

Linearly independent vertices and minimum semidefinite rank

Philip Hackney ${ }^{\text {a }}$, Benjamin Harris ${ }^{\mathrm{b}, 1}$, Margaret Lay ${ }^{\mathrm{c}, 1}$, Lon H. Mitchell ${ }^{\mathrm{d}}$, Sivaram K. Narayan ${ }^{\mathrm{e}, *, 1}$, Amanda Pascoe ${ }^{\mathrm{f}, 1}$
${ }^{\text {a }}$ Department of Mathematics, Purdue University, West Lafayette, IN 47907-2067, United States
${ }^{\mathrm{b}}$ Department of Mathematics, Brown University, Providence, RI 02912, United States
${ }^{\text {c }}$ Department of Mathematics and Computer Science, Grinnell College, Grinnell, IA 50112-1690, United States
${ }^{\text {d }}$ Department of Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, United States
${ }^{\text {e }}$ Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, United States
${ }^{f}$ Department of Mathematics, Furman University, Greenville, SC 29613-1148, United States

A R T I CLE INFO

Article history:

Received 13 November 2007
Accepted 15 March 2009
Available online 19 May 2009
Submitted by S. Fallat

AMS classification:

15A18
15A57
05C50

Keywords:
Minimum semidefinite rank
Join
Linearly independent vertices

Abstract

We study the minimum semidefinite rank of a graph using vector representations of the graph and of certain subgraphs. We present a sufficient condition for when the vectors corresponding to a set of vertices of a graph must be linearly independent in any vector representation of that graph, and conjecture that the resulting graph invariant is equal to minimum semidefinite rank. Rotation of vector representations by a unitary matrix allows us to find the minimum semidefinite rank of the join of two graphs. We also improve upon previous results concerning the effect on minimum semidefinite rank of the removal of a vertex.

© 2009 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

A graph G consists of a set of vertices V and a set of edges E, where the elements of E are unordered pairs of vertices. The order of G, denoted $|G|$, is the cardinality of V. A graph is simple if it has no multiple edges or loops. For Sections 1-3, we assume all graphs to be simple. In Section 4, graphs may have multiple edges but no loops.

The entries of an n-by- n Hermitian matrix $A=\left(a_{i j}\right)$ over the complex numbers \mathbb{C} naturally determine a graph $G(A)$ with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E=\left\{\left\{v_{i}, v_{j}\right\}: a_{i j} \neq 0, i>j\right\}$. Calculating possible multiplicities of eigenvalues for Hermitian matrices based upon properties of their related graph has been of recent interest [10]. Also of recent interest is the minimum rank problem, which seeks to determine the smallest possible rank of any real symmetric matrix with given graph. For more information on minimum rank problems, see the survey by Fallat and Hogben [7]. In this paper, we consider the related problem of determining the minimum rank among positive semidefinite (henceforth $p s d$) matrices with a given graph [2,4,5,9,18].

Given a graph G, let $\mathcal{P}(G)$ represent all psd matrices with graph G. Define the minimum semidefinite rank of G as

$$
\operatorname{msr}(G)=\min \{\operatorname{rank} A: A \in \mathcal{P}(G)\}
$$

The study of msr was initiated by Barrett et al. [2] using the notation hmr_{+}.
In what follows, since the direct sum of matrices for connected components of a graph gives a matrix for the entire graph and this process is additive in rank, we assume all graphs are connected unless otherwise specified.

Remark 1.1. Since the Laplacian matrix of a connected graph G on n vertices, $L(G)$, is positive semidefinite and has rank $n-1$ [15], we have that $\operatorname{msr}(G) \leqslant n-1$ for all graphs G. We can also provide a positive definite matrix with graph G by taking $L(G)+I$, where I is the identity of $M_{n}(\mathbb{C})$.

Given a field \mathbb{F}, subsets S, A, B, and C of \mathbb{F}, a positive integer d, and a nondegenerate bilinear form $b(x, y)$ on \mathbb{F}^{d}, a vector representation [16] of a simple graph G with vertices v_{1}, \ldots, v_{n} is a list of vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ in \mathbb{F}^{d} whose components are in S such that for all i and $j, b\left(\vec{v}_{i}, \vec{v}_{i}\right) \in A$, if v_{i} is adjacent to v_{j} in G then $b\left(\vec{v}_{i}, \vec{v}_{j}\right) \in B$, and if v_{i} is not adjacent to v_{j} in G then $b\left(\vec{v}_{i}, \vec{v}_{j}\right) \in C$. For example, Lovász defines an orthonormal representation with $\mathbb{F}=\mathbb{R}=S=B, A=\{1\}$ and $C=\{0\}$ in his solution of the Shannon capacity of C_{5} [14] and his characterization (with Saks and Schrijver) of k-connected graphs [11,12]. See the survey by Lovász and Vesztergombi [13] for further information.

Given a set of n column vectors in $\mathbb{C}^{d}, \vec{X}=\left\{\vec{x}_{1}, \ldots, \vec{x}_{n}\right\}$, let X be the matrix $\left[\vec{x}_{1} \cdots \vec{x}_{n}\right]$. Then $X^{*} X$ is a psd matrix called the Gram matrix of \vec{X} with regard to the Euclidean inner product. Its associated graph G has n vertices v_{1}, \ldots, v_{n} corresponding to the vectors $\vec{x}_{1}, \ldots, \vec{x}_{n}$, and edges corresponding to nonzero inner products among those vectors. Since $X^{*} X \in \mathcal{P}(G)$ for the graph G, we say \vec{X} is a vector representation of G (with $\mathbb{F}=\mathbb{C}=S=A, B=\mathbb{C} \backslash\{0\}$, and $C=\{0\}$). By rank \vec{X}, we mean the dimension of the span of the vectors in \vec{X}, which is equal to rank $X^{*} X$ [8, Theorem 7.2.10].

In what follows, when a graph G and vertex v are specified, we will often use \vec{v} to mean a vector representing the vertex v in a vector representation of G. However, we will also use \vec{v} to stand for an arbitrary vector.

Since any psd matrix A may be factored as $Y^{*} Y$ for some $Y \in M_{n}(\mathbb{C})$ with $\operatorname{rank} A=\operatorname{rank} Y$, each psd matrix is the Gram matrix of a suitable set of vectors. Therefore, finding a psd matrix with a given graph and finding a vector representation of the graph are equivalent problems.

Recall that the neighborhood of a vertex v of a graph G, denoted $N(v)$, is the set of vertices of G adjacent to v. The closed neighborhood of a vertex $v, N[v]$ is $\{v\} \cup N(v)$. We say a vertex v is a duplicate of a vertex w if $N[v]=N[w]$. Since duplicate vertices may be represented by the same vector, removing a duplicate vertex does not affect the minimum semidefinite rank [5]. In particular, the minimum semidefinite rank of a complete graph on two or more vertices is one.
Remark 1.2. If u and v are not duplicate vertices in a graph G, then $\vec{u} \notin \operatorname{span} \vec{v}$ for all vector representations of G.

