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1. Introduction

A graph G consists of a set of vertices V and a set of edges E, where the elements of E are unordered

pairs of vertices. The order ofG, denoted |G|, is the cardinality ofV . A graph is simple if it has nomultiple

edges or loops. For Sections 1–3, we assume all graphs to be simple. In Section 4, graphs may have

multiple edges but no loops.

The entries of an n-by-n Hermitian matrix A = (aij) over the complex numbers C naturally de-

termine a graph G(A) with vertex set V = {v1, . . . , vn} and edge set E = {{vi, vj}: aij /= 0, i > j}.
Calculatingpossiblemultiplicities of eigenvalues forHermitianmatrices baseduponproperties of their

related graph has been of recent interest [10]. Also of recent interest is the minimum rank problem,

which seeks to determine the smallest possible rank of any real symmetric matrix with given graph.

For more information on minimum rank problems, see the survey by Fallat and Hogben [7]. In this

paper,we consider the relatedproblemof determining theminimumrank amongpositive semidefinite

(henceforth psd) matrices with a given graph [2,4,5,9,18].

Given a graph G, let P(G) represent all psdmatrices with graph G. Define theminimum semidefinite

rank of G as

msr(G) = min{rank A: A ∈ P(G)}.
The study of msr was initiated by Barrett et al. [2] using the notation hmr+.

In what follows, since the direct sum of matrices for connected components of a graph gives a

matrix for the entire graph and this process is additive in rank, we assume all graphs are connected

unless otherwise specified.

Remark 1.1. Since the Laplacianmatrix of a connected graph G on n vertices, L(G), is positive semidef-

inite and has rank n − 1 [15], we have that msr(G) � n − 1 for all graphs G. We can also provide a

positive definite matrix with graph G by taking L(G) + I, where I is the identity ofMn(C).

Given a field F, subsets S, A, B, and C of F, a positive integer d, and a nondegenerate bilinear form

b(x, y) on Fd, a vector representation [16] of a simple graph Gwith vertices v1, . . . , vn is a list of vectors

�v1, . . . , �vn in Fd whose components are in S such that for all i and j, b(�vi, �vi) ∈ A, if vi is adjacent to vj in

G then b(�vi, �vj) ∈ B, and if vi is not adjacent to vj in G then b(�vi, �vj) ∈ C. For example, Lovász defines an

orthonormal representationwith F = R = S = B, A = {1} and C = {0} in his solution of the Shannon

capacity of C5 [14] and his characterization (with Saks and Schrijver) of k-connected graphs [11,12].

See the survey by Lovász and Vesztergombi [13] for further information.

Given a set of n column vectors in Cd, �X = {�x1, . . . , �xn}, let X be the matrix [�x1· · · �xn]. Then X∗X
is a psd matrix called the Gram matrix of �X with regard to the Euclidean inner product. Its associated

graph G has n vertices v1, . . . , vn corresponding to the vectors �x1, . . . , �xn, and edges corresponding

to nonzero inner products among those vectors. Since X∗X ∈ P(G) for the graph G, we say �X is a

vector representation of G (with F = C = S = A, B = C \ {0}, and C = {0}). By rank �X , we mean the

dimension of the span of the vectors in �X , which is equal to rank X∗X [8, Theorem 7.2.10].

In what follows, when a graph G and vertex v are specified, we will often use �v to mean a vector

representing the vertex v in a vector representation of G. However, we will also use �v to stand for an

arbitrary vector.

Since any psd matrix A may be factored as Y∗Y for some Y ∈ Mn(C) with rank A = rank Y , each

psd matrix is the Grammatrix of a suitable set of vectors. Therefore, finding a psd matrix with a given

graph and finding a vector representation of the graph are equivalent problems.

