j and k (with 
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j ~  +k)  are independent. However, in the product 
method, the phase factor e '~O) at the spatial frequency 
J = (Jl, j2) is given by the product of the phase factors at 
the spatial frequency 01,0) and the spatial frequency (0, 
j2). These phases are chosen randomly from the 
distribution [ - 0 ,  0], subject only to the real-image 
constraint [equation (6)]. 

Inverse Fourier transformation 

The final image is defined by 
Ljitterea(Jg) = L0[1 + CJ~ittered(~')], where J~ittered(JC) is given 
by the inverse Fourier transform 

j~ittered (X) ~-'~ ¢" ./--~.27rtj.x/P : z~Jj i t tere d kj)~, (8) 
J 

The distribution of image values J~ittered(X) spans a 
wider range than the range [ - 1 ,  +1] covered by the 
image values fbl.,~(X) in the starting texture. Since the 
contrast c was typically 0.4 for the starting texture, we 
therefore truncated image values of the inverse transform 
/~itter~d(X) at + 2.5, SO that its pixel contrasts remained in 
the range [ - 1, +1]. The effect of this truncation is small. 
For complete phase randomization, the distribution of 
image values in )]ittered(X) approaches a Gaussian 
distribution whose variance matches that of fb,urr~d(X), 
and therefore exceeds 2.5 in absolute value <1.4% of the 
time. In one set of studies (see Fig. 5), higher contrast 
stimuli were used, which necessarily results in greater 
truncation for values of 0 > 0. However, the critical 
comparison in that experiment is that of the stimuli for 
which c = 0.4 and 0 > 0 with stimuli for which c > 0.4 and 
0 = 0. Truncation is negligible in both of these regimes. 

Incorporation of modified isodipole textures into visual 
stimuli 

The visual stimuli for these experiments consisted of 
presentations of precomputed images Ljittered(X), which 
alternated between examples of a structured texture (the 
even texture or the triangle texture) and a random texture. 
The stimulus sequence is organized around a period of 
473 msec (128 frames of the hardware display). A 
structured texture is presented at the beginning of each 
period, and a random texture is presented in the middle of 
each period (64 frames, or 236.5 msec later). Successive 
presentations of each texture type consisted either of the 
same texture pair inverted in contrast, or of new examples 
of the texture. 

Within each recording session, the main experimental 
variable was the amount 0 of phase jitter. The stimuli 
used within each recording session were always con- 
structed from the same examples of unjittered textures. 
That is, the Fourier amplitudes of these stimuli were 
exactly matched across amounts of phase jitter. 

Production of visual stimuli 
Precomputed visual stimuli described above were 

produced on a Tektronix 608 display which subtended 
8.8 × 8.8 deg at a viewing distance of 57 cm and had a 
mean luminance of 150 cd/m 2. Control signals for the 
stimulator were produced by specialized electronics, 

modified from the design of Milkman et al. (1980) 
interfaced to a DEC 11/73 computer. These electronics 
generated horizontal and vertical scan signals for a 
256 x 256 pixel display at a frame rate of 270.3 Hz, and 
included a digital look-up table which corrected for the 
nonlinear intensity/voltage relationship of the display 
oscilloscope. 

Subjects and VEP recording 

Studies were conducted on six normal subjects (two 
male, four female) who ranged in age from 25 to 43 yr, 
and had visual acuities (with correction if necessary) of 
20/20 or better. One subject (KE) participated only in the 
first experiment. Subjects were instructed to fixate 
binocularly on a fixation point placed at the center of 
the visual stimulus. Scalp signals were obtained from 
standard gold cup electrodes, applied to the scalp with 
Nihon-Kohden electrolyte paste at Cz (+) and Oz ( - ) .  
Electroencephalographic activity was amplified 10,000- 
fold, filtered (0.03-100 Hz) and digitized by the DEC 
11/73 computer at the frame rate of 270.3 Hz. Fourier 
analysis was carried out on-line, and confidence limits of 
the Fourier coefficients were determined off-line by the 
Tcirc statistic (Victor & Mast, 1991). 

Stimuli were presented in 65 sec runs of texture 
alternation. The initial portion of each run was discarded. 
The remaining 60.5 sec of the recording, which com- 
prised responses to 128 presentations of each kind of 
texture, was averaged with respect to the stimulus period 
of 473 msec. Recording sessions were organized in 
groups of 64-128 runs, consisting of four to eight 
examples of each run type. Within sessions, the order of 
the different run types was randomized in blocks. 

RESULTS 

Initial observations: sensitivity to spatial phase 

In the first experiment, we examined responses to 
alternations of even and random textures subjected to 
either a small amount of phase jitter (0 = 0.125rt: spatial 
phases jittered by up to 1/8 of a cycle) or complete 
randomization of spatial phases (0 = n). Textures had a 
contrast of 0.4 prior to phase jittering, and the check size 
was 8 min. In this initial experiment, we were concerned 
about the possible dependence of responses on the 
selection of individual examples of the even and the 
random textures. Therefore, the experiment was orga- 
nized as eight kinds of runs for each condition 
(0=0.125rt or 0=re), each with-a different single 
example of textures and a different choice of random 
values for phase jitter within the allowed range. The even 
and random texture examples used to generate the stimuli 
for the low phase jitter condition (0 = 0.125n) and the 
high phase jitter condition (0 = n) were the same; these 
stimuli differed only by the amount of phase jitter. Each 
of the 16 conditions (eight pairs of texture examples and 
two levels of phase jitter) was presented for four 1 min 
runs, so that effects of texture example, phase jitter, and 
random run-to-run variability could be distinguished. 