2. Joins of graphs

The minimum semidefinite rank of an induced subgraph H of a graph G provides a lower bound for $\operatorname{msr}(G)$. As an example, let ts (G) be the tree size of G, the maximum number of vertices in an induced tree [6]. Since the msr of a tree on $n \geqslant 2$ vertices is $n-1$ [18], if G is a connected graph of order at least two then $\operatorname{msr}(G) \geqslant \operatorname{ts}(G)-1$.

The independence number of $G, \mathrm{i}(G)$, which is the cardinality of the largest independent (pairwise disjoint) set of vertices of G, is also a lower bound for $m s r(G)$. It is known that the msr of a cycle on $n \geqslant 3$ vertices is $n-2$ [18], and thus $\operatorname{msr}(G)-i(G)$ may be arbitrarily large. However, in other cases, such as complete bipartite graphs, the size of the largest independent set does give the minimum semidefinite rank [4].

Given an induced subgraph H of a graph G, one might ask whether, given a vector representation of H of rank $d=\operatorname{msr}(H)$ contained in \mathbb{C}^{d}, it is possible to complete that vector representation to a vector representation of all of G with vectors in \mathbb{C}^{d}. In the case of a complete bipartite graph, this is implied by the above mentioned msr result. We now give two other instances where such a construction can be accomplished, preceded by a lemma giving the actual construction.

Lemma 2.1. Let $\vec{u}_{1}, \ldots, \vec{u}_{n}$ and $\vec{v}_{1}, \ldots, \vec{v}_{m}$ be nonzero vectors in \mathbb{C}^{d} and let S be a (possibly trivial) subspace of \mathbb{C}^{d} such that no u_{i} or v_{j} is contained in S. Then there exists a unitary operator U on \mathbb{C}^{d} such that U fixes S and $\left\langle\vec{u}_{i}, U \vec{v}_{j}\right\rangle$ is nonzero for all $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant m$.

Proof. Let S^{\perp} denote the orthogonal complement of S in \mathbb{C}^{d} and set $\vec{x}_{j}=\operatorname{proj}_{S^{\perp}} \vec{u}_{j}$ and $\vec{y}_{k}=\operatorname{proj}_{S^{\perp}} \vec{v}_{k}$. By the assumptions, the \vec{x}_{j} and \vec{y}_{k} are all nonzero. Let $\vec{x}_{j}^{\perp}\left(\vec{y}_{k}^{\perp}\right)$ denote the subspace of S^{\perp} orthogonal to $\vec{x}_{j}\left(\vec{y}_{k}\right)$, and define

$$
R=\left(\bigcup_{j=1}^{n} \vec{x}_{j}^{\perp}\right) \cup\left(\bigcup_{k=1}^{m} \vec{y}_{k}^{\perp}\right) .
$$

Then R is the union of a finite number of hyperplanes (of S^{\perp}), and cannot cover all of S^{\perp}. Thus there exists a nonzero unit vector \vec{w} in S^{\perp} such that $\left\langle\vec{w}, \vec{x}_{j}\right\rangle$ and $\left\langle\vec{w}, \vec{y}_{k}\right\rangle$ are nonzero for all $1 \leqslant j \leqslant n$ and $1 \leqslant k \leqslant m$. Write $\vec{x}_{j}=a_{j} \vec{w}+\vec{x}_{j}^{\prime}$ and $\vec{y}_{k}=b_{k} \vec{w}+\vec{y}_{k}^{\prime}$ where the vectors \vec{x}_{j}^{\prime} and \vec{y}_{k}^{\prime} are each orthogonal to \vec{w}. Extend \vec{w} to a basis of S^{\perp}, and let U_{θ} be the unitary transformation of S^{\perp} that has matrix

$$
\left(\begin{array}{cccc}
e^{i \theta} & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)
$$

with respect to that basis. Let I_{S} be the identity operator on S. Then

$$
\begin{aligned}
\left\langle\vec{u}_{j},\left(U_{\theta} \oplus I_{S}\right) \vec{v}_{k}\right\rangle & =\left\langle a_{j} \vec{w}+\vec{x}_{j}^{\prime}+\left(\vec{u}_{j}-\vec{x}_{j}\right), e^{i \theta} b_{k} \vec{w}+\vec{y}_{k}^{\prime}+\left(\vec{v}_{k}-\vec{y}_{k}\right)\right\rangle \\
& =e^{-i \theta} a_{j} \overline{b_{k}}+\left\langle\vec{u}_{j}^{\prime}, \vec{v}_{k}^{\prime}\right\rangle+\left\langle\vec{u}_{j}-\vec{x}_{j}, \vec{v}_{k}-\vec{y}_{k}\right\rangle .
\end{aligned}
$$

By the choice of \vec{w}, both a_{j} and b_{k} are nonzero, and so if

$$
\left\langle\vec{u}_{j},\left(U_{\theta} \oplus I_{S}\right) \vec{v}_{k}\right\rangle=\left\langle\vec{u}_{j},\left(U_{\theta^{\prime}} \oplus I_{S}\right) \vec{v}_{k}\right\rangle
$$

then $\theta \equiv \theta^{\prime} \quad(\bmod 2 \pi)$. Specifically, for fixed j and k, there is at most one value of θ in the interval $[0,2 \pi)$ for which $\left\langle\vec{u}_{j},\left(U_{\theta} \oplus I_{S}\right) \vec{v}_{k}\right\rangle$ is zero. Since there are finitely many pairs (j, k), there exists a value of θ for which $\left\langle\vec{u}_{j},\left(U_{\theta} \oplus I_{S}\right) \vec{v}_{k}\right\rangle$ is nonzero for every $1 \leqslant j \leqslant n$ and $1 \leqslant k \leqslant m$.
Proposition 2.2. Let G be a bipartite graph with independent sets X, Y such that $X \cup Y=V(G)$. Let $|X|=$ $m \geqslant|Y|=n$, and suppose $\left|\bigcap_{v \in Y} N(v)\right| \geqslant n$. Then $\operatorname{msr}(G)=m$.

Proof. Because X is an independent set of vertices, $\operatorname{msr}(G) \geqslant m$. To show that $\operatorname{msr}(G) \leqslant m$, we will exhibit a vector representation of G in \mathbb{C}^{m}. Let $X=\left\{x_{1}, \ldots, x_{m}\right\}, Y=\left\{y_{1}, \ldots, y_{n}\right\}$, and $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq$ $\cap_{v \in Y} N(v)$.

Using Remark 1.1, choose a vector representation

$$
\vec{V}=\left\{\vec{y}_{1}, \ldots, \vec{y}_{n}, \vec{x}_{n+1}, \ldots, \vec{x}_{m}\right\}
$$

in \mathbb{C}^{m} of the subgraph of G induced by $\left\{y_{1}, \ldots, y_{n}, x_{n+1}, \ldots, x_{m}\right\}$ that has rank m. Let $S=$ $\operatorname{span}\left\{\vec{x}_{n+1}, \ldots, \vec{x}_{m}\right\}$, and note that by our assumption on the rank of \vec{V}, none of the vectors $\vec{y}_{1}, \ldots, \vec{y}_{n}$ lie in S. Let S^{\perp} denote the orthogonal complement of S in \mathbb{C}^{m}, and choose an orthonormal basis $\left\{\vec{z}_{1}, \ldots, \vec{z}_{n}\right\}$ of S^{\perp}. Let U be the unitary operator resulting from the application of Lemma 2.1 to the vectors \vec{y}_{i}, the vectors \vec{z}_{i}, and the subspace S. Because S is invariant under U, so is S^{\perp}, so that $\left\langle\vec{x}_{i}, U \vec{z}_{j}\right\rangle=0$ for all $n+1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$, and $\left\langle\vec{y}_{i}, U \vec{z}_{j}\right\rangle \neq 0$ for all $1 \leqslant i, j \leqslant n$ by Lemma 2.1. Thus

$$
\left\{\vec{y}_{1}, \ldots, \vec{y}_{n}, \vec{x}_{n+1}, \ldots, \vec{x}_{m}, U \vec{z}_{1}, \ldots, U \vec{z}_{n}\right\}
$$

represents G in \mathbb{C}^{m} as desired.
Definition 2.3 [19]. We say that a graph G is the join of graphs G_{1} and G_{2}, written $G=G_{1} \vee G_{2}$, if
(1) $V(G)$ is the disjoint union of $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$,
(2) if $v, w \in V\left(G_{i}\right)$ then $\{v, w\} \in E(G)$ if and only if $\{v, w\} \in E\left(G_{i}\right)$ for $i=1$, 2, and
(3) if $v \in V\left(G_{1}\right)$ and $w \in V\left(G_{2}\right)$, then $\{v, w\} \in E(G)$.

Proposition 2.4. Let G_{1}, G_{2} be connected graphs on two or more vertices. Then $\operatorname{msr}\left(G_{1} \vee G_{2}\right)=$ $\max \left\{\operatorname{msr}\left(G_{1}\right), \operatorname{msr}\left(G_{2}\right)\right\}$.
Proof. Without loss of generality, let $\operatorname{msr}\left(G_{1}\right)=n \geqslant \operatorname{msr}\left(G_{2}\right)$. Moreover, let $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and $V\left(G_{2}\right)=\left\{w_{1}, w_{2}, \ldots, w_{l}\right\}$. By assumption, there exist vector representations $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$ of G_{1} and $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{l}$ of G_{2} in \mathbb{C}^{n}. Since G_{1} and G_{2} have no isolated vertices, these vector representations contain no zero vectors. Let U be the unitary operator on \mathbb{C}^{n} resulting from the application of Lemma 2.1 to the vectors v_{i}, the vectors w_{j}, and the trivial subspace. Then the vectors

$$
\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}, U \vec{w}_{1}, U \vec{w}_{2}, \ldots, U \vec{w}_{l}\right\}
$$

represent $G_{1} \vee G_{2}$ in \mathbb{C}^{n}. Thus, $\operatorname{msr}\left(G_{1} \vee G_{2}\right) \leqslant n$. Since G_{1} is an induced subgraph of $G_{1} \vee G_{2}$, $\operatorname{msr}\left(G_{1} \vee\right.$ $\left.G_{2}\right) \geqslant \operatorname{msr}\left(G_{1}\right)$. Taken together, we have the desired result.

A result similar to Proposition 2.4 for the real-symmetric minimum rank problem has been found by Barioli and Fallat [1].

From the definition of the associated graph $G(A)$ for a psd matrix A, vector representations of a graph may include a zero vector. Thus, isolated vertices do not increase the minimum semidefinite rank of a graph. The minimum vector rank (mvr) of a graph G is defined to be the minimum rank among vector representations of G that have no zero vectors. Notice that $\operatorname{mvr}(G)$ differs from $m s r(G)$ by exactly the number of isolated vertices of G, and that mvr (like msr) is additive on connected components of a graph.

Lemma 2.5 [9]. If G is a connected graph and H is an induced subgraph of G, then $\operatorname{msr}(G) \geqslant \operatorname{mvr}(H)$.
Proposition 2.6. Let G_{1}, G_{2} be graphs (possibly not connected). Then $\operatorname{msr}\left(G_{1} \vee G_{2}\right)=\max \left\{\operatorname{mvr}\left(G_{1}\right)\right.$, $\left.\operatorname{mvr}\left(G_{2}\right)\right\}$.
Proof. Apply Lemma 2.1 as in the proof of Proposition 2.4 to vector representations of G_{1} and G_{2} that contain no zero vectors to get one direction, and Lemma 2.5 gives the reverse inequality.
Corollary 2.7. For any graph $G, \operatorname{mvr}(G)=\operatorname{msr}\left(G \vee K_{1}\right)$.
Corollary 2.8. Let G be a complete multipartite graph with at least two nonempty partite sets. Then $\operatorname{msr}(G)=\mathrm{i}(G)$.

Definition 2.9 [19]. Suppose G is decomposable into two graphs, G_{1} and G_{2}, sharing only one vertex v such that if $u \in V\left(G_{1}\right)$ and $w \in V\left(G_{2}\right)$, then $\{u, w\} \in E(G)$ only if $u=v$ or $w=v$. Then G_{1} and G_{2} are joined at a cut vertex, and we write $G=G_{1} \cdot G_{2}$.

If $G=G_{1} \cdot G_{2}$, then $\operatorname{msr}(G)=\operatorname{msr}\left(G_{1}\right)+\operatorname{msr}\left(G_{2}\right)$ [4], which is also true when G is the disjoint union of subgraphs G_{1} and G_{2}. Rephrased using complements, Proposition 2.6 states that if \bar{G} is the disjoint union of $\overline{G_{1}}$ and $\overline{G_{2}}$, then $\operatorname{msr}(G)$ is equal to $\max \left\{\operatorname{mvr}\left(G_{1}\right), \operatorname{mvr}\left(G_{2}\right)\right\}$. By analogy, this suggests that if $\bar{G}=\overline{G_{1}} \cdot \overline{G_{2}}$, then perhaps $\operatorname{msr}(G)$ is equal to $\max \left\{\operatorname{mvr}\left(G_{1}\right), \operatorname{mvr}\left(G_{2}\right)\right\}$. This is essentially correct, as the next proposition demonstrates.

Proposition 2.10. Let $\bar{G}=\overline{G_{1}} \cdot \overline{G_{2}}$ with v the cut vertex for $\overline{G_{1}}$ and $\overline{G_{2}}$. If v is an isolated vertex in G, then $\operatorname{msr}(G)$ is equal to $\max \left\{\operatorname{mvr}\left(G_{1}\right), \operatorname{mvr}\left(G_{2}\right)\right\}-1$. If v is not an isolated vertex in G, and not a duplicate vertex in G_{1} and $G_{2}, \operatorname{msr}(G)$ is given by $\max \left\{\operatorname{mvr}\left(G_{1}\right), \operatorname{mvr}\left(G_{2}\right)\right\}$. Otherwise,

$$
\max \left\{\operatorname{mvr}\left(G_{1}\right), \operatorname{mvr}\left(G_{2}\right)\right\} \leqslant \operatorname{msr}(G) \leqslant \max \left\{\operatorname{mvr}\left(G_{1}\right), \operatorname{mvr}\left(G_{2}\right)\right\}+1
$$

Proof. Let $V\left(G_{1}\right)=\left\{v, u_{1}, \ldots, u_{k}\right\}$ and $V\left(G_{2}\right)=\left\{v, w_{1}, \ldots, w_{l}\right\}$. Note that because $\bar{G}=\overline{G_{1}} \cdot \overline{G_{2}}$, each u_{i} is adjacent to each w_{i} in G. Thus, unless v is isolated in G, G is connected.

If v is an isolated vertex in G, then $G-v$ is the join of $G_{1}-v$ and $G_{2}-v$. Further, v must be an isolated vertex in both G_{1} and G_{2}, so that $\operatorname{mvr}\left(G_{i}-v\right)=\operatorname{mvr}\left(G_{i}\right)-1$ for both subgraphs. Using this and Proposition 2.6,

$$
\begin{aligned}
\operatorname{msr}(G) & =\operatorname{msr}(G-v)=\max \left\{\operatorname{mvr}\left(G_{1}-v\right), \operatorname{mvr}\left(G_{2}-v\right)\right\} \\
& =\max \left\{\operatorname{mvr}\left(G_{1}\right)-1, \operatorname{mvr}\left(G_{2}\right)-1\right\}=\max \left\{\operatorname{mvr}\left(G_{1}\right), \operatorname{mvr}\left(G_{2}\right)\right\}-1 .
\end{aligned}
$$

If v is not an isolated vertex in G, then G is connected, and Lemma 2.5 gives that

$$
\max \left\{\operatorname{mvr}\left(G_{1}\right), \operatorname{mvr}\left(G_{2}\right)\right\} \leqslant \operatorname{msr}(G) .
$$

Let $n=\max \left\{\operatorname{mvr}\left(G_{1}\right), \operatorname{mvr}\left(G_{2}\right)\right\}$. If v is not a duplicate vertex in G_{1} and G_{2}, choose, without loss of generality, vector representations $\left\{\vec{v}, \vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{k}\right\}$ of G_{1} and $\left\{\vec{v}^{\prime}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{l}\right\}$ of G_{2} in \mathbb{C}^{n} with no zero vectors such that $\vec{v}=\vec{v}^{\prime}$. By Remark 1.2, no \vec{u}_{i} or \vec{w}_{j} lies in the span of \vec{v}. Let U be the unitary operator resulting from the application of Lemma 2.1 to the vectors \vec{u}_{i}, the vectors \vec{w}_{j}, and the subspace $S=\operatorname{span}\{\vec{v}\}$. Then $\left\{\vec{v}, \vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{k}\right\}$ is a vector representation of $G_{1},\left\{U \vec{v}^{\prime}, U \vec{w}_{1}, U \vec{w}_{2}, \ldots, U \vec{w}_{l}\right\}$ is a vector representation of G_{2}, and

$$
\left\{U \vec{v}^{\prime}=\vec{v}^{\prime}=\vec{v}, \vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{k}, U \vec{w}_{1}, U \vec{w}_{2}, \ldots, U \vec{w}_{l}\right\}
$$

is a vector representation of G of rank n, showing $\operatorname{msr}(G) \leqslant \max \left\{\operatorname{mvr}\left(G_{1}\right), \operatorname{mvr}\left(G_{2}\right)\right\}$.
If v is a duplicate vertex in G_{1} or G_{2}, choose, without loss of generality, vector representations $\left\{\vec{v}, \vec{u}_{1}\right.$, $\left.\vec{u}_{2}, \ldots, \vec{u}_{k}\right\}$ of G_{1} and $\left\{\vec{v}^{\prime}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{l}\right\}$ of G_{2} in \mathbb{C}^{n} with no zero vectors such that $\vec{v}=\vec{v}^{\prime}$. For each vector \vec{z} in one of the vector representations, define new vector representations of G_{1} and G_{2} in \mathbb{C}^{n+1} by setting $\vec{z}^{\prime}=\vec{z} \oplus c$ if vertex z is a duplicate of v and $\vec{z}^{\prime}=\vec{z} \oplus 0$ otherwise, where c is defined to be one more than the maximum absolute value taken over inner products of pairs of vectors in each representation (this ensures the result will still be representations of G_{1} and G_{2}). Now, applying Lemma 2.1 as above will result in a vector representation of G of rank $n+1$, showing $\operatorname{msr}(G) \leqslant \max \left\{\operatorname{mvr}\left(G_{1}\right), \operatorname{mvr}\left(G_{2}\right)\right\}+1$.

3. Linearly independent vertices

We say that vertices v_{1}, \ldots, v_{n} of a graph G are linearly independent if in any vector representation \vec{V} of $G, \vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent vectors. In this section, we present a method for identifying a set of vertices of a graph G whose representing vectors must be linearly independent in any vector representation of G.

Definition 3.1. Let G be a connected graph and let $S=\left\{v_{1}, \ldots, v_{m}\right\}$ be an ordered set of vertices of G. Denote by G_{k} the subgraph induced by $v_{1}, v_{2}, \ldots, v_{k}$ for each $k, 1 \leqslant k \leqslant m$. Let H_{k} be the connected component of G_{k} such that $v_{k} \in V\left(H_{k}\right)$. If for each k, there exists $w_{k} \in V(G)$ such that $w_{k} \neq v_{l}$ for $l \leqslant k,\left\{w_{k}, v_{k}\right\} \in E(G)$, and $\left\{w_{k}, v_{l}\right\} \notin E(G)$ for all $v_{l} \in V\left(H_{k}\right)$ with $l \neq k$, then S is called a vertex set of ordered subgraphs (or OS-vertex set). The OS-number of a graph G, denoted $\operatorname{OS}(G)$, is the maximum cardinality among all $O S$-vertex sets of G.

Example 3.2. Given below is an example of the construction of an OS-set, with each v_{i} and w_{i} shown, and dashed lines indicating non-adjacency showing that each w_{i} satisfies the definition. Inspection will show the constructed OS-set is maximal.

Proposition 3.3. Let $G=(V, E)$ be a connected graph and let S be an $O S$-vertex set in G. Then $|S| \leqslant \operatorname{msr}(G)$. In particular, $\operatorname{msr}(G) \geqslant \operatorname{OS}(G)$.

Proof. Let $S=\left\{v_{1}, \ldots, v_{m}\right\}$ be an OS-vertex set in G. We prove, by induction on $|S|$, that $\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$ is a linearly independent set in any vector representation \vec{V} of G.

If $|S|=1$, then $\left\{\vec{v}_{1}\right\}$ is linearly independent since \vec{v}_{1} is nonzero. Assume that the result is true for $|S|<k \leqslant m$. Suppose $|S|=k, G_{k}$ is the subgraph induced by $v_{1}, v_{2}, \ldots, v_{k}$ and H_{k} is the connected component of G_{k} containing v_{k}. By the induction hypothesis, $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k-1}\right\}$ form a linearly independent set. Suppose $\vec{v}_{k}=\sum_{i=1}^{k-1} c_{i} \vec{v}_{i}$. Let $\left\{\vec{v}_{n_{1}}, \ldots, \vec{v}_{n_{r}}\right\} \subseteq\left\{\vec{v}_{1}, \ldots, \vec{v}_{k-1}\right\}$ be the vectors corresponding to the vertices of $H_{k}-v_{k}$. If $\left\{\vec{v}_{l_{1}}, \ldots, \vec{v}_{l_{s}}\right\} \subseteq\left\{\vec{v}_{1}, \ldots, \vec{v}_{k-1}\right\}$ are the vectors corresponding to the vertices in any other component of G_{k}, then

$$
0=\left\langle\vec{v}_{k}, \sum_{i=1}^{s} c_{l_{i}} \vec{v}_{l_{i}}\right\rangle=\left\|\sum c_{l_{i}} \vec{v}_{l_{i}}\right\|^{2} .
$$

By the induction hypothesis this implies $c_{l_{i}}=\cdots=c_{l_{s}}=0$. Therefore $\vec{v}_{k}=\sum_{i=1}^{r} c_{n_{i}} \vec{v}_{n_{i}}$. Then $\left\langle\vec{v}_{k}, \vec{w}_{k}\right\rangle=$ $\sum_{i=1}^{r} c_{n_{i}}\left\langle\vec{v}_{n_{i}}, \vec{w}_{k}\right\rangle=0$. This contradicts the assumption that $\left\{v_{k}, w_{k}\right\} \in E(G)$. Hence $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is linearly independent and $\operatorname{msr}(G) \geqslant \operatorname{OS}(G)$.

The sum of two positive semi-definite matrices is positive semi-definite and the rank of a sum is never more than the sum of the ranks [8, p. 13]. If we cover all edges of a graph G with (not necessarily induced) subgraphs of known msr, this can lead to useful upper bounds for $\mathrm{msr}(G)$. First, suppose that G is labeled and that G_{1}, \ldots, G_{k} are (labeled) subgraphs of G, that is, each $G_{i}, i=1, \ldots, k$ is the result of deleting some edges and/or vertices from G. We say that G_{1}, \ldots, G_{k} cover G if each edge (vertex) of G is an edge (vertex) of at least one $G_{i}, 1 \leqslant i \leqslant k$. The cover G_{1}, \ldots, G_{k} of G is called a clique cover of G if each of G_{1}, \ldots, G_{k} is a clique of G. The clique cover number of $G, \operatorname{cc}(G)$, is the minimum value of k for which there is a clique cover G_{1}, \ldots, G_{k} of G [17].
Remark 3.4. If $C_{1}, C_{2}, \ldots, C_{k}$ is a clique cover of a graph G, then $\operatorname{msr}(G) \leqslant k$. In particular, $\operatorname{msr}(G) \leqslant \operatorname{cc}(G)$.
Recall that a graph is chordal if it does not have an induced subgraph that is a cycle on four or more vertices, and a vertex is simplicial if its neighborhood is a clique. It is well known that every chordal graph has a simplicial vertex [3, p. 175].
Algorithm 3.5. Let G be a simple chordal graph. Define $E_{0}=F_{0}=G_{0}=G$. For the k th step, $k \geqslant 1$,
(1) Select v_{k} to be a simplicial vertex in G_{k-1}, w_{k} to be any neighbor of v_{k} in G_{k-1}, and let C_{k} be the maximal clique in G containing the closed neighborhood of v_{k} in G_{k-1}.
(2) Define $E_{k}=G_{k-1}-v_{k}$.
(3) Define F_{k} to be the subgraph of E_{k} obtained by deleting all of the edges covered by any of the cliques C_{1}, \ldots, C_{k}.
(4) Define G_{k} to be the induced subgraph of E_{k} obtained by removing any vertices of E_{k} that are isolated in F_{k}.

The algorithm terminates at a value l when G_{l} is empty.
Proposition 3.6. Let G be a connected, chordal graph. Algorithm 3.5 constructs an $O S$-vertex set $S \subseteq V(G)$ such that $|S|=\operatorname{OS}(G)=\operatorname{cc}(G)$ and a corresponding minimal clique cover of G.

Proof. We first note that at each step in Algorithm 3.5, v_{k} may be chosen to be a simplicial vertex since each G_{k} is an induced subgraph of the original chordal graph G and hence is also chordal. We now show that the resulting v_{1}, \ldots, v_{l} comprise an OS-set in G, and will do so by showing that v_{1}, \ldots, v_{k} comprise an OS-set in G at each step k.

Assume that the vertices v_{1}, \ldots, v_{k-1} form an OS-set in G. By construction, v_{k} is not isolated in F_{k-1}. Hence, there exists a vertex w_{k} in F_{k-1} such that the edge (w_{k}, v_{k}) is also in F_{k-1}. Let H_{k} be the connected component of the subgraph of G induced by $\left\{v_{1}, \ldots, v_{k}\right\}$ that contains v_{k}, and label the vertices of H_{k} as $\left\{v_{n_{1}}, \ldots, v_{n_{r}}, v_{k}\right\}$. We must then show that $\left\{w_{k}, v_{n_{i}}\right\} \notin E(G)$ for $1 \leqslant i \leqslant r$. Let $n_{i}<k, 1 \leqslant i \leqslant r$ be an index such that $\left\{w_{k}, v_{n_{i}}\right\} \in E(G)$. If $v_{n_{i}}$ and v_{k} are adjacent in G, then the edge $\left\{w_{k}, v_{k}\right\}$ would be part of the maximal clique $C_{n_{i}}$. However, by construction, this would force w_{k} and v_{k} to not be adjacent in F_{k-1}, a contradiction. Therefore, if $\left\{w_{k}, v_{n_{i}}\right\} \in E(G)$ then $\left\{v_{n_{i}}, v_{k}\right\} \notin E(G)$, and, for any n_{i}, since $v_{n_{i}}$ and v_{k} belong to H_{k}, there is a shortest path of length at least two in H_{k} joining $v_{n_{i}}$ to v_{k}. Let $n_{j}<k, 1 \leqslant j \leqslant r$ be an index such $v_{n_{j}}$ is adjacent to w_{k} and the distance between $v_{n_{j}}$ and v_{k} in H_{k} is minimal among all vertices $v_{n_{i}}$ adjacent to w_{k}. Then no vertex on the shortest path in H_{k} from $v_{n_{j}}$ to v_{k} is adjacent to w_{k}, and appending the edges $\left\{v_{k}, w_{k}\right\}$ and $\left\{w_{k}, v_{n_{j}}\right\}$ to this path produces an induced cycle $C_{n}, n \geqslant 4$. By construction, this cycle has no chords. This contradicts that G is a chordal graph. Thus ($\left.w_{k}, v_{n_{i}}\right) \notin E(G)$ for all $1 \leqslant i \leqslant r$ and $S=\left\{v_{1}, \ldots, v_{k}\right\}$ is an OS-vertex set in G.

The only way that a vertex v belongs to G but not to G_{k} for some fixed k is if all of the edges incident to v are covered by the cliques C_{1}, \ldots, C_{k}. Thus this construction of the $O S$-vertex set S produces a clique cover \mathcal{C} of G. Using Remark 3.4 and Proposition 3.3, we see that $|S| \leqslant \operatorname{msr}(G) \leqslant|\mathcal{C}|$. Since \mathcal{C} has the same cardinality as S, \mathcal{C} is a minimal clique cover, S is an $O S$-set of maximum cardinality, and $\operatorname{OS}(G)=|S|=|\mathcal{C}|=\operatorname{cc}(G)$.

Example 3.7. Consider the chordal graph below.

Using Algorithm 3.5, v_{1} may be chosen from among vertices 1,3 , and 6 , and w_{1} may be any neighbor. Choose vertex 1 to be v_{1} and vertex 4 (or 2) as w_{1}. It follows that vertices 1,2 , and 4 comprise C_{1}. Removing vertex 1 yields the following graphs:

Since no vertices are isolated in $F_{1}, G_{1}=E_{1}$. Only vertices 6 and 3 are simplicial in G_{1}, so choose vertex 6 as v_{2} and vertex 4 (or 5) as w_{2}. Then vertices 4,5 , and 6 comprise C_{2}. This gives the following graphs:

Because vertex 4 is isolated in F_{2}, G_{2} will be the subgraph of E_{2} induced by vertices 2,3 , and 5 . Finally, v_{3} can be any of the vertices 2,3 , or 5 , and w_{3} can be either of the two left from the choice of v_{3}. Then $C_{3}=G_{2}, G_{3}$ is empty, and the algorithm ends.

Using Proposition 3.6 along with Remark 3.4, we get that
Corollary 3.8 [5]. If G is a connected, chordal graph, then $\operatorname{msr}(G)=\operatorname{OS}(G)=\operatorname{cc}(G)$.
Suppose G^{\prime} is an induced subgraph of G and S is an OS-vertex set in G^{\prime}. Since each of the G_{k} in Definition 3.1 are induced subgraphs of G^{\prime}, they are also induced subgraphs of G. Hence S is also an OS-vertex set of G. This, combined with the following result, gives that there is an OS-vertex set of size $\mathrm{ts}(G)-1$ in any graph G.

Corollary 3.9. Given a tree T, for each $v \in V(T), V(T) \backslash\{v\}$ is an OS-vertex set.
For an induced forest of G with components $T_{1}, T_{2}, \ldots, T_{k}$, take the sum of the tree size of each T_{i} and subtract off the number of components that are not isolated vertices. Among all induced forests of G maximize this count and call this number $f m(G)$, the forest measure of G [5]. Any isolated vertices occurring in an induced subgraph of a connected graph G contribute 1 , rather than 0 , to $\mathrm{msr}(G)$, as an irreducible positive semidefinite matrix has positive diagonal entries.

Proposition 3.10. For a connected graph $G, \operatorname{OS}(G) \geqslant \operatorname{fm}(G)$.
Proof. Let F be an induced forest of G. Each tree T_{i} that is not a single vertex of F has a nonempty OS-vertex set S_{i} of cardinality $\left|V\left(T_{i}\right)\right|-1$ by Corollary 3.9. Because no vertex of S_{i} is adjacent to a vertex of S_{j} for $i \neq j, S=\bigcup S_{i}$ is an OS-vertex set of F. Let v_{1}, \ldots, v_{j} be the set of isolated vertices of the induced forest F. Since G is connected, each v_{i} is adjacent to some vertex in G which is not in S because $S \subseteq V(F)$. Therefore $S^{\prime}=S \cup\left\{v_{1}, \ldots, v_{j}\right\}$ is an $O S$-vertex set of G. If F is an induced forest realizing $\mathrm{fm}(G)$, then $\operatorname{OS}(G) \geqslant \mathrm{fm}(G)$.

We end this section with the following conjecture:
Conjecture 3.11. For any graph $G, O S(G)=\operatorname{msr}(G)$.

4. Orthogonal vertex removal

In this section, we consider a generalization of the minimum semidefinite rank problem by van der Holst [18]. Given an undirected graph $G=(V, E)$ on n vertices that has no loops, but may have multiple edges, denote by $H(G)$ the set of all n by n Hermitian matrices $A=\left[a_{i j}\right]$ such that

- $a_{i, j} \neq 0$ if i and j are joined by exactly one edge, and
- $a_{i, j}=0$ if $i \neq j$ and i and j are not adjacent.

We say $\vec{V}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\} \subset \mathbb{C}^{m}$ is a vector representation of G when $\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle \neq 0$ if i and j are joined by a single edge, and $\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=0$ if i and j are not adjacent and $i \neq j$. By the complement \bar{G} of a multigraph G, we will mean the simple graph on the same vertex set where two vertices are adjacent if and only if they are not adjacent in G.

Given a vector representation \vec{V} of a graph G, for fixed i, we may "orthogonally remove" the vector \vec{v} by orthogonally projecting onto the complement of the span of \vec{v}. That is, replace each \vec{v}_{j} with

$$
\vec{v}_{j}-\frac{\left\langle\vec{v}, \vec{v}_{j}\right\rangle}{\langle\vec{v}, \vec{v}\rangle} \vec{v}
$$

to get a vector representation $\vec{V} \ominus \vec{v}$ of a graph G^{\prime} with rank and order decreased by one (this process corresponds to taking a Schur complement in the Gram matrix). The graph G^{\prime} may be obtained from G by altering edges of the subgraph of G induced by $N(v)$ in the following manner: for $u, w \in N(v)$, if v is connected to u and w by a single edge, and u is not connected to w in G, then u is connected to w by a single edge in G^{\prime}. In any other case, u and w may or may not be connected in G^{\prime}.

To reflect this situation, define $G \ominus v$ as follows: in the induced subgraph $G-v$ of G, between any $u, w \in N(v)$ add $e-1$ edges, where e is the sum of the number of edges between u and v and the number of edges between w and v. This process ensures that if \vec{V} is a vector representation of a graph $G, \vec{V} \ominus \vec{v}$ is a vector representation of $G \ominus v$, and proves $\operatorname{msr}(G) \geqslant \operatorname{msr}(G \ominus v)+1$. Unfortunately, $\operatorname{msr}(G)-\operatorname{msr}(G \ominus v)$ may be arbitrarily large [5], and seems difficult to calculate.

We are particularly interested, then, in determining conditions on the vertex v that allow us to calculate $\operatorname{msr}(G)-\operatorname{msr}(G \ominus v)$. Some success has already been recorded in this direction. The case where the vertex v to be removed has degree two with connected neighbors has been used to characterize trees in terms of their minimum semidefinite rank [18, Lemma 3.7]. This was expanded to

Theorem 4.1 [5]. Suppose v is a simplicial vertex of a graph G that is adjacent to at least one neighbor by exactly one edge. Then $\operatorname{msr}(G)=\operatorname{msr}(G \ominus v)+1$.

Also, it was shown that $\operatorname{msr}(G)=\operatorname{msr}(G \ominus v)+1$ for v a vertex of a simple graph G where the subgraph induced by $N(v)$ is either complete or lacks one or two edges [4]. In what follows, we expand upon this result.

A star is a tree that has one vertex adjacent to all of the other vertices [19]. A star forest is a forest of stars.

Proposition 4.2. Let G be a connected graph, let v be a vertex of G not adjacent to any of its neighbors by multiple edges, and let H be the graph induced by the vertices of $N(v)$. If \bar{H} is a star forest then $\operatorname{msr}(G)=$ $\operatorname{msr}(G \ominus v)+1$.

Proof. First, $\operatorname{msr}(G) \geqslant \operatorname{msr}(G \ominus v)+1$. To show the reverse ineguality, assume that \vec{V} is a vector representation of $G \ominus v$ of rank m in \mathbb{C}^{m}. We will construct from \vec{V} a vector representation of G with rank $m+1$. First, view the vectors of \vec{V} as vectors in \mathbb{C}^{m+1} orthogonal to some unit vector \vec{e}. Now, consider one of the s stars that comprise \bar{H}. Let w be the vertex at the center represented by vector \vec{w} in \vec{V}, and let w_{1}, \ldots, w_{k} be the pendant vertices of the star represented by vectors $\vec{w}_{1}, \ldots, \vec{w}_{k}$. Observe that for each $c \in \mathbb{C} \backslash\{0\}$ and each vertex w_{i}, because v is not adjacent to any of its neighbors by multiple edges, $\left\langle\vec{w}, \vec{w}_{i}\right\rangle$ is nonzero in \vec{V}, there exists a unique nonzero complex number a_{i} such that

$$
\left\langle\vec{w}+c \vec{e}, \vec{w}_{i}+a_{i} \vec{e}\right\rangle=0 .
$$

Further, although $\left\langle\vec{w}_{i}, \vec{w}_{j}\right\rangle$ may be nonzero in \vec{V}, for all but finitely many such c, we have

$$
\left\langle\vec{w}_{i}+a_{i} \vec{e}, \vec{w}_{j}+a_{j} \vec{e}\right\rangle \neq 0
$$

for all i and j. Suppose that v_{1}, \ldots, v_{r} are those vertices of G adjacent to v that are isolated in \bar{H}. Consider also replacing each vector \vec{v}_{i} of \vec{V} that represents vertex v_{i} by $\vec{v}_{i}+b_{i} \vec{e}$. To achieve our aim, we must select complex numbers c_{1}, \ldots, c_{s} and b_{1}, \ldots, b_{r} so that in the vector representation resulting from the replacements described above we avoid

- some a_{i} or b_{i} is zero, and
- there exist two orthogonal vectors that represent neighbors of v not belonging to the same star in \bar{H}.

However, each of these conditions is satisfied by at most finitely many sets of c_{i} and b_{i}. Choosing, then c_{1}, \ldots, c_{s} and b_{1}, \ldots, b_{r} so that neither condition holds, and letting \vec{e} represent v, we get a new vector representation \vec{U} of some graph G^{\prime} on the same vertices as G.

Recall that the vectors in \vec{U} representing vertices not adjacent to v in G are orthogonal to \vec{e}. Thus, since the a_{i} and b_{i} are nonzero, v is adjacent in G^{\prime} only to its neighbors in G. Also, since $G \ominus v$ has the same edges of G except between neighbors of v, so does G^{\prime}. Because there do not exist two orthogonal vectors in \vec{U} that represent neighbors of v not belonging to the same star, and because we forced the a_{i} to depend upon the choice of c in such a way as any two neighbors of the same star are represented by orthogonal vectors in \vec{U}, G^{\prime} and G either both have a single edge or both have multiple edges between any two neighbors of v. Thus $\mathcal{P}\left(G^{\prime}\right)=\mathcal{P}(G)$, and \vec{U} is a vector representation of G with rank $m+1$.

Proposition 4.3. Let G be a connected graph with a vertex v that is not adjacent to any of its neighbors by multiple edges, and let H be the graph induced by the vertices of $N(v)$. Suppose there exist m star forests F_{1}, \ldots, F_{m} that are subgraphs of \bar{H} and together cover all of the edges of \bar{H}. If, for each i, F_{i} is an induced subgraph of the graph with vertex set $V(\bar{H})$ and edge set $E(\bar{H}) \backslash\left(\cup_{j<i} E\left(F_{j}\right)\right)$, then $\operatorname{msr}(G) \leqslant \operatorname{msr}(G \ominus$ $v)+m$.

Proof. Denote v by v_{m}, and consider the graph G_{0} obtained by adding vertices v_{1}, \ldots, v_{m-1} to G so that v_{i} is joined by single edges to the vertices of F_{i}. Consider the graphs

$$
G_{i}=\left(\left(\ldots\left(\left(G_{0} \ominus v_{1}\right) \ominus v_{2}\right) \ldots\right) \ominus v_{i}\right)
$$

From the conditions on the F_{i}, the complement of the subgraph of H induced by the vertices of $N\left(v_{i}\right)$ in G_{i-1} is a single star forest. Therefore, we may apply Proposition 4.2 repeatedly to the vertices v_{1}, \ldots, v_{m}, to see that $\operatorname{msr}\left(G_{m}\right)=\operatorname{msr}\left(G_{0}\right)-m$. Further, by construction, G_{m} is a supergraph of $G \ominus v$ on the same vertices which may be obtained from $G \ominus v$ by the possible addition of edges where edges already exist in $G \ominus v$. Therefore, $\operatorname{msr}\left(G_{m}\right) \leqslant \operatorname{msr}(G \ominus v)$. Finally, $\operatorname{msr}\left(G_{0}\right) \geqslant \operatorname{msr}(G)$, so that

$$
\operatorname{msr}(G \ominus v) \geqslant \operatorname{msr}\left(G_{m}\right)=\operatorname{msr}\left(G_{0}\right)-m \geqslant \operatorname{msr}(G)-m
$$

establishing the desired result.
Example 4.4. Consider the graph G with vertex v and the complement of $N(v)$ below.

G

The subgraph of $\overline{G-v}$ induced by vertices 1,2 , and 4 is a star, so we add a vertex v_{1} to G adjacent to those three vertices to get a new graph G^{\prime}, and by Proposition $4.2, \operatorname{msr}\left(G^{\prime} \ominus v_{1}\right)=\operatorname{msr}\left(G^{\prime}\right)-1$.

G^{\prime}

$\mathrm{G}^{\prime} \ominus v_{1}$

$\overline{\left(G^{\prime} \ominus v_{1}\right)-v}$

Since $\overline{\left(G^{\prime} \ominus v_{1}\right)-v}$ is a star, let $G^{\prime \prime}=G^{\prime} \ominus v_{1}$, and apply Proposition 4.2 to see that $\operatorname{msr}\left(G^{\prime \prime} \ominus v\right)=$ $\operatorname{msr}\left(G^{\prime \prime}\right)-1$.

$$
G^{\prime \prime} \ominus v
$$

By inspection, $\operatorname{msr}\left(G^{\prime \prime} \ominus v\right)=1$, so that $\operatorname{msr}(G) \leqslant 3$ by Proposition 4.3.

Acknowledgments

The authors wish to thank the referees for their careful reading and helpful comments and suggestions, including finding an additional case to consider in Proposition 2.10.

References

[1] Francesco Barioli, Shaun Fallat, On the minimum rank of the join of graphs and decomposable graphs, Linear Algebra Appl. 421 (2-3) (2007) 252-263.
[2] Wayne Barrett, Hein van der Holst, Raphael Loewy, Graphs whose minimal rank is two, Electron. J. Linear Algebra 11 (2004) 258-280. (electronic)
[3] Béla Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, vol. 184, Springer-Verlag, New York, 1998.
[4] Matthew Booth, Philip Hackney, Benjamin Harris, Charles R. Johnson, Margaret Lay, Terry Lenker, Lon H. Mitchell, Sivaram K. Narayan, Amanda Pascoe, Brian D. Sutton, On the minimum semidefinite rank of a simple graph, Linear and Multilinear Algebra, submitted for publication.
[5] Matthew Booth, Philip Hackney, Benjamin Harris, Charles R. Johnson, Margaret Lay, Lon H. Mitchell, Sivaram K. Narayan, Amanda Pascoe, Kelly Steinmetz, Brian D. Sutton, Wendy Wang, On the minimum rank among positive semidefinite matrices with a given graph, SIAM J. Matrix Anal. Appl. 30 (2) (2008) 731-740.
[6] Paul Erdös, Michael Saks, Vera T. Sós, Maximum induced trees in graphs, J. Combin. Theory Ser. B 41 (1) (1986)61-79.
[7] Shaun M. Fallat, Leslie Hogben, The minimum rank of symmetric matrices described by a graph: a survey, Linear Algebra Appl. 426 (2-3) (2007) 558-582.
[8] Roger A. Horn, Charles R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1990, Corrected reprint of the 1985 original.
[9] Yunjiang Jiang, Lon H. Mitchell, Sivaram K. Narayan, Unitary matrix digraphs and minimum semidefinite rank, Linear Algebra Appl. 428 (7) (2008) 1685-1695.
[10] Charles R. Johnson, António Leal Duarte, On the possible multiplicities of the eigenvalues of a Hermitian matrix whose graph is a tree, Linear Algebra Appl. 348 (2002) 7-21.
[11] L. Lovász, M. Saks, A. Schrijver, Orthogonal representations and connectivity of graphs, Linear Algebra Appl. 114/115 (1989) 439-454.
[12] L. Lovász, M. Saks, A. Schrijver, A correction: "Orthogonal representations and connectivity of graphs" [Linear Algebra Appl. 114/115 (1989) 439-454; MR0986889 (90k:05095)], Linear Algebra Appl. 313 (1-3) (2000) 101-105.
[13] L. Lovász, K. Vesztergombi, Geometric representations of graphs, in: Paul Erdös and his mathematics, II (Budapest, 1999), Bolyai Soc. Math. Stud., vol. 11, János Bolyai Math. Soc., Budapest, 2002, pp. 471-498.
[14] László Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25 (1) (1979) 1-7.
[15] Russell Merris, A survey of graph Laplacians, Linear and Multilinear Algebra 39 (1-2) (1995) 19-31.
[16] T.D. Parsons, Tomaž Pisanski, Vector representations of graphs, Discrete Math. 78 (1-2) (1989) 143-154.
[17] Norman J. Pullman, Clique coverings of graphs-a survey, in: Combinatorial Mathematics, X (Adelaide, 1982), Lecture Notes in Math., vol. 1036, Springer, Berlin, 1983, pp. 72-85.
[18] Hein van der Holst, Graphs whose positive semi-definite matrices have nullity at most two, Linear Algebra Appl. 375 (2003) 1-11.
[19] Douglas B. West, Introduction to Graph Theory, Prentice-Hall, Inc., Upper Saddle River, NJ, 1996.

[^0]: * Corresponding author. Tel.: +1 989774 3566; fax: +1 9897742414.

 E-mail address: sivaram.narayan@cmich.edu (S.K. Narayan).
 ${ }^{1}$ Research supported in part by NSF Grant DMS 02-43674.