Recall that the neighborhood of a vertex v of a graph G, denoted N(v), is the set of vertices of G

adjacent to v. The closed neighborhood of a vertex v,N[v] is {v} ∪ N(v).We say a vertex v is a duplicate of

a vertexw if N[v] = N[w]. Since duplicate vertices may be represented by the same vector, removing

a duplicate vertex does not affect the minimum semidefinite rank [5]. In particular, the minimum

semidefinite rank of a complete graph on two or more vertices is one.

Remark 1.2. If u and v are not duplicate vertices in a graph G, then �u /∈ span �v for all vector represen-

tations of G.
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2. Joins of graphs

Theminimum semidefinite rank of an induced subgraph H of a graph G provides a lower bound for

msr(G). As an example, let ts(G) be the tree size of G, the maximum number of vertices in an induced

tree [6]. Since themsr of a tree on n� 2 vertices is n − 1 [18], if G is a connected graph of order at least

two then msr(G) � ts(G) − 1.

The independence number of G, i(G), which is the cardinality of the largest independent (pairwise

disjoint) set of vertices of G, is also a lower bound for msr(G). It is known that the msr of a cycle on

n� 3 vertices is n − 2 [18], and thus msr(G) − i(G) may be arbitrarily large. However, in other cases,

such as complete bipartite graphs, the size of the largest independent set does give the minimum

semidefinite rank [4].

Given an induced subgraphH of a graph G, onemight ask whether, given a vector representation of

H of rank d = msr(H) contained in Cd, it is possible to complete that vector representation to a vector

representation of all of G with vectors in Cd. In the case of a complete bipartite graph, this is implied

by the above mentioned msr result. We now give two other instances where such a construction can

be accomplished, preceded by a lemma giving the actual construction.

Lemma 2.1. Let �u1, . . . , �un and�v1, . . . , �vm benonzerovectors inCd and let S bea (possibly trivial) subspace

of Cd such that no ui or vj is contained in S. Then there exists a unitary operator U on Cd such that U fixes

S and 〈�ui,U�vj〉 is nonzero for all 1� i � n and 1� j �m.

Proof. Let S⊥ denote the orthogonal complement of S in Cd and set �xj = projS⊥�uj and �yk = projS⊥�vk .
By the assumptions, the �xj and �yk are all nonzero. Let �x⊥

j (�y⊥
k ) denote the subspace of S⊥ orthogonal

to �xj (�yk), and define

R =
⎛
⎝ n⋃

j=1

�x⊥
j

⎞
⎠ ∪

⎛
⎝ m⋃

k=1

�y⊥
k

⎞
⎠ .

Then R is the union of a finite number of hyperplanes (of S⊥), and cannot cover all of S⊥. Thus there

exists a nonzero unit vector �w in S⊥ such that 〈�w, �xj〉 and 〈�w, �yk〉 are nonzero for all 1� j � n and

1� k �m. Write �xj = aj �w + �x′
j and �yk = bk �w + �y′

k where the vectors �x′
j and �y′

k are each orthogonal to

�w. Extend �w to a basis of S⊥, and let Uθ be the unitary transformation of S⊥ that has matrix⎛
⎜⎜⎜⎜⎝
eiθ 0 . . . 0

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞
⎟⎟⎟⎟⎠

with respect to that basis. Let IS be the identity operator on S. Then

〈�uj , (Uθ ⊕ IS)�vk〉 = 〈aj �w + �x′
j + (�uj − �xj), eiθbk �w + �y′

k + (�vk − �yk)〉
= e−iθajbk + 〈�u′

j , �v′
k〉 + 〈�uj − �xj , �vk − �yk〉.

By the choice of �w, both aj and bk are nonzero, and so if

〈�uj , (Uθ ⊕ IS)�vk〉 = 〈�uj , (Uθ ′ ⊕ IS)�vk〉
then θ ≡ θ ′ (mod 2π). Specifically, for fixed j and k, there is at most one value of θ in the interval

[0, 2π) for which 〈�uj , (Uθ ⊕ IS)�vk〉 is zero. Since there are finitely many pairs (j, k), there exists a value
of θ for which 〈�uj , (Uθ ⊕ IS)�vk〉 is nonzero for every 1� j � n and 1� k �m. �
Proposition 2.2. Let G be a bipartite graphwith independent sets X , Y such that X ∪ Y = V(G). Let |X| =
m� |Y | = n, and suppose | ⋂

v∈Y N(v)| � n. Thenmsr(G) = m.
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Proof. Because X is an independent set of vertices, msr(G) �m. To show that msr(G) �m, we will

exhibit a vector representation of G in Cm. Let X = {x1, . . . , xm}, Y = {y1, . . . , yn}, and {x1, . . . , xn} ⊆
∩v∈YN(v).

Using Remark 1.1, choose a vector representation

�V = {�y1, . . . , �yn, �xn+1, . . . , �xm}
in Cm of the subgraph of G induced by {y1, . . . , yn, xn+1, . . . , xm} that has rank m. Let S =
span{�xn+1, . . . , �xm}, and note that by our assumption on the rank of �V , none of the vectors �y1, . . . , �yn lie
in S. Let S⊥ denote theorthogonal complement of S inCm, and choose anorthonormal basis {�z1, . . . , �zn}
of S⊥. Let U be the unitary operator resulting from the application of Lemma 2.1 to the vectors �yi, the
vectors �zi, and the subspace S. Because S is invariant under U, so is S⊥, so that 〈�xi,U�zj〉 = 0 for all

n + 1� i �m and 1� j � n, and 〈�yi,U�zj〉 /= 0 for all 1� i, j � n by Lemma 2.1. Thus

{�y1, . . . , �yn, �xn+1, . . . , �xm,U�z1, . . . ,U�zn}
represents G in Cm as desired. �
Definition 2.3 [19]. We say that a graph G is the join of graphs G1 and G2, written G = G1 ∨ G2, if

(1) V(G) is the disjoint union of V(G1) and V(G2),
(2) if v,w ∈ V(Gi) then {v,w} ∈ E(G) if and only if {v,w} ∈ E(Gi) for i = 1, 2, and

(3) if v ∈ V(G1) and w ∈ V(G2), then {v,w} ∈ E(G).

Proposition 2.4. Let G1, G2 be connected graphs on two or more vertices. Then msr(G1 ∨ G2) =
max{msr(G1), msr(G2)}.
Proof. Without loss of generality, let msr(G1) = n�msr(G2). Moreover, let V(G1) = {v1, v2, . . . , vk}
and V(G2) = {w1,w2, . . . ,wl}. By assumption, there exist vector representations �v1, �v2, . . . , �vk of G1

and �w1, �w2, . . . , �wl of G2 in Cn. Since G1 and G2 have no isolated vertices, these vector representations

contain no zero vectors. Let U be the unitary operator on Cn resulting from the application of Lemma

2.1 to the vectors vi, the vectors wj , and the trivial subspace. Then the vectors

{�v1, �v2, . . . , �vk ,U �w1,U �w2, . . . ,U �wl}
representG1 ∨ G2 inCn. Thus,msr(G1 ∨ G2) � n. SinceG1 is an inducedsubgraphofG1 ∨ G2, msr(G1 ∨
G2) �msr(G1). Taken together, we have the desired result. �

A result similar to Proposition 2.4 for the real-symmetric minimum rank problem has been found

by Barioli and Fallat [1].

From thedefinitionof the associated graphG(A) for a psdmatrixA, vector representations of a graph

may include a zero vector. Thus, isolated vertices do not increase the minimum semidefinite rank of a

graph. The minimum vector rank (mvr) of a graph G is defined to be the minimum rank among vector

representations of G that have no zero vectors. Notice that mvr(G) differs from msr(G) by exactly the

number of isolated vertices of G, and that mvr (like msr) is additive on connected components of a

graph.

Lemma 2.5 [9]. If G is a connected graph and H is an induced subgraph of G, thenmsr(G) �mvr(H).

Proposition 2.6. Let G1, G2 be graphs (possibly not connected). Then msr(G1 ∨ G2) = max{mvr(G1),
mvr(G2)}.
Proof. Apply Lemma 2.1 as in the proof of Proposition 2.4 to vector representations of G1 and G2 that

contain no zero vectors to get one direction, and Lemma 2.5 gives the reverse inequality. �
Corollary 2.7. For any graph G, mvr(G) = msr(G ∨ K1).

Corollary 2.8. Let G be a complete multipartite graph with at least two nonempty partite sets. Then

msr(G) = i(G).
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Definition 2.9 [19]. Suppose G is decomposable into two graphs, G1 and G2, sharing only one vertex v

such that if u ∈ V(G1) andw ∈ V(G2), then {u,w} ∈ E(G) only if u = v orw = v. Then G1 and G2 are

joined at a cut vertex, and we write G = G1 . G2.

If G = G1 . G2, then msr(G) = msr(G1) + msr(G2) [4], which is also true when G is the disjoint

union of subgraphs G1 and G2. Rephrased using complements, Proposition 2.6 states that if G is the

disjoint union of G1 and G2, thenmsr(G) is equal tomax{mvr(G1), mvr(G2)}. By analogy, this suggests

that ifG = G1 . G2, then perhapsmsr(G) is equal tomax{mvr(G1), mvr(G2)}. This is essentially correct,
as the next proposition demonstrates.

Proposition 2.10. Let G = G1 . G2 with v the cut vertex for G1 and G2. If v is an isolated vertex in G, then

msr(G) is equal to max{mvr(G1), mvr(G2)} − 1. If v is not an isolated vertex in G, and not a duplicate

vertex in G1 and G2, msr(G) is given by max{mvr(G1), mvr(G2)}. Otherwise,

max{mvr(G1), mvr(G2)} �msr(G) �max{mvr(G1), mvr(G2)} + 1.

Proof. Let V(G1) = {v, u1, . . . , uk} and V(G2) = {v,w1, . . . ,wl}. Note that because G = G1 . G2, each

ui is adjacent to each wi in G. Thus, unless v is isolated in G, G is connected.

If v is an isolated vertex in G, then G − v is the join of G1 − v and G2 − v. Further, v must be an

isolated vertex in both G1 and G2, so that mvr(Gi − v) = mvr(Gi) − 1 for both subgraphs. Using this

and Proposition 2.6,

msr(G) = msr(G − v) = max{mvr(G1 − v), mvr(G2 − v)}
= max{mvr(G1) − 1,mvr(G2) − 1} = max{mvr(G1), mvr(G2)} − 1.

If v is not an isolated vertex in G, then G is connected, and Lemma 2.5 gives that

max{mvr(G1), mvr(G2)} �msr(G).

Let n = max{mvr(G1), mvr(G2)}. If v is not a duplicate vertex in G1 and G2, choose, without loss of

generality, vector representations {�v, �u1, �u2, . . . , �uk} of G1 and {�v′, �w1, �w2, . . . , �wl} of G2 in Cn with

no zero vectors such that �v = �v′. By Remark 1.2, no �ui or �wj lies in the span of �v. Let U be the unitary

operator resulting from the application of Lemma 2.1 to the vectors �ui, the vectors �wj , and the subspace

S = span{�v}. Then {�v, �u1, �u2, . . . , �uk} is a vector representation of G1, {U�v′,U �w1,U �w2, . . . ,U �wl} is a

vector representation of G2, and

{U�v′ = �v′ = �v, �u1, �u2, . . . , �uk ,U �w1,U �w2, . . . ,U �wl}
is a vector representation of G of rank n, showing msr(G) �max{mvr(G1), mvr(G2)}.

If v is a duplicate vertex inG1 orG2, choose, without loss of generality, vector representations {�v, �u1,�u2, . . . , