
doi:10.1006/jsco.2001.0510
Available online at http://www.idealibrary.com on

J. Symbolic Computation (2002) 33, 255–273

Identities for the Associator in Alternative Algebras
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The associator is an alternating trilinear product for any alternative algebra. We study

this trilinear product in three related algebras: the associator in a free alternative algebra,

the associator in the Cayley algebra, and the ternary cross product on four-dimensional
space. This last example is isomorphic to the ternary subalgebra of the Cayley algebra

which is spanned by the non-quaternion basis elements. We determine the identities of

degree ≤ 7 satisfied by these three ternary algebras. We discover two new identities in
degree 7 satisfied by the associator in every alternative algebra and five new identities in

degree 7 satisfied by the associator in the Cayley algebra. For the ternary cross product

we recover the ternary derivation identity in degree 5 introduced by Filippov.
c© 2002 Elsevier Science Ltd

Introduction

Let F be a field and let A be a vector space over F . Let s : A × A −→ A be a bilinear
map. We call A, or more precisely the pair (A, s), a (binary) algebra over F . We write ab
instead of s(a, b) to denote the product of two elements a, b ∈ A. We define the associator
in A by the formula (a, b, c) = (ab)c−a(bc). We say that A is associative if (a, b, c) = 0 for
all a, b, c ∈ A; we say that A is alternative if (a, b, c) is an alternating function of the three
arguments a, b, c ∈ A. We define the commutator in A by the formula [a, b] = ab − ba.
Given any algebra A we can define a new algebra A− by using the same vector space A
but replacing the original product s(a, b) by the commutator [a, b]. We define the Jacobian
in A by the formula [a, b, c] = [[a, b], c] + [[b, c], a] + [[c, a], b]. If A is associative then A−

is a Lie algebra, that is, A− satisfies the Jacobi identity [a, b, c] = 0 for all a, b, c ∈ A.
If A is alternative then A− is a Malcev algebra, that is, A− satisfies the Malcev identity
[a, b, [a, c]] = [[a, b, c], a] for all a, b, c ∈ A.

A survey of non-associative structures may be found in the article by Kuzmin and
Shestakov (1995). A detailed exposition, including a discussion of free algebras, may be
found in the book of Zhevlakov et al. (1982).

Let t : A × A × A −→ A be a trilinear map. We call A, or more precisely the pair
(A, t), a ternary algebra or triple system over F . If t(a, b, c) is an alternating function of
its arguments, we call A an alternating ternary algebra; the identities defining this are

t(a, a, b) = t(a, b, a) = t(b, a, a) = 0, for all a, b ∈ A.
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In this case we write the product as (abc) or (a, b, c) instead of t(a, b, c). We are interested
in alternating ternary algebras for two reasons:

(1) The associator in any alternative algebra is an alternating function of its three
arguments. We obtain an alternating ternary algebra by using the associator as a
trilinear product defined on the same underlying vector space.

(2) A natural way to generalize Lie algebras to the ternary case is to start with an alter-
nating ternary algebra (the ternary version of an anticommutative binary algebra)
and then find a natural analogue of the Jacobi identity.

In the first case, we are studying identities for alternative algebras which are restricted
in the sense that the terms in the identities must be built out of associators. This re-
striction has the advantage that in each degree the number of possible terms is much
smaller than when the original binary product is used. (Identities for alternative algebras,
in particular the Cayley algebra, have been studied by Hentzel and Peresi (1997) and
Racine (1988).)

In the second case, we are looking for a ternary version of the Jacobi identity. There
are many different ways to approach this problem. Some of these are discussed in Kurosh
(1969), Baranovich and Burgin (1975), Filippov (1985), Gnedbaye (1995a,b, 1997),
Hanlon and Wachs (1995), Bremner (1997, 1998), and Bremner and Hentzel (2000).
All the identities presented in this paper can be regarded as candidates for a ternary
analogue of the Jacobi identity. (The traditional definition of Lie triple system uses a
trilinear operation which is alternating only in the first two factors, see Lister (1952).)

In this paper we study the following three related alternating ternary algebras:

(i) the associator in a free alternative algebra,
(ii) the associator in the Cayley algebra (the Cayley ternary algebra), and
(iii) the ternary cross product on four-dimensional space; this is isomorphic to the sub-

system of the Cayley ternary algebra which is spanned by the non-quaternion basis
elements.

We determine the identities of degree ≤7 in each of these systems. It is clear that every
identity for system (i) is an identity for system (ii), and that every identity for system (ii)
is an identity for system (iii). For (i) we discover two new identities. For (ii) we discover,
in addition to the identities in (i), five new identities. For (iii) we recover the ternary
derivation identity introduced by Filippov, which implies all the identities satisfied by
the ternary cross product in degrees 5 and 7.

The results in this paper were determined by machine computation over the field
with 103 elements. This was necessary in order to be able to store each matrix entry
in a single byte. In this way we also avoided integer overflow when computing the row-
canonical forms of very large matrices. For this reason the theorems in this paper are
stated over fields of characteristic 103. In some cases the results were checked by other
computations using the modulus 1009. Since 103 is much larger than the degrees of any of
the identities studied in this paper, this restriction on the characteristic is probably not
necessary, that is, the Theorems probably do in fact hold in characteristic 0. However,
there is a possibility that if these results are interpreted over the rational numbers then
we may have missed an identity or included a non-identity. In some cases we have been
able to verify directly that our identities hold in characteristic 0.
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Preliminaries

obvious identities

Every alternating ternary algebra satisfies certain obvious identities in each degree
which express the alternating properties of the ternary product. To illustrate this we
consider degrees 5 and 7. For a general ternary algebra there are three association types
in degree 5:

((−,−,−),−,−), (−, (−,−,−),−), (−,−, (−,−,−)).

For an alternating ternary algebra these 3 types may all be expressed in terms of the
single type ((−,−,−),−,−). The obvious identities in degree 5 are

((abc)de) = −((bac)de) = −((acb)de) = −((abc)ed).

Similarly, for a general ternary algebra there are 12 association types in degree 7, but for
an alternating ternary algebra these 12 types may all be expressed in terms of the two
types

((−,−,−), (−,−,−),−) and (((−,−,−),−,−),−,−).
Every alternating ternary algebra satisfies the obvious identities in degree 7:

((abc)(def)g) = −((bac)(def)g) = −((acb)(def)g)
= −((abc)(edf)g) = −((abc)(dfe)g) = −((def)(abc)g),

(((abc)de)fg) = −(((bac)de)fg) = −(((acb)de)fg)
= −(((abc)ed)fg) = −(((abc)de)gf).

Throughout this paper we are interested primarily in non-obvious identities, that is,
identities which do not follow from the obvious identities. To be precise, let S(n) denote
the free ternary algebra on n generators and let A(n) denote the free alternating ternary
algebra on n generators. Let I(n) denote the T -ideal in S(n) defined by the alternating
identities, that is, I(n) is the ideal generated by the values of the alternating identities

(a, a, b), (a, b, a), (b, a, a), for all a, b, c ∈ S(n).

Then by definition A(n) = S(n)/I(n). We call the elements of I(n) the obvious identities
for the alternating ternary product. We call an element of S(n)− I(n) (or more precisely,
a non-zero element of A(n)) which is satisfied by some alternating ternary algebra, a
non-obvious identity for that system.

alternating sums

If I is a multihomogeneous polynomial in an alternating ternary algebra such that the
letter x occurs at least twice in each term, then we will use the notation∑

alt(x)

I

to denote the alternating sum over the x positions, that is, if there are exactly k
occurrences of x in each term of I, then we introduce an ordered list of k letters (which
do not already occur in I) and take the alternating sum over the k! permutations of
these new letters in the x positions. We call this process alternating partial linearization.
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Warning: Be careful to distinguish between (axx), which is zero, since it is the value
of an alternating ternary product with two equal arguments, and

∑
alt(x)(axx), which

is not zero, since the alternating sum must be expanded before the alternating ternary
products are evaluated. An example should make this clear. The expression∑

alt(x)

{((axx)bx)− 2((bxx)ax)}

indicates that we should fill the x positions in both terms with the new letters c, d, e in all
permutations and multiply the coefficient by the sign of the permutation. The previous
expression expands to

((acd)be) + ((ade)bc) + ((aec)bd)− ((adc)be)− ((ace)bd)− ((aed)bc)
− 2((bcd)ae)− 2((bde)ac)− 2((bec)ad) + 2((bdc)ae) + 2((bce)ad) + 2((bed)ac).

Often the alternating property of the ternary product can be used to simplify the
expression. The last expression simplifies to

2((acd)be)− 2((ace)bd) + 2((ade)bc)− 4((bcd)ae) + 4((bce)ad)− 4((bde)ac).

This notation allows us to write a long identity in a shorter form by using the alternating
symmetries of the arguments.

multilinear ternary monomials

There are
(
5
3

)
= 10 multilinear alternating ternary monomials of degree 5:

((abc)de), ((abd)ce), ((abe)cd), ((acd)be), ((ace)bd),
((ade)bc), ((bcd)ae), ((bce)ad), ((bde)ac), ((cde)ab).

These 10 monomials form a basis for the S5-module of all multilinear homogeneous
polynomials of degree 5 in a free alternating ternary algebra. The group acts by permuting
the letters.

In degree 7, there are 1
2

(
7

3,3,1

)
= 70 multilinear monomials in the first association type

((abc)(def)g), and
(

7
3,2,2

)
= 210 multilinear monomials in the second association type

(((abc)de)fg). Thus the dimension is 280 for the S7-module of multilinear identities of
degree 7. Any identity in degree 7 can have at most 280 terms when written in multilinear
form with the letters in each ternary product put in alphabetical order using the obvious
identities.

sketch of the method

The computational methods (programmed in C and Pascal) used in this paper to
study identities were developed originally by Hentzel (1977, 1979, 1998); similar methods
(programmed in Maple) have been developed by Bremner (1997, 1998).

Suppose that f is a function with n arguments. It is convenient in this discussion to
write the function on the right as (x1, x2, . . . , xn)f . If π is any permutation of n objects,
we can first permute (x1, x2, . . . , xn) by π and then apply f to the rearranged arguments.
We introduce a word of caution here. If π = (1, 2, 3), then

(x1, x2, x3)π = (x3, x1, x2) 6= (x(1)π, x(2)π, x(3)π) = (x2, x3, x1).
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Our permutations apply to positions, not the subscripts of the elements in those positions.
The action of the permutation is still defined even when the arguments have no subscripts
or when they have inappropriate subscripts or when there are repeated arguments. For
example: (x, y, z)π = (z, x, y); (x7, x8, x9)π = (x9, x7, x8); (x1, x1, x2)π = (x2, x1, x1).

In many presentations of the representations of the symmetric group, the action of the
group is applied to the entries in a tableau. This is equivalent to applying the action to the
subscripts. The representations so generated can be used, but one has to remember to use
the representation of π−1 when one wants the representation of π. If in the presentation
the permutations are written on the left instead of the right, one can use the transpose
of the matrices to adjust for the reverse order of composition.

In this discussion we will write (x1, x2, . . . , xn)π to indicate the rearrangement of the
objects by the permutation π. If f is a function of n arguments, then π∗f will be the
function obtained by permuting the arguments first by π:

(x1, x2, . . . , xn)(π∗f) = ((x1, x2, . . . , xn)π)f.

If

g =
∑

π∈Sn

c(π)π

is any formal linear combination of the permutations of Sn, then g∗f is defined by
linearity as:

(x1, x2, . . . , xn)(g∗f) =
∑

π∈Sn

c(π)(x1, x2, . . . , xn)(π∗f)

=
∑

π∈Sn

c(π)((x1, x2, . . . , xn)π)f.

The group ring FSn consists of just such formal sums, and so for each g ∈ FSn we have
a function g∗f . (The structure of the group ring FSn has been described in the classic
works of Alfred Young; see Rutherford (1948) for an exposition based closely on Young’s
original work, and James and Kerber (1984), especially Chapter 3, for a more modern
presentation.)

If one takes any bijection of the set FSn to any other set Q, then one could say that
for any q ∈ Q, there is a function q∗f . The set Q we shall use is the isomorphic image
of FSn as a direct sum of matrices, and the bijection is actually an isomorphism of
associative algebras. Let s = sn denote the number of partitions of the positive integer
n, and denote the partitions by λj for 1 ≤ j ≤ s. Any partition λj of n determines an
irreducible representation Rj = Rλj

of Sn of dimension dj = dλj
. Let Md = Md(F )

denote the complete d× d matrix ring over F . The group ring FSn is isomorphic to Q,
the direct sum of the matrix rings Mdj for 1 ≤ j ≤ s:

Q = M
(1)
d1

⊕M
(2)
d2

⊕ · · · ⊕M
(s)
ds

.

There is one matrix ring summand for each partition of n where the matrix sizes equal the
dimensions of the corresponding irreducible representations of Sn. Each of these matrix
rings is a two-sided ideal in FSn, and the columns of these matrix rings are minimal left
ideals (simple left Sn-submodules) in FSn. The matrix ring corresponding to partition
λj is the isotypic component of FSn corresponding to λj , that is, it is the sum of the
simple left submodules of FSn isomorphic to Rj .
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If Ei
jk is the jk matrix unit of the ith summand, it is associated with some element

gi
jk of the group ring. If ∑

i,j,k

ci
jkEi

jk

is any element of the matrix direct sum, it must correspond to the group ring element

g =
∑
i,j,k

ci
jkgi

jk.

It is clear that if one could construct the elements gi
jk it would be easy to generate the

group ring element corresponding with any fill of the matrix direct sum.
There is no really nice correspondence between the group ring and the matrix direct

sum. The units of the matrix direct sum are the Ei
jk. The “natural units” of the group

ring are usually expressed as
ei
jS

i
jk

which are derived from the Young’s tableaux. Here ei
j is the idempotent corresponding

to the jth tableau for the ith partition of n, and Si
jk is the permutation which sends the

kth tableau into the jth tableau. The basic construction is that for the jth tableau of
partition i we have

ei
j =

∑
p,q

sgn(q)pq,

where the p are the permutations which leave the rows fixed as sets, and the q are the
permutations which leave the columns fixed as sets.

The map that sends Ei
jk to ei

jS
i
jk is one-to-one and linear. It is not a ring isomorphism,

but is close to one. It is essentially an isomorphism of FSn-modules, which is all we really
need to be able to identify the left action of FSn with row operations on matrices. If one
insists that the mapping preserve multiplication exactly, then the map from the direct
sum of matrices to FSn involves summing over the n! elements of the symmetric group.
This produces an element g which is generally too big to even look at. If one is willing
to work with a map that is not exactly a representation, then although the element gi

jk

still involves a substantial number of non-zero terms, the coefficients are easily expressed
as “alternating sums” which can be displayed and manipulated by hand.

If (A,+, ∗) is a non-associative algebra over F , and f is a non-associative polynomial
over F , we say that (x1, x2, . . . , xn)f is an identity for A if whenever the indeterminates
are replaced by elements of A, the resulting expression evaluates to zero. It is obvious
that if F is an identity, then π∗f is an identity for any π ∈ Sn and g∗f is an identity for
any g ∈ FSn.

In our applications f is usually not itself an identity. We generally know, however, of
a particular h in FSn so that h∗f is an identity. The analysis asks questions such as the
following: If h∗f is an identity and g is some element in FSn, is g∗f an identity? The
question can be posed more generally: What are all the identities that h∗f implies? From
the definition it follows that π∗(σ∗f) = (π∗σ)∗f . It also follows that for all g, h ∈ FSn

one has g∗(h∗f) = (g∗h)∗f . This shows that if h∗f is an identity, then any x∗f is also
an identity for any element x of FSn which lies in the left ideal generated by h.

Viewing FSn as a direct sum of matrix rings, any left ideal of FSn decomposes into
a direct sum of left ideals from the components. Since a component is a d × d matrix
ring, the problem of describing left ideals of FSn reduces to the problem of describing
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left ideals of complete matrix rings. In matrix rings, left multiplications correspond to
row operations. A matrix K is a left multiple of a matrix H, i.e. K = XH, if and only
if RowSpace(K) ⊆ RowSpace(H).

Suppose that h∗f is an identity where h is in FSn and f is a non-associative polyno-
mial. In general the element h will be non-zero in several of the matrix ring summands.
We say that the identity h∗f exists in those summands which are non-zero. If h is non-
zero in only one summand and in that one summand has rank 1, then we describe h∗f as
an irreducible identity. If h is non-zero in several summands, but in each of the non-zero
summands the matrix has rank 1, then h can be decomposed uniquely into irreducible
identities. If the rank of h in one of the summands is greater than 1, we can still decom-
pose h into irreducible identities but the decomposition is not unique. A simple way to
do the decomposition is to use the rows of the row-canonical form of the representation
of h.

In general, identities g∗f and h∗f are equivalent if and only if in each representation,
RowSpace(g) = RowSpace(h). Identity h∗f implies identity g∗f if and only if, in each
representation, RowSpace(g) ⊆ RowSpace(h).

One can extend this theory to several functions f1, f2, . . . , ft. Now an identity is of the
form

g1∗f1 + g2∗f2 + · · ·+ gt∗ft.

Instead of using one copy of the group ring, one considers elements

(g1, g2, . . . , gt)

in the direct sum of t copies of FSn. Instead of working with left ideals, we work with
left submodules of

t⊕
i=1

FS(i)
n .

The identities implied by

g1∗f1 + g2∗f2 + · · ·+ gt∗ft

are now the elements of the form

g′1∗f1 + g′2∗f2 + · · ·+ g′t∗ft

where the t-tuples (g′1, g
′
2, . . . , g

′
t) are in the left submodule generated by (g1, g2, . . . , gt).

One standard set of functions is the association types of degree n, that is, the distinct
well-formed bracketings of n factors with n − 1 pairs of brackets. The number of these
association types is the Catalan number

tn =
1
n

(
2n− 2
n− 1

)
.

We denote the t = tn distinct association types in degree n by αi for 1 ≤ i ≤ t. (If
one were studying a commutative case, one could use a different function for each of the
association types which are inequivalent using commutativity).

Given any multilinear polynomial (x1, x2, . . . , xn)f of degree n in n indeterminates,
we first sort the terms of f by association type. Thus we can write f = f1 + · · · + ft.
For 1 ≤ i ≤ t every term in fi has the association type αi, so the terms in fi are
distinguished only by the order of the factors. Since the factors are just a permutation
of the indeterminates x1, x2, . . . , xn, we can identify each term in fi with an element of
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the symmetric group Sn acting on 1, 2, . . . , n. Hence fi can be identified with a linear
combination of the elements of Sn, that is, with an element gi of the group ring FSn.
Thus the original identity f can be identified with an element of

M = FS(1)
n ⊕ FS(2)

n ⊕ · · · ⊕ FS(t)
n ,

the direct sum of t copies of FSn. Then M is a module over the group ring and the set
of all identities we seek is a submodule of M .

If we fix a partition λ of n, then projecting onto the corresponding matrix ring we
see that each element of the group ring FSn corresponds to a matrix of size dλ × dλ.
Combining the t association types we put together (horizontally) the t matrices of size
dλ × dλ to obtain a matrix of size dλ × tdλ. Thus the component for partition λ of the
original multilinear polynomial f can be represented as a matrix of size dλ×tdλ. Stacking
the matrices (vertically) for a number k of identities f (1), . . . , f (k) gives a matrix of size
kdλ × tdλ. Row operations on this matrix correspond to left multiplication in the group
ring, and so the row-canonical form of this matrix corresponds to a set of independent
module generators for the submodule of M generated by the identities f (1), . . . , f (k).
Since the rank of this matrix can be no greater than tdλ, the number of independent
generators is at most tdλ.

Since we can identify multilinear identities (x1, x2, . . . , xn)f of degree n in n indeter-
minates with elements of the FSn-module M , we can use the language of representation
theory to describe identities. In particular an irreducible identity is one that generates a
simple submodule (irreducible subrepresentation) of M . An irreducible identity f must
lie in one isotypic component of M , that is, there must exist a partition λ of n such that
f lies in the sum of the t matrix rings corresponding to λ.

This discussion involved permutations of the arguments in functions of several vari-
ables. Such substitutions leave the number of variables in the function fixed. If one
replaces one of the arguments of f by a product, then the number of arguments increases
by one. In fact any multilinear identity (x1, x2, . . . , xn)f can be lifted to an identity of
degree n + 1 in n + 2 ways: we can replace one of the arguments xi by a product xixn+1

or we can multiply f on the left or right by xn+1.

Identities for a Free Alternative Algebra

Theorem 1. Over a field of characteristic 103, there are no non-obvious identities in
degree 5 for the ternary associator product in a free alternative algebra. The following
two identities in degree 7 are irreducible. Together with the obvious identities in degree
7, they generate all the identities of degree 7 satisfied by the ternary associator product
in a free alternative algebra:

F1 = − ((abc)(abd)c) + ((abc)(acd)b)− ((abc)(bcd)a)− (((abc)ab)cd)
+ (((abc)ac)bd)− (((abc)ad)bc)− (((abc)bc)ad) + (((abc)bd)ac)
− (((abc)cd)ab)

F2 =
∑

alt(x)

{−((abx)(bxx)a) + ((abx)(axx)b) + 2((abx)(abx)x)

+ 2(((abx)ax)bx)− 2(((abx)bx)ax) + (((xxx)ab)ab)
− (((abx)ab)xx) + 2(((abx)xx)ab) + 3(((axx)bx)ab)
− 3(((bxx)ax)ab)}.
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Identity F1 has four variables and corresponds to partition 2221. Identity F2 has five
variables and corresponds to partition 22 111.

Proof. (By Computer) We first consider degree 5. The two alternative identities im-
ply 2 · 5 · 6 = 60 identities of degree 5: there are five ways to lift degree 3 to degree 4, and
then six ways to lift degree 4 to degree 5. The Catalan number in degree 5 is 14, so we
have 14 association types for these binary polynomials in a free alternative algebra. There
is one more identity, which expands the monomial ((abc)de) by regarding the alternating
ternary products as associators:

((abc)de) = (((ab)c)d)e− ((a(bc))d)e− ((ab)c)(de) + (a(bc))(de).

This gives one more (ternary) association type. We have 61 identities and 15 association
types. Our goal is to find all identities expressible in terms of these 15 types. (We do not
use the other two ternary association types in degree 5, since these may be converted
into our one chosen type using the obvious identities.)

The submodule generated by these 61 identities gives all the identities of degree 5
which hold for the binary product in every alternative algebra. The submodule of these
identities, which are zero in all but the last association type, will be all the identities
expressible only with associators. If we also compute the submodule generated by the
obvious identities, and compare them with the set of all identities, the non-obvious iden-
tities will be the new ones that appear.

All of these computations are done in the isomorphic image of the group ring FS5

as a direct sum of matrix rings. For each partition of five (that is, each irreducible
representation) we compute the matrix of size 61d× 15d where d is the dimension of the
representation. After reducing the matrix to row-canonical form, the leading ones which
occur within the last association type give the rows which contain the identities we seek;
that is, the identities expressible in terms of the associator.

We checked all the representations and found that all the identities which exist are
consequences of the obvious identities; hence there are no new identities in degree 5.

Now we consider identities of degree 7. There are 132 binary association types. There
are two association types for an alternating ternary product, so we have a total of 134
association types in degree 7. There are 2 · 5 · 6 · 7 · 8 = 3360 liftings of the alternative
identities to degree 7. (These 3360 identities are FS7-module generators for the multilin-
ear subspace of the homogeneous component of degree 7 of the T -ideal generated by the
alternative identities in the free non-associative algebra on seven generators.) There are
also two identities expressing the two ternary association types in terms of the binary
alternative product by expanding the ternary product as the associator:

((abc)(def)g) = (((ab)c)((de)f))g − ((a(bc))((de)f))g
− (((ab)c)(d(ef)))g + ((a(bc))(d(ef)))g
− ((ab)c)(((de)f)g) + (a(bc))(((de)f)g)
+ ((ab)c)((d(ef))g)− (a(bc))((d(ef))g),

(((abc)de)fg) = (((((ab)c)d)e)f)g − ((((a(bc))d)e)f)g
− ((((ab)c)(de))f)g + (((a(bc))(de))f)g
− ((((ab)c)d)e)(fg) + (((a(bc))d)e)(fg)
+ (((ab)c)(de))(fg)− ((a(bc))(de))(fg).
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Altogether we have 3362 identities and 134 association types. Since the largest irreducible
representation of S7 has dimension 35, the largest matrix will have 35 · 3362 = 117670
rows and 35 · 134 = 4690 columns.

In the table, column 1 gives the partition labeling an irreducible representation of S7.
Column 2 gives the dimension of the representation. All of the entries in the remaining
columns are ranks of modules over the group ring FS7 as explained in the Preliminaries.
Since there are only two ternary association types, all the ranks in the table are less than
or equal to twice the dimension of the representation. Column 3 gives the dimension of
the subspace of obvious identities. Column 4 gives the dimension of the subspace of the
alternative identities expressible using only the associators: this is always at least as large
as the dimension in column 3. The column labeled Cayley associator will be discussed in
the next section:

Free
Representation Obvious alternative Cayley

Partition dimension identities associator associator
7 1 2 2 2
61 6 12 12 12
52 14 28 28 28
511 15 30 30 30
43 14 28 28 28
421 35 70 70 70
4111 20 40 40 40
331 21 41 41 41
322 21 41 41 41
3211 35 67 67 67
31 111 15 29 29 29
2221 14 25 26 26
22 111 14 24 25 26
211 111 6 9 9 11
1 111 111 1 0 0 2

Notice that the dimension of the space of obvious identities equals twice the module
dimension until we reach partition 331: in the first seven representations, the obvious
identities generate everything possible. It is only possible for new (non-obvious) identities
to correspond to partitions at or below the line labeled 331 in the table. The dimension
of the space of free alternative identities always lies between the dimension of the space
of obvious identities and twice the dimension of the representation. The dimension of the
space of free alternative identities is greater than the dimension of the space of obvious
identities only for partitions 2221 and 22 111. There is a single new irreducible identity
in each of these two representations. The new identities appear as additional rows when
the row-canonical form of the matrix for free alternative identities is compared to the
row-canonical form of the matrix of only the obvious identities.

In partition 2221 the dimension of the space of obvious identities is 25 while the
dimension of the space of free alternative associator identities is 26. The row-canonical
form of the obvious identities has 25 (non-zero) rows while the row-canonical form of the
free alternative associator identities has 26 (non-zero) rows. It suffices to pick one of the
26 rows which is not in the row space of the 25 rows.
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In this particular case this was easy to do. The obvious identities are generated by
identities which are non-zero in only one type; the row-canonical form preserves the
separation of the obvious identities by type. One needs only to choose a row from the
free alternative identities which has non-zeros entries in both types.

It is convenient for the next step to choose an identity which has as few non-zero
coefficients as possible. We looked for a linear combination of the 26 identities which
had non-zero coefficients under both types and which was not composed of two obvious
identities, one from each type. The row we created has 28 entries (14 entries for each
association type) only three of which are non-zero; the entry in position 14 is 1, and
the entries in positions 24 and 28 are both −1. We need to determine the group ring
element corresponding to this matrix row; this will give us the (multilinear form of) the
new identity we are looking for. We generated all 5040 permutations of a, b, c, d, e, f , g
using the Maple command combinat[permute]. We then considered the 14× 14 matrices
corresponding to the component of the group ring of S7 labeled by the partition 2221. To
each permutation in S7 we assigned a coefficient equal to the 10–14 entry of the matrix
representing the inverse permutation; this gives the group ring element corresponding
to the elementary matrix with 1 in position 14–10 and 0 elsewhere. Similarly we found
the group ring element corresponding to the elementary matrix with 1 in position 14–14
and 0 elsewhere. Combining these results we obtain the element of the direct sum of two
copies of the group ring which corresponds to the 14 × 28 matrix in which row 14 is
the row described earlier. This double group ring element gives the new identity we are
looking for.

We checked this new identity using the same C programs, and verified that it is an
identity for the associator in every alternative algebra and that it does not follow from
the obvious identities.

The new identity is multilinear, but since it occurs in representation 2221, the theory of
Young’s tableaux and the corresponding idempotents in the group ring of the symmetric
group shows that there must be three pairs of variables such that the identity is symmetric
in the variables in each pair, that is, the identity must be the linearization of a polynomial
in aabbccd. We therefore replaced d by a, e by b, and f by c. We then straightened the
terms using the obvious identities, collected and sorted the terms, and removed the
terms with coefficient 0. This simplification resulted in the much more compact identity
called F1 in the statement of the Theorem. We verified this identity using Jacobs’ non-
associative algebra system Albert, see Jacobs.

We also expanded each of the associators as commutators using the formula

6(a, b, c) = [[ab]c] + [[bc]a] + [[ca]b].

This holds in any alternative algebra since the alternating sum of the associators equals
six times an associator and also equals the Jacobi identity. We used Albert to verify that
the result is an identity that holds in every Malcev algebra. (If it had not held, it would
have been the first known S-identity for Malcev algebras.)

We then repeated the same steps for representation type 22 111. This gives us a second
new identity (in five variables) for the associator in every alternative algebra, called F2 in
the statement of the theorem. This identity was also rewritten in terms of commutators
and checked by C programs against the Malcev identity: this identity also holds in the
free Malcev algebra. This completes the proof. 2
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Identities for the Cayley Ternary Algebra

the Cayley algebra

The only simple finite-dimensional non-associative alternative algebras over any field
F are forms of the eight-dimensional Cayley algebra. In terms of the basis 1, i, j, k, `,
m, n, p the multiplication table for the non-unit elements is

i j k ` m n p

i −1 k −j m −` −p n
j −k −1 i n p −` −m
k j −i −1 p −n m −`
` −m −n −p −1 i j k
m ` −p n −i −1 −k j
n p ` −m −j k −1 −i
p −n m ` −k −j i −1

(This is taken from Jacobson (1974, p. 426), with c1 = c2 = c3 = −1, but note the
misprint in the case i7i3, which is pk in our notation; cf. Kleinfeld (1963, p. 137)).

We now compute the multiplication table for the Cayley ternary algebra: the Cayley
algebra using the associator as the operation. The associator is alternating and any
associator with an argument 1 is zero. Since the quaternion subalgebra is associative, we
only need to consider associators which contain three distinct factors, none of which is 1,
in alphabetical order, with at least one factor from `, m, n, p. There are 12 associators
with two factors from i, j, k and one factor from `, m, n, p:

(i, j, `) = 2p, (i, j, m) = −2n, (i, j, n) = 2m, (i, j, p) = −2`,

(i, k, `) = −2n, (i, k,m) = −2p, (i, k, n) = 2` (i, k, p) = 2m,

(j, k, `) = 2m, (j, k,m) = −2`, (j, k, n) = −2p, (j, k, p) = 2n.

There are 18 associators with one factor from i, j, k and two factors from `, m, n, p:

(i, `,m) = 0, (i, `, n) = −2k, (i, `, p) = 2j, (i, m, n) = −2j,

(i, m, p) = −2k, (i, n, p) = 0, (j, `,m) = 2k, (j, `, n) = 0,

(j, `, p) = −2i, (j, m, n) = 2i, (j, m, p) = 0, (j, n, p) = −2k,

(k, `, m) = −2j, (k, `, n) = 2i, (k, `, p) = 0, (k,m, n) = 0,

(k,m, p) = 2i, (k, n, p) = 2j.

There are four associators with all three factors from `, m, n, p:

(`,m, n) = −2p, (`,m, p) = 2n, (`, n, p) = −2m, (m,n, p) = 2`.

The value of an associator in the Cayley ternary algebra always lies in the span of the non-
unit basis elements; also, an associator which has a scalar argument is zero. Therefore the
Cayley ternary algebra is the direct sum of two ideals: the trivial ideal of scalars and the
ideal spanned by the non-unit basis elements. After factoring out the scalars we are left
with a seven-dimensional alternating ternary algebra which contains all the information
about the associator in the Cayley algebra.
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The Cayley algebra has a grading by the group (Z2)3. The degrees of the standard
basis elements are

d(1) = (0, 0, 0), d(i) = (0, 1, 1), d(j) = (1, 0, 1), d(k) = (1, 1, 0),
d(`) = (0, 0, 1), d(m) = (0, 1, 0), d(n) = (1, 0, 0), d(p) = (1, 1, 1).

This grading satisfies the usual property that d(xy) = d(x) + d(y).
For computational purposes one of the most efficient ways to represent the Cayley

algebra is by the Zorn vector–matrix algebra. We consider 2 × 2 matrices in which the
diagonal entries are complex numbers, and the off-diagonal entries are vectors in C3. The
product is defined by the rule(

a B
C d

) (
e F
G h

)
=

(
ae + B ·G aF + hB − C ×G

eC + dG + B × F C · F + dh

)
.

Here · and × represent the usual dot and cross product. The eight-dimensional complex
vector space consisting of these matrices with this product is isomorphic to the split
complex Cayley algebra, see Paige (1963, p. 180). If we write these matrices as eight-
dimensional row vectors via(

a B
C d

)
7−→ (a, b1, b2, b3, c1, c2, c3, d)

then an isomorphism is given by

1 = (1, 0, 0, 0, 0, 0, 0, 1) i = (0,−1, 0, 0, 1, 0, 0, 0)
j = (0, 0,−1, 0, 0, 1, 0, 0) k = (0, 0, 0,−1, 0, 0, 1, 0)

l =
(√
−1, 0, 0, 0, 0, 0, 0,−

√
−1

)
m =

(
0,
√
−1, 0, 0,

√
−1, 0, 0, 0

)
n =

(
0, 0,

√
−1, 0, 0,

√
−1, 0, 0

)
p =

(
0, 0, 0,

√
−1, 0, 0,

√
−1, 0

)
.

Theorem 2. There are no non-obvious identities for the associator in the Cayley algebra
in degree 5. Over a field of characteristic 103, the following five irreducible identities in
degree 7, together with the identities F1 and F2 from the previous section and the obvious
identities, generate all the identities of degree ≤ 7 satisfied by the associator in the Cayley
algebra:

C1 =
∑

alt(x)

{((abx)(axx)b)− ((abx)(bxx)a) + 2((abx)(abx)x)

+ 2(((abx)ax)bx)− 2(((abx)bx)ax)− (((axx)bx)ab)
+ (((bxx)ax)ab)− 2(((abx)xx)ab) + 3(((abx)ab)xx)
+ (((xxx)ab)ab) + 4(((axx)ab)bx)− 4(((bxx)ab)ax)}

C2 =
∑

alt(x)

{6((axx)(xxx)a)− 2(((axx)ax)xx) + 2(((xxx)ax)ax)

− 5(((axx)xx)ax)}
C3 =

∑
alt(x)

{(((axx)xx)ax) + 2(((xxx)ax)ax) + 4(((axx)ax)xx)}



268 M. Bremner and I. Hentzel

C4 =
∑

alt(x)

((xxx)(xxx)x)

C5 =
∑

alt(x)

(((xxx)xx)xx)

Identity C1 has five variables and corresponds to partition 22 111. Identities C2 and C3

have six variables and correspond to partition 211 111. Identities C4 and C5 have seven
variables and correspond to partition 1 111 111; these two identities hold over a field of
any characteristic.

Proof. (By Computer) To determine the identities of degree 5, we first define a
matrix of size 18× 10 and initialize it to zero. Given five elements of the Cayley algebra
(each of these elements is a vector with eight components) we substitute them for the
letters a–e in the 10 multilinear monomials, and then evaluate the monomials by inter-
preting the ternary product as the associator. The result is an ordered list of 10 vectors
with eight components. We insert these vectors vertically in the last eight rows of the
matrix. Each of these eight rows gives a relation on the coefficients for the 10 monomials
which must be satisfied by any identity for the associator in the Cayley algebra. (Each of
the eight rows corresponds to the coefficients for one of the basis elements in the Cayley
algebra.) We then compute the row-canonical form of the 18 × 10 matrix. The rank of
the matrix can be no more than 10, so the last eight rows must be zero. We repeatedly
generate five random eight-vectors (with components from one to 100) and produce eight
new rows which are copied into the bottom eight rows of the matrix, and compute the
row-canonical form using rational arithmetic in Maple. The rank soon reaches 10, which
implies that there are no non-obvious identities.

We next consider identities of degree 7. The method is essentially the same as in
degree 5, except that now we have 280 multilinear monomials. We first define a matrix
of size 288× 280 and initialize it to zero. During each of the first few iterations the rank
increases by seven (not eight, since any associator is in the span of the non-unit basis
elements). The rank stabilized at 224 after 32 iterations, and did not increase again; a
total of 100 iterations were performed. This implies that there are at least 224 linearly
independent relations that any identity must satisfy, and so the module of identities has
dimension at most 56.

This computation was started using random numbers from one to 100 and rational
arithmetic for the row-canonical form. However the calculations went very slowly; it
turned out that each component of the evaluated multilinear ternary monomials had
about 12 digits, and the matrix entries in the middle of the row-canonical form compu-
tation were rational numbers with 100-digit numerators and denominators. Maple can
handle arbitrarily large integers, but not without a loss of speed. Therefore we decided
to use random numbers from one to 10 and use arithmetic modulo 1009 for the row-
canonical form. There is a small chance that using modular arithmetic will cause some
information to be lost; for example in the case of a matrix row in which all the entries
(in rational arithmetic) are multiples of the modulus. Even if this does occur, it does
not create new, false relations on the coefficients of an identity: all the relations we do
produce are valid. So the conclusions of the previous paragraph are still correct.

These computations were repeated in C using the modulus 103. From the 224 rela-
tions for the Cayley identities we obtain 56 identities by computing the nullspace of the
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relations. Running these identities through the same C programs described in the previ-
ous section, we obtained the dimensions given in the column labeled Cayley associator
in the table given there.

Each of the two new identities for the associator in a free alternative algebra gener-
ates (after linearization) a 14-dimensional subspace of the 280-dimensional space; these
subspaces are irreducible representations of S7 labeled by partitions 2221 and 22 111. We
checked that this 28-dimensional space of free alternative identities is a subspace of the
56-dimensional space of Cayley identities. We then found the orthogonal complement of
the space of free identities in the space of Cayley identities with respect to the usual
scalar product. (That is, the scalar product determined by the condition that the 280
monomials are an orthonormal basis.) The 28 basis vectors for this complement span the
space of Cayley identities that are not implied by the free alternative identities. This
space of non-free Cayley identities is also an S7-module which decomposes as the direct
sum of five irreducible representations: one for partition 22 111, and two for partition
211 111, and two for partition 1 111 111.

Generators for these irreducible submodules were found by the same method used
in the previous section: from the matrix row representing an identity we computed the
double group ring element which gives the identity. These identities are the linearizations
of the identities in the Theorem.

We checked identities C1, C2 and C3 by setting the indeterminates equal to random
vectors and evaluating the identity over the integers. In each case the result was the zero
vector. This provides some evidence of the validity of these identities in characteristic 0.

We have the following direct proof of identity C4; the same argument applies to identity
C5. Let I be the alternating function of seven vectors in F 7 defined by the formula

I(a, b, c, d, e, f, g) =
∑

alt(x)

((xxx)(xxx)x).

The value of I is a vector in F 7. Each of the seven components is an alternating scalar
function of seven vectors in F 7 and hence must be a scalar multiple of the determinant.
Thus there exist scalars ti for 1 ≤ i ≤ 7 such that

I(a, b, c, d, e, f, g) = det(a, b, c, d, e, f, g)(t1, t2, t3, t4, t5, t6, t7).

If we take a–g to be the standard basis vectors in F 7 then the determinant equals 1.
Therefore

I(i, j, k, `,m, n, p) = (t1, t2, t3, t4, t5, t6, t7).
The degree of I(i, j, k, `,m, n, p) using the (Z2)3-grading on the Cayley algebra equals
the sum of all non-zero elements of the grading group, which is (0, 0, 0). Therefore the
value of I on these basis elements must be a scalar. But each term in the definition of I
is an associator, and the only scalar value that an associator in the Cayley algebra can
take is 0. Therefore ti = 0 for 1 ≤ i ≤ 7, which completes the proof. 2

Identities for the Ternary Cross Product

the ternary cross product

One of the simplest and most natural examples of an alternating ternary algebra is
the ternary cross product on a four-dimensional vector space A over F . Let L, M , N , P
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be a basis of A, and let Xi = (xi1, xi2, xi3, xi4) for 1 ≤ i ≤ 3 be three vectors in A
expressed in coordinates with respect to this basis. We define the ternary cross product
by a generalization of the usual determinant definition of the familiar three-dimensional
cross product:

[X1, X2, X3] =

∣∣∣∣∣∣∣∣
L M N P

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

∣∣∣∣∣∣∣∣ .

This is clearly an alternating trilinear function of X1, X2, X3. There are only four non-
zero products of basis vectors:

[L, M,N ] = −P, [L,M,P ] = N, [L,N, P ] = −M, [M,N,P ] = L.

For F = R the ternary cross product is a ternary analogue of the compact simple Lie
algebra su(2).

Comparing the four ternary products displayed with the four associators involving `,
m, n, p in the Cayley ternary algebra, we see that the span of L, M , N , P is isomorphic
to a subsystem of the Cayley ternary algebra. The correspondence

L 7→ 1√
2
`, M 7→ 1√

2
m, N 7→ 1√

2
n, P 7→ 1√

2
p,

is an isomorphism from the ternary cross product to this subsystem.

Theorem 3. Over a field of characteristic 0, the following reducible identity in degree 5,
together with the obvious identities in degrees 5 and 7, generates all the identities of
degree ≤ 7 satisfied by the ternary cross product:

((abc)de)− ((abd)ce) + ((abe)cd)− ((cde)ab).

This identity is equivalent to the two irreducible identities

((abc)ad) + ((acd)ab) + ((adb)ac),
∑

alt(x)

((xxx)xx).

The first identity says that the binary algebra with product [x, y] = (a, x, y) for any fixed a
is a Lie algebra. The second identity is the alternating sum of the 10 degree-5 monomials.

Proof. (By Computer) We first consider the identities of degree 5. Consider a gen-
eral linear combination of the 10 multilinear monomials. Given any assignment of the
basis vectors L, M , N , P to the indeterminates a, b, c, d, e we can evaluate this linear
combination; the result is a scalar multiple of a basis vector. By the graded property of
the Cayley algebra, this basis vector depends only on the number of times each of L, M ,
N , P occurs in the assignment. In this way we obtain 45 = 1024 linear relations on the
coefficients in the general linear combination of the monomials. We create a matrix in
which the 10 columns are labeled by the monomials and the 1024 rows express the linear
relations. We find all the identities by computing the row-canonical form of this matrix.
Using Maple we found that the nullspace of this matrix is generated (as an S5-module)
by the reducible identity in the Theorem. This identity can also be written as

(ab(cde)) = ((abc)de) + (c(abd)e) + (cd(abe)),

and so it is called the ternary derivation identity, see the paper of Filippov (1985).
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As shown in Bremner (1997), the S5-module with basis consisting of the 10 multilinear
alternating ternary monomials of degree 5 decomposes as the direct sum of the simple
S5-modules labeled by the partitions 221, 2111 and 11 111. The submodule generated
by the ternary derivation identity is the sum of the simple submodules corresponding to
2111 and 11 111. The two irreducible identities in the Theorem generate (respectively)
these two simple submodules. Therefore the ternary derivation identity is reducible, and
is equivalent to the two irreducible identities, in the sense that a ternary algebra satisfies
the ternary derivation identity if and only if it satisfies the two irreducible identities.

We next consider the identities of degree 7. We want to determine if there are any
new identities for the ternary cross product in degree 7; that is, identities which are not
implied by the ternary derivation identity.

We first determine the submodule of identities in degree 7 which are implied by the
ternary derivation identity

I(a, b, c, d, e) = ((abc)de)− ((abd)ce) + ((abe)cd)− ((cde)ab).

Since I(a, b, c, d, e) alternates in a, b and also in c, d, e there are three inequivalent ways
to lift I to degree 7:

(I(a, b, c, d, e), f, g), I((a, b, c), d, e, f, g), I(a, b, (c, d, e), f, g).

These three polynomials are generators of the S7-submodule of identities in degree 7
which follow from the derivation identity in degree 5. To compute the dimension of this
submodule, we need to apply the 5040 permutations of the seven letters to each of the
three liftings; altogether this gives a matrix of size 15 120 × 280 for which we need to
compute the row-canonical form. We can greatly reduce the number of rows as follows:
for lifting 1, we consider only the permutations which are coset representatives with
respect to the subgroup S2×S3×S2 acting on a, b and c, d, e and f , g. (If we apply any
permutation in this subgroup to lifting 1 we obtain the same identity up to a sign.) So we
only need to consider permutations which are inequivalent with respect to this subgroup:
this means that the letters in positions 1, 2 and 3, 4, 5 and 6, 7 are in alphabetical
order. This gives a total of 5040/24 = 210 rows which span the submodule generated by
lifting 1. Applying the same procedure to the other two liftings, we obtain 140 rows for
lifting 2, and 210 rows for lifting 3. Altogether this gives a matrix of size 560 × 280, a
matrix 1/27 the size of the original matrix. The row-canonical form of this matrix was
computed using a Maple program; however it was necessary to write a new procedure
different from the predefined linalg[rref] procedure, since the latter procedure does not
work efficiently for large matrices. The result: the matrix has rank 224, which is therefore
the dimension of the submodule of identities in degree 7 which follow from the ternary
derivation identity in degree 5.

The second step is to determine the S7-module of all identities of degree 7 satisfied by
the ternary cross product. We used the same random-vector method as in the previous
section, now with a matrix of size 284 × 280. At the beginning of this procedure, the
rank of the matrix increased by four after each iteration. The rank stabilized at 56 after
iteration 14; altogether 100 iterations were performed. This implies that there are at least
56 linearly independent relations that an identity must satisfy. From this it follows that
there are a maximum of 280−56 = 224 identities for the ternary cross product in degree 7.
Since all of these identities are accounted for by the liftings of the derivation identity, it
follows that there are no new identities in degree 7. This completes the proof. 2
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Concluding Remark

A semi-simple alternative algebra is a subdirect sum of associative and Cayley–Dickson
algebras. Thus any element of a free alternative algebra which is zero in every associative
and Cayley–Dickson algebra must be in the radical, see Zhevlakov et al. (1982, p. 271,
Corollary 1). Our identities C1–C5 are then elements of the radical of the free alternative
algebra.

An element in the commutative center of the free alternative algebra must evaluate to a
multiple of the identity element in a Cayley–Dickson algebra, since in a Cayley–Dickson
algebra the commutative center consists only of the scalars. Furthermore, commuting
elements built out of associators map to zero in a Cayley–Dickson algebra, since in a
Cayley–Dickson algebra the value of an associator is in the span of the non-unit basis
elements. We checked our identities to see if any of them were in the commutative center
of the free alternative algebra. We found that C1, 5C2 + 7C3 and C4 are elements of the
commutative center of the free alternative algebra. (Compare the results in An Alternative
Identity of Degree 5 by Hentzel and Kleinfeld, to appear in Journal of Algebra.)
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