HIGH-ORDER PHASE CORRELATIONS 1619 

Example 1 

Example 2 

Example 3 

Example 4 

Example 5 

Example 6 

Example 7 

Example 8 

a. Raw Data 

0 = 0.1257t 

F V  " g ' "  

t W V "  

t / '  

b. Symmetric 
Component 

0 = n 0 = 0.125~ 0 = 

I w V  IV v 

IV v IV V 

IV  Y 

IW V I'V " v  

I"V IV  ' V  -'v" 

I W V  IY Y 

t-V --v "" l"v ';v "" 

c. Antisymmetric 
Component 

0 = 0.125~ O = 

p L . . . . .  

l j -  ,~ 

S: BG 
10 taV t 473 msec 

FIGURE 2. Responses elicited by alternation between examples of even and random textures subjected to small amounts 
(0 = 0.125x) and large amounts (0 = •) of phase jitter. In each panel, the two responses in each row correspond to stimuli based 
on the same examples of even and random textures, which differ only in the amount of phase jitter. Responses within a single 
column correspond to stimuli based on different examples of even and random textures, but the same amount of phase jitter. 
(a) Raw averages. (b) Symmetric response component. (c) Antisymmetric response component. Check size: 8 min. Contrast 

(prior to phase jittering): 0.4. Subject: BG. 

Visual evoked potentials (VEPs) obtained from one 
subject are shown in Fig. 2. In both cases, the responses to 
the different texture examples which share the same 
amount of phase jitter are nearly identical. On the other 
hand, there are dramatic differences in the responses to 
textures which have the same spatial frequency content 
but a different amount of phase jitter. This is most clearly 
seen by decomposing responses into a symmetric 
response component, consisting of the even harmonics, 
and an antisymmetric component, consisting of the odd 
harmonics (Victor, 1985; Victor & Zemon, 1985; Victor 
& Conte, 1987, 1991). The even harmonics contain the 
average of the responses to the two kinds of textures; the 
odd harmonics contain the difference between the 
responses to the two kinds of textures. 

As seen in Fig. 2, the symmetric response component 
to textures with either a small amount of phase jitter 
(0 = 0.125rt) or a maximal phase jitter (0 = n) are similar, 
consisting of a brief occiput-positive component with a 
latency of 100-120 msec following each texture inter- 
change. However, the antisymmetric response compo- 
nent was prominent only for the condition with a small 
amount of phase jitter, and had much slower dynamics. 
The responses to the textures with a small amount of 
phase jitter are similar to responses elicited by inter- 
change between structured and random textures with 
sharp edges and no phase jitter, and the responses to the 

textures with a large amount of phase jitter are similar to 
those elicited by interchange between different examples 
of random textures (Victor & Conte, 1989, 1991). 

For this subject, the antisymmetric response, as 
quantified by the amplitude of the first harmonic, 
averaged across all texture examples, was 2.32/W in 
the low phase jitter (0=0.125x) condition, but was 
reduced to 0.14#V in the maximal phase jitter (0 = x) 
condition. The symmetric response, as quantified by the 
amplitude of the second harmonic, was similar in these 
two conditions: 2.00 for 0 = 0.125x, and 1.87 for 0 = n. 
Across all subjects, increasing phase jitter reduced the 
first-harmonic response amplitude by 62-98% (average 
of 87%), while second harmonics were reduced slightly 
in four subjects and augmented in two subjects (23% 
reduction to 21% augmentation, average of 2% reduc- 
tion). 

The marked dependence of the first harmonic on phase 
jitter is in contrast with its independence of the choice of 
texture example. For the subject shown in Fig. 2, the 
dependence of the amplitude of the first harmonic on 
choice of texture example amounted to 21% of the 
response amplitude (4% of the power) in the low phase 
jitter condition; for the six subjects, the average 
dependence of the amplitude on texture example was 
26%. Second-harmonic responses showed a similarly 
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a. Raw Data 

Phase J i t ter  = 0.0~ 0.125n 
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b. Symmetric Component 

Phase Ji t ter = O.On 0.125n 

c. Antisymmetric Component 
Phase J i t ter  = O.On 0.125x 
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0.5n 0.625x 0.75n :t 

0.25x 0.375n 0.5n 0.625n 0.75n 

r ~ - r  . . . .  

IO~V 473 m ~  

S: JV 
FIGURE 3. Responses elicited by alternation between examples of even and random textures subjected to graded amounts of 
phase jitter, for four check sizes. (a) Raw averages. (b) Symmetric response component. (c) Antisymmetric response 

component. Contrast (prior to phase jittering): 0.4. Subject: JV. 

small dependence on texture example: 21% for 
0 = 0.125rt and 22% for 0 = re. 

To determine whether the dependence on texture 
example was more than that due to chance alone, we 
compared the response variability across choices of 
texture example to the response variability within 
replicate runs of the same texture example. For this 
comparison, we used an analysis of variance based on the 
Tcirc statistic (Victor & Mast, 1991), a statistic which is 
specifically suited to the detection of steady-state evoked 
potentials and appears near-optimal (Dobie & Wilson, 
1993) in this regard. Two subjects (JV and MC) showed a 
"significant" dependence (P < 0.05) of the first harmonic 
on texture example for both levels of phase jitter, and a 
third subject (SM) showed a significant dependence only 
in the maximal phase-jitter condition (0=n) .  Two 
subjects (JV and RB) showed a significant dependence 
of the second harmonic on texture example for 0 = 0.125, 

and one (KE) showed a significant dependence on second 
harmonic for 0 = re. 

In sum, our major finding was that the antisymmetric 
response component elicited by isodipole texture inter- 
change was essentially abolished by a full randomization 
of phase (0 = n). Secondarily, this change could not be 
accounted for by the choice of the texture example. The 
dependence on texture example was small (c. 20% of 
amplitude, or 4% of variance), but did reach statistical 
significance in some subjects. Therefore, in the later 
experiments, in which we explored dependence on 
amount of phase randomization, check size, or contrast, 
we averaged over runs in which at least four different 
examples of the textures were used. 

Interaction of phase manipulation and check size for the 
even textures 

In the next experiment, we examined the dependence 
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FIGURE 4. Size of antisymmetric response, as measured by the first 
harmonic amplitude, elicited by alternation between examples of even 
and random textures subjected to graded amounts of phase jitter. The 
dashed lines are a fit of the data to Kl(sin 0)/0] 4. Error bars are 95% 
confidence limits as determined by Tcirc. (a) 4 min checks; (b) 8 min 

checks; (c) 16 min checks. Data of Fig. 3. 

of the symmetric and antisymmetric response compo- 
nents on the degree of phase jitter and on check size. We 
used independent jittering of phases, ranging from no 
phase jitter (0 = 0) to maximal phase jitter (0 = n) in steps 
of 0.125n, and check sizes ranging from 4 to 32 min. 

Data obtained from one subject are shown in Fig. 3. As 
seen in (a), responses generally contain a mixture of 
symmetric and antisymmetric components. The sym- 
metric component, shown in (b), is nearly independent of 
phase jitter, and steadily increases in amplitude with 
increasing check size. The antisymmetric component, 
shown in (c), depends strongly on the amount of phase 
jitter. For textures with no phase jitter (i.e. subjected only 
to low-pass spatial filtering), the antisymmetric response 
is largest for 8 and 16 rain checks, and is not significantly 

different from zero for 32 min checks (via Tcirc with 95% 
confidence limits). These findings are consistent with the 
spatial tuning previously reported for VEPs elicited by 
unblurred isodipole textures (Victor & Zemon, 1985). 
However, for complete randomization of phases (0 = n), 
the antisymmetric response is only significantly different 
from zero for the 4 min checks. 

The dependence of the size of the antisymmetric 
response, as measured by the amplitude of the first 
Fourier component, is analyzed in more detail in Fig. 4. 
For 8 and 16 min checks, response size drops essentially 
to zero for 0 = 0.57t. For 4 min checks, the response size 
drops rapidly over the range from 0 = 0 to 0 = 0.5n, and 
then remains constant for larger amounts of phase jitter. 
This corresponds well with informal psychophysical 
observations: for the larger check sizes, the phase-jittered 
even textures become indistinguishable from phase- 
jittered random textures for 0 = 0.375n-0.5n; for 4 min 
check sizes, the even textures remain minimally distin- 
guishable over the entire range of phase-jittering. The 
dashed lines in Fig. 4 correspond to the function 
K[(sin 0)/0] 4. This is the functional form expected for 
the size of the antisymmetric response (see below) in the 
limit of purely local processing, and is seen to be a good 
fit for the 8 and 16 min checks, but not 4 min checks. 

These VEP findings held across the other four subjects. 
In all subjects, there was a significant antisymmetric 
response to 4 and 8 min checks for 0 = 0, and for four of 
the five subjects, there was a significant antisymmetric 
response to 16 min checks for 0 = 0. For 4 min checks, 
the response remained significant at 0 = rt in four of the 
five subjects, but had an amplitude which averaged 38% 
of the amplitude of the response to the unjittered textures. 
However, for 8 and 16 min checks, complete phase 
jittering resulted in responses which were not signifi- 
cantly different from 0 for any of the subjects. No subject 
had significant antisymmetric responses to the textures 
created from 32 min checks. 

Dependence on contrast 

The next experiment compared the effects of phase 
jitter with the effects of overall changes in contrast. As 
seen in Fig. 5, the attenuation of responses due to 
increased phase jitter is not comparable to the attenuation 
of responses due to decreased contrast. Increasing 
amounts of phase jitter leave the symmetric response 
component [Fig. 5(b)] unchanged, while the antisym- 
metric response component [Fig. 5(c)] is reduced 
essentially to zero at 0 = 0.57z. Contrast changes over 
the range 0.05-1.0 have only modest effects on the 
amplitude of both symmetric and antisymmetric compo- 
nents. However, response phase is affected by overall 
contrast and not by phase jitter. Responses at higher 
contrasts show a relative phase lead in comparison to low 
contrast responses, but there is no change in temporal 
response phase (of either symmetric or antisymmetric 
response components) as phase jitter increases from 0 = 0 
to 0=~z. This is illustrated for the antisymmetric 
component in Fig. 6. 
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FIGURE 5. Comparison of the effects of  graded amounts  of  phase jitter and contrast. (a) Raw averages. (b) Symmetric response 
component. (c) Antisymmetric  response component.  Check size: 8 min. Subject: JV. 

Other subjects showed similar trends. For blurred there was no consistent dependence of response phase on 
textures without phase jitter, response amplitude de- the amount of phase jitter. 
pended only weakly on contrast, increasing typically by a 
factor of 2 over the range 0.05-1.0 (range: 1.02-2.46, The effects of product-method manipulation of phase on 
geometric mean: 1.70). In all subjects, response phases the even textures 
showed increasing phase lead with increasing contrast In the previous experiments, we used a phase 
(range: 0.04-O.427r radians, mean 0.24rt radians), but randomization algorithm (the independent method) 
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FIGURE 6. Size of antisymmetric response, as measured by the first 
harmonic amplitude, and phase of first harmonic response elicited by 
alternation between examples of blurred even and random textures 
over a range of contrasts (a) and as a function of phase jitter for 
contrasts of 0.1 (b) and 0.4 (c). Error bars are 95% confidence limits as 
determined by Tci,c. Phase data are only shown for responses which are 

significantly different from zero. Data of Fig. 5. 

which destroyed correlations of all orders among the 
Fourier components. In the next set of experiments, we 
used a phase randomization algorithm (the product 
method, as described in Methods) which eliminated 
phase correlations between pairs and triples of Fourier 
components, but preserved correlations among certain 
quadruples of Fourier components. The comparison of 
the VEPs elicited by textures with these two kinds of 
phase decorrelation used stimuli based on precisely the 
same examples of the even and random textures. 

Typical results are shown in Fig. 7. As described 
above, textures subjected to independent phase jittering 
provided little antisymmetric response for phase jitters of 
0 = 0.5n or greater. However, textures subjected to phase 
jittering by the product method, which preserves certain 
higher-order phase correlations, elicited significant anti- 
symmetric response components for all values of the 
phase jitter. Indeed, there was no detectable dependence 
of the amplitude or phase of the first-harmonic response 
on the amount of phase jitter, provided that phase jitter 
was introduced by the product method. 

Across the four subjects studied, the ratio of the 
amplitude of the first harmonic response for maximal 
independent phase jitter to the response without phase 
jitter ranged from 0.07 to 0.26 (geometric mean 0.13)-- 
i.e. it was essentially eliminated with maximal phase 
jitter. However, with phase jitter by the product method, 
the ratio of the first harmonic response with maximal 
jitter to the response without phase jitter ranged from 
0.79 to 1.35 (geometric mean 1.02). Thus, the correla- 
tions in phase that are preserved by the product method 
suffice to preserve the antisymmetric response compo- 
nent, despite the loss of all pairwise and three-frequency 
phase correlations. 

The effects of phase manipulation on the triangle textures 

In the final set of experiments, we investigated whether 
the effect of phase manipulation on responses to 
alternation between the even and random textures 
generalized to other isodipole texture interchanges. In 
these experiments, the triangle texture [defined by 
equation (2)] was substituted for the even texture. We 
chose the triangle texture because: (i) it is a third-order 
texture, as opposed to the even texture, which is fourth- 
order; and (ii) VEPs elicited by interchange between the 
triangle texture and the random texture had dynamics 
which differed from those elicited by even/random 
interchange, which suggested that these two textures 
may drive different mechanisms (Victor & Conte, 1991). 

As in the previous experiments, we used a stimulus 
period of 473 msec, in which the first half contained a 
triangle texture, and the second half contained a random 
texture. In alternate periods, the contrast of the stimulus 
was inverted. For the even texture, this contrast-inversion 
merely generated new examples of the even texture, and 
provided a means for balancing local luminance across 
the texture examples. For the triangle texture, contrast 
inversion also provides luminance balance, but at the 
expense of converting textures which have prominent 
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FIGURE 7. Comparison of the effects of independent and product method phase jitter for the even texture. (a) Raw, symmetric. 
and antisymmetric components as a function of independent phase jitter. (b) Raw, symmetric, and antisymmetric components as 
a function of phase jitter via the product method. The product method induces random, uncorrelated shifts between pairs of 
Fourier components, but preserves certain phase relationships between quadruples of Fourier components. The responses of (a) 
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responses shown in (a) and (b). Open symbols: independent method; solid symbols: product method. Error bars are 95% 

confidence limits as determined by Tc~rc. Check size: 8 rain. Contrast (prior to phase jittering): 0.4. Subject: RB. 

bright triangles into textures which have prominent  dark 
triangles. Previously (Victor & Conte, 1991), we showed 
that VEP responses to these two different polarities of  
triangle textures are identical, a result which we 
confirmed in this study by compar ing  responses to 
alternate stimulus periods. Responses  f rom these alter- 
nate stimuli periods were therefore averaged together. 

The effect of  phase jitter on the VEPs elicited by 
alternation between the triangle texture and the random 
texture are shown in Fig. 8. As in the case of  the even 

textures, triangle textures subjected to independent phase 
jittering provided no significant ant isymmetr ic  response 
for phase jitters of  0 = 0.375rc or greater (a and c). The 
symmetr ic  response, as assayed by the second harmonic,  
was  essentially independent o f  phase jitter (a and d). The 
same behavior  was  seen for phase jittering by the product 
method (b, c, and d): the ant isymmetr ic  response 
disappeared for phase jitters of  0 = 0.375rc or greater (b 
and c), while the symmetr ic  response was  independent of  
phase jitter (b and d). 
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This experiment was performed in two other subjects 
(JV and RB), with similar results. The symmetric 
response was relatively independent of either kind of 
phase jitter (no significant change in any of the subjects). 
However, the antisymmetric response was sharply 
attenuated by either kind of phase jitter. In all subjects, 
the first harmonic response was not significantly zero at 
0=0.5rt or greater. With independent phase jitter of 
0 = 0.375rc, the first harmonic averaged 24% of its size in 
the absence of phase jitter. With product method phase 
jitter, the first harmonic averaged 35% of its size in the 
absence of phase jitter. This is in marked contrast to the 
interaction of phase jitter with the responses to the even/ 
random interchange. For the even/random texture, 
independent phase jitter attenuates the response, but 
product-method phase jitter does not (Fig. 7); for the 
triangle texture, both kinds of phase jitter attenuate the 
response. 

One can readily understand the loss of VEP amplitude 
seen with product-method decorrelation of the triangle 
texture: the product method primarily retains correlations 
along the horizontal and vertical axes, and these axes are 
not very important for this texture. This emphasizes that 
the antisymmetric VEP response is not driven by the 
global phase statistics per se, but rather on particular 
spatial features of the stimuli. 

phases are subjected to randomization by 0.5z 
radians or more. For textures based on pixels of 
4 min, the antisymmetric response is attenuated by 
phase jitter, but remains nonzero even for full 
phase randomization. 

(ii) The reduction in antisymmetric response size with 
increasing phase jitter was not accompanied by a 
change in phase of the antisymmetric response 
component, nor a change in the amplitude or phase 
of the symmetric response component. This is in 
distinction to the effect of decreasing contrast, 
which attenuates the size of antisymmetric and 
symmetric response components, and produces a 
relative phase lag. 

(iii) Randomization of phases by a method which 
destroys all pairwise and third-order phase rela- 
tionships but preserves certain fourth-order phase 
relationships ["the product method" of equation 
(7)] results in preservation of the antisymmetric 
response to even/random interchange, for all 
amounts of phase jitter. 

(iv) For interchange between the triangle and the 
random texture, the antisymmetric response dis- 
appears for phase jitters of 0.375rt or greater, 
whether the phases are independently jittered or 
subject to the constraint of equation (7). 

DISCUSSION 

Summary of results 

We studied the role of spatial phase in the analysis of 
visual form. In order to focus on processes beyond simple 
spatial filtering, we studied VEP responses to interchange 
of isodipole textures. The odd harmonics of this response 
("the antisymmetric response component") contain the 
difference of the responses to two textures. The statistical 
properties of the textures (in the ensemble sense) 
eliminate responses driven by local luminance, contrast, 
or spatial frequency differences, and the size of the 
antisymmetric response component correlates well with 
psychophysical discriminability (Victor & Conte, 1987, 
1989, 1991). In this study, we have quantified the 
antisymmetric response size by the amplitude and phase 
of the first harmonic, and use this as an index of 
discriminability. Conversely, the even harmonics ("the 
symmetric response component") resemble the tradi- 
tional P-100 and contain contributions from mechanisms 
sensitive to contrast changes, independent of texture 
identity (Victor, 1985; Victor & Zemon, 1985; Victor & 
Conte, 1989, 1991). We have therefore used the 
amplitude and phase of the second harmonic as an index 
of response to contrast changes, independent of spatial 
pattern. 

Our main findings are: 

(i) The size of the antisymmetric VEP response is 
markedly attenuated when the phases of the spatial 
Fourier components are jittered. For "even" 
textures based on pixels of 8 and 16 min, the 
antisymmetric response is essentially zero when 

Texture discrimination: Local vs global 

Multiple lines of evidence indicate that texture 
discrimination requires nonlinear processing of the visual 
input. Within the broad class of nonlinear models, one 
may identify two extremes along a continuum: models in 
which local nonlinearities are prominent, and models 
based primarily on global nonlinearities (i.e. linear 
filtering followed by a decision process). The local vs 
global distinction, though very useful conceptually, is 
surprisingly difficult to formalize, because a global 
nonlinear process can typically be recast as a sum of 
local nonlinearities. Additive pooling of receptive field 
outputs followed by a single nonlinearity is computa- 
tionally equivalent to a model which sums the outputs of 
nonlinearities operating on each receptive field output, 
along with a series of contributions from interactions 
among receptive fields. Because of this fundamental 
ambiguity, we have resorted to a somewhat more abstract 
approach to formalizing this conceptual distinction. 

Any computational model presented in terms of 
receptive field profiles, dynamical elements, and non- 
linearities--the spatial domain----can be recast into the 
Fourier domain. This is because the Fourier transform of 
the visual image (an assignment of amplitude and phase 
to each spatial frequency) preserves all of the information 
in the image, and thus, any calculation performed on the 
image can be performed on its transform. A nonlinearity 
in the spatial domain will thus translate into a multi- 
plicative interaction between two or more components of 
the Fourier representation. 

The Fourier transform of a visual image f(x) consists of 
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a set of complex-valued quantities if(k), one at each 
spatial frequency k, and we think of each Fourier 
component rP(k) in terms of its amplitude and phase. 
Translation of the visual image (a spatial shift of a visual 
image f(x) by an amount Ax) corresponds to multi- 
plication of the Fourier transform ~,(k) at the spatial 
frequency k by e 'kAx. This multiplicative factor necessa- 
rily leaves the amplitude unchanged, but can shift the 
phase to arbitrary values. Thus, while Fourier amplitudes 
can be used for texture discrimination or object 
identification, the absolute spatial phase of an individual 
Fourier component cannot---even though spatial phase is 
known (Oppenheim & Lim, 1981; Field, 1987; Shapley et 
al., 1990; Morgan et al., 1991) to be critical for object 
identification. Thus, Fourier analysis identifies two 
sources of information for texture discrimination or 
object identification: the amplitude of individual Fourier 
components, and the relative spatial phases of two or 
more Fourier components. 

Any spatial nonlinearity has the potential to generate 
relative spatial phase information, since multiplicative 
interactions in the spatial domain will translate into 
multiplicative interactions among two or more Fourier 
components ~(kl), ~(k2) .... However, only certain kinds 
of spatial nonlinearities can generate relative spatial 
phase information which is both nonredundant with the 
amplitude information and independent of absolute 
spatial position (and thus of potential relevance to object 
identification). A spatial shift by an amount Ax will 
multiply the product rP(kl)~,(k2)o.... ~(k.) by the product 
of the phase factors which correspond to the individual 
Fourier components: e ~kl ~Xe~k2z~... e ~k"~. In order for the 
value of this product to be independent of the spatial shift 
Ax, the spatial frequencies must sum to zero: 
kl + k2 +. . .  + kn = 0. In the (trivial) case in which the 
number of components n is 1, this condition reduces to 
kl = 0, which corresponds to the fact that the zero- 
frequency component (0) (the space-averaged lumi- 
nance) is the only one whose phase is independent of 
absolute position. When the number of components n is 
2, the sum-to-zero condition reduces to k2 = - k l .  This 
corresponds to extraction of Fourier amplitudes, since 
vP(kl)~(-kl) = [ff(kl)l 2. That is, second-order interac- 
tions of spatial phases do not lead to any position- 
invariant terms that could not be obtained from analysis 
of the individual Fourier amplitudes. Only when the 
number of Fourier components n is three or more can 
such interactions provide new information. This is 
because it is possible to identify three or more spatial 
frequencies kl, k2, k3 .... which sum to zero but do not 
consist of complex-conjugate pairs. The unique feature of 
the n :-3-cases (in comparison with the familiar n = 1- and 
n = 2- cases) is that they allow for position-independent 
quantities I~'(kl)~'(k2) . . . . .  ~(k~) which are sensitive to 
the relative phases of several individual Fourier compo- 
nents. 

The term ~i,(kl)rP(k2) . . . . .  ~,(k~) may be independent of 
the relative phase of its factors, even for n > 3, if the 
frequencies kl, k2 ..... k,, consist of pairs of conjugate 

frequencies kr and - -k ,  possibly along with occurrences 
of the 0-frequency. In this case, the interaction term 
ff(kl)ff(k2) . . . . .  ~(kn) reduces to a product of Fourier 
amplitudes. Such terms would dominate in models 
which depended on interactions between the energy in 
two spatial frequency channels, on a nonquadratic 
computation of energy within a single channel, or on 
the deviation of the power spectrum of texture samples 
from that of their ensemble. 

The dependence on relative phase properly formalizes 
the essence of the local vs global distinction. Indepen- 
dence of relative phase is equivalent to computations 
based on global Fourier amplitudes, no matter what kinds 
of nonlinearities are applied. Fourier amplitudes are the 
phase-independent (i.e. position-independent) quantities 
that can be extracted from an array of receptive fields 
whose profiles are full-field gratings. Whether these 
Fourier amplitudes are processed independently or 
interact, such computations represent the extreme of 
global analysis. 

A real receptive field is not likely to resemble a full- 
field grating, but will have some limited spread (and 
consequently, will be sensitive to more than a single 
spatial frequency). The output of a realistic receptive 
field may nevertheless be used in a global or a local 
fashion. One can imagine that spatial pooling of 
randomly positioned homologous receptive fields occurs 
in a fundamentally linear fashion. Because of the 
randomness of the receptive fields' positions, this will 
produce signals that are independent of the relative 
spatial phases in the stimulus--and is thus an imple- 
mentation of a global analysis with local receptive fields. 
However, if such locally generated signals interact 
nonlinearly prior to spatial pooling--the essence of a 
local model--any further computations will contain 
traces of dependence on relative spatial phase. 

There is another way to see that for a nonlinear 
receptive field with a linear front end, sensitivity to 
relative spatial phase implies local processing. Insensi- 
tivity to spatial phase would imply that all interaction 
terms ¢V(kl)fV(k2) . . . . .  ~(kn) consisted only of pairs of 
conjugate frequencies kr and -kr .  That is, such terms 
cannot be accompanied by interaction terms 
rb(k 1 + Akl)l~'(k 2 + A k 2 )  . . . . .  Ib(kn + Akn) at nearby, but 
unpaired, spatial frequencies. Therefore, a high degree 
of spatial frequency selectivity is necessary to allow 
interactions among a set of spatial frequencies, 
kl, kz ..... k~ but not among nearby spatial frequencies 
kl+Akl ,  kz+Ak2,..., k~+Ak,,. As is well known 
(Daugman, 1985), the frequency selectivity (bandwidth) 
is reciprocally related to the summing length. That is, 
insensitivity to relative spatial phase (exclusion of 
interactions among nonconjugate spatial frequencies) 
requires a high degree of frequency selectivity, which in 
turn requires a large summing area. Conversely, small 
summing areas provide the opportunity for interactions 
across a range of spatial frequencies, and thus allows 
simple nonlinearities to generate generic terms 
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~(kO~(k2)'...'r~(kn) that depend on relative spatial 
phases. 

Implications of the dependence of responses on spatial 
phase 

In this study, we have shown that responses to certain 
textures depend strongly on spatial phase, and thus, that 
the neural computations underlying the generation of the 
VEP are fundamentally local, in the sense we have 
formalized above. This conclusion relies only on a 
comparison of responses to textures with undistorted 
spatial phases (0 = 0) to textures in which spatial phases 
have been completely randomized (0 = n). However, we 
have also examined responses parametric in the degree of 
randomization (0). A straightforward but tedious calcula- 
tion shows that for the even textures, there is an 
asymptotic limit (check sizes larger than receptive field 
elements) in which the dependence of interactions on the 
amount of spatial phase randomization is approximately 
[(sin 0)/0] 4. This function has a value of 1 at 0 = 0 and 
declines rapidly over the range [0, n], achieving a value 
of 0.16 at 0 = 0.5n. In view of the approximations made 
to derive the expression, we expect that it will be valid for 
responses to stimuli with sufficiently large check sizes, 
but that, (as check size decreases below some critical 
value) departures from this behavior will occur. When 
checks are sufficiently small, we anticipate that responses 
will not decline to zero even for 0 = n, because of 
conjugate-frequency terms originating in pointwise 
nonlinearities. This is consistent with our results (Fig. 
4), in which the antisymmetric response size has the 
dependence [(sin 0)/0] 4 on check size for 8 and 16 min 
checks, but does not decline to zero for checks of size 
4 min. 

Implications for modeling of the genesis of the antisym- 
metric response component 

Since isodipole texture pairs have, in an ensemble 
sense, the same spatial frequency content, discrimination 
between them necessarily relies on processing beyond 
linear filtering and extraction of power spectra. Thus, 
studies of visual discriminations between isodipole 
textures (Caelli & Julesz, 1978; Julesz et al., 1978, 
Victor, 1985) represent a probe to analyze nonlinear 
mechanisms underlying the extraction of local features. 
However, despite the equality of second-order statistics at 
the ensemble level, individual instances of isodipole 
textures necessarily differ in spectral content. In 
principle, these differences might support isodipole 
texture discrimination based on global power spectral 
statistics [see discussion in Yellott (1993) and Victor 
(1994)]. The present study forces rejection of this 
hypothesis. Whatever inter-example differences in global 
power spectra might be present in individual examples 
are preserved by spatial phase jittering. Nevertheless, 
spatial phase jitters of >0.5n radians destroyed the 
distinguishing features of the isodipole textures, and the 
associated antisymmetric VEP component. This implies 
that local features, not global spectral content, underlie 

I 

I 

ra 
FIGURE 9. Proposed model for the generation of the antisymmetric 
response by even textures. The local subunits are antagonistic 
Gaussians of radius r separated by an amount 2ra. Their outputs are 
rectified, and rectified signals pooled from N collinear subunits (each 

separated by an amount ro) are subject to a threshold h. 

the difference in processing of distinguishable isodipole 
textures. 

Previously (Victor & Conte, 1989, 1991), we have 
used the dependence of the antisymmetric response on 
texture type and degree of correlation to construct a local 
computational model (Fig. 9) for edge extraction. The 
essential features of this model (Fig. 7 of Victor & Conte, 
1991) are: (i) local subunits whose outputs are indepen- 
dently rectified; and (ii) a second nonlinearity which 
pools these outputs along a line. Elimination of either of 
the two nonlinearities collapses the model to more 
standard models of cortical cells and edge detectors, but 
fails to account for the antisymmetric response compo- 
nent. With both nonlinearities intact and at least four 
subunits, this model accounted for which classes of 
fourth-order isodipole textures are distinguishable psy- 
chophysically, and for the dependence of the size of the 
antisymmetric response on short- and long-range correla- 
tions (Victor & Conte, 1989). Furthermore, the distinc- 
tive dynamics of the antisymmetric VEP response to the 
triangle textures (which are third-order isodipole tex- 
tures) suggested that these textures generate an antisym- 
metric response via a different mechanism (Victor & 
Conte, 1991), and were not accounted for by this model. 

We now examine this model's response to the phase- 
jittered even textures via Monte Carlo simulations, with 
model parameters taken from Table 6 of Victor and Conte 
(1991): 

N (number of subunits)----6; 

h (strength of second nonlinearity)----0.6; 
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components of square waves and related stimuli played a 
crucial role in the appearance of features such as edges, 
and proposed a model which relied on phase relationships 
between broadly tuned (i.e. local) spatial filters. Regan 
and Regan (1988) used a VEP approach to examine 
interactions between pairs of vertical sine gratings, each 
of which were modulated by independent frequencies. 
Although some of the interaction terms (e.g. 2F1 + 2F2) 
were independent of spatial phase, others (e.g. F1 + F2, 
F1 + 3F2, and 5 F 2 -  F2) were strongly dependent on 
spatial phase. 

In studies of stimuli which vary along two dimensions, 
Georgeson and Shakelton (1994) showed that the amount 
of energy at one orientation can influence the perceived 
contrast at a second orientation, but did not determine 
whether this interaction was dependent on spatial phase. 
Other recent studies have shown that spatial phase played 
a role both in the detection and apparent contrast 
(Tiippana et al., 1994) of compound two-dimensional 
grating patterns. Julesz' studies of isodipole textures 
(Caelli & Julesz, 1978; Julesz et al., 1978; Julesz, 1981), 
which demonstrate perceptual differences in textures 
despite similar spectral content, imply (see above) that 
the perception of local features depends either on high- 
order moments of Fourier amplitudes or on phase- 
dependent interactions among several spatial frequen- 
cies. In this study, by explicitly examining the role of 
spatial phase in isodipole textures, we have eliminated 
the role of high-order moments of Fourier amplitudes, 
and thus demonstrated the importance of spatial phase. 

One difficulty with the interpretation of many of these 
studies is that alteration of the spatial phases of the 
components of a compound grating necessarily changes 
its intensity profile. For one-dimensional patterns, 
sensitivity to relative contrasts within this profile suffice 
to account for spatial phase discrimination (Badcock, 
1984a, b), and thus there appears to be no need to 
postulate mechanisms sensitive to spatial phase per  se. 
For two-dimensional patterns, this argument is less 
compelling, because the superposition of a grating in a 
second direction will tend to mask differences in intensity 
profile. While we agree that a local analysis (Victor & 
Conte, 1991), rather than sensitivity to spatial phase per  
se, is the likely basis for our findings, it is important to 
note that sensitivity to differences in the intensity profile 
cannot account for discrimination among isodipole 
textures either. Unblurred isodipole textures have the 
identical intensity profile, and blurred, phase jittered 
textures have intensity profiles which are very nearly 
Gaussian and have identical variance. 

Interpreted in the context of Fourier analysis, the 
interactions required to account for our results would 
involve specific interactions among four (or more) spatial 
frequencies in separate directions. The need for a four- 
way multiplication or equivalent process makes models 
based on narrow-band filters physiologically untenable. 
Rather, along with Morrone and Burr (1988), we interpret 
these findings in terms of a local model whose filters are 
broadly tuned in the frequency domain (Victor & Conte, 

1991), rather than as indicative of processing driven by 
spatial phase combinations of high order. 

Summary  

In conclusion, by manipulating the relative phases of 
spatial Fourier components, we have shown that the 
nonlinear processes involved in texture discrimination 
cannot be accounted for on the basis of the global 
characteristics of their spatial frequency spectrum. 
Generic phase decorrelations eliminate the VEP mea- 
sures of texture discrimination, but phase manipulations 
which destroy all pairwise and third-order correlations 
yet retain certain higher-order correlations preserve the 
antisymmetric VEP response to even textures. These 
findings are accounted for by a computational unit which 
contains rectification within a subunit, and nonlinear 
combination of subunit signals across a wider range. The 
modulatory effect of contrast on response size and timing 
(temporal phase) appears to be mediated by a feedfor- 
ward process which is insensitive to spatial phase. 
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r (radius of subunit Gaussian)----0.5 × check size; 

ra (separation of Gaussians within subunit)---0.5 × 
check size; 

rb (separation of subunits)---0.5 x check size. 

To generate responses from this model, the computa- 
tional units shown in Fig. 9 were placed in random 
position and orientation on examples of the even and 
random textures. For each placement, the output of each 
computational unit was calculated as described more 
fully in Victor and Conte (1991): linear summation 
within each Gaussian, subtraction of responses within 
each edge detector pair, rectification of this "subunit" 
response, summation of subunit responses, and a final 
threshold. This procedure was carried out for 100 random 
placements of the computational unit on 100 examples of 
each texture. The predicted "antisymmetric response" 
was equal to the difference between the average output 
generated in response to the even texture and the average 
output generated in response to the random texture. 
Across the range of phase jittering used in these 
experiments, the model's antisymmetric response closely 
matches the asymptotic prediction [sin (0)/(0)] 4 experi- 
mentally observed behavior for 8 and 16 min checks (Fig. 
4). 

Previously (Victor & Conte, 1989), we demonstrated 
an approximate proportionality between the size of the 
computational unit which generates the antisymmetric 
response, and the check size of the stimulus, and showed 
that this scaling was not due to retinotopic variation of 
receptive field size. In order to account for this scaling, 
we postulated that the basic computational unit is present 
across a range of spatial scales [see also Purpura et al., 
(1994)]. Since units with summing areas that are either 
substantially smaller or substantially larger than the 
check size do not contribute significantly to the response, 
only those units with check sizes which are well-matched 
to the check size need to be considered. Empirically (Fig. 
8 of Victor & Conte, 1989), this scaling behavior breaks 
down for checks of size 4 min or smaller. Correspond- 
ingly, Monte Carlo simulations based on computational 
units which were twice as large (relative to the check 
size) as those used for the 8 and 16 min checks correctly 
predict that response size declines with phase jitter, but 
not to zero. Another feature of the present data is that 
although perturbation of phases via the product method 
destroys all pairwise and third-order correlations among 
Fourier components, the antisymmetric response to the 
even textures is preserved. This too is predicted by the 
Monte Carlo simulations. 

Relevance for contrast gain control 

It is well recognized that some kind of adjustment of 
responsiveness based on a neural measure of contrast is 
both a widespread feature of cortical neurons, as well as 
crucial for efficient extraction of local features (Heeger, 
1992). Our model (Fig. 9) represents an elaboration of 
standard models for edge detection, in which two spatial 
nonlinearities combine to form a computational unit 

which extracts edges independent of changes in the sign 
of contrast. For this computational unit to retain its 
specificity over a wide contrast range, it is necessary that 
the effective setpoint of the second nonlinearity be 
adjusted based on some measure of stimulus contrast. 
Otherwise, setpoints which sufficed to detect edges at low 
contrasts would lose specificity at high contrasts, or 
setpoints which provided adequate specificity at high 
contrasts would fail to detect edges at low contrasts. 

Phase jittering dissociates the salience of local features 
from contrast, and thus provides a means to determine 
whether the neural measure of contrast and the extraction 
of local features are related in a feedback or feedforward 
fashion. As seen in Figs 5 and 6, increases in contrast 
result in a phase advance, but only slight enhancements in 
the amplitude of the symmetric and antisymmetric 
response components. However, phase jitter reduces 
antisymmetric response size, without retarding the 
response phase. This implies that the neural measure of 
contrast is derived prior to the extraction of local features. 
That is, the gain control appears to act in a feedforward 
manner, in which contrast (independent of the presence 
or absence of local features) adjusts the gain and 
dynamics of a feature-extraction stage. Had the gain 
control been feedback, then increasing phase jitter (and 
reduced antisymmetric response size) would have been 
associated with an additional phase lag. 

Relationship to other studies of spatial phase 

Although the most dramatic evidence that spatial phase 
conveys information which is crucial to object identifica- 
tion is derived from studies of natural images (Oppen- 
heim & Lira, 1981; Field, 1987; Shapley et al., 1990, 
Morgan et al., 1991), most quantitative analyses of the 
role of spatial phase have been restricted to stimuli which 
vary along a single dimension. Successful models of 
detection of one-dimensional patterns [see Graham 
(1989) for an overview] require channels of relatively 
broad bandwidth (i.e. local filters), which interact by 
probability summation (Wilson & Bergen, 1979). Such 
models necessarily result in at least a subtle sensitivity to 
spatial phase. As shown by Nachmias (1993), even 
detection of single sine gratings amidst visual noise 
cannot be accounted for simply on the basis of spatial 
frequency content. This was interpreted in terms of a 
local model (Green, 1983), which again implies a role for 
spatial phase. 

Several investigators have identified sensitivity to 
relative spatial phase in discrimination among one- 
dimensional periodic luminance (Nachmias & Weber, 
1975; Burr, 1980; Badcock, 1984a, b) and chromatic 
(Girard & Morrone, 1995) patterns. The studies of 
Rentschler and Treutwein (1985), Bennett and Banks 
(1987), and Morrone et al. (1989) provide strong direct 
evidence for foveal sensitivity to the relative phase of 
gratings, although they differed as to whether peripheral 
discrimination of spatial phase is intrinsically inferior to 
that of the fovea. Morrone and Burr (1988) demonstrated 
that manipulation of the relative phases of the Fourier 
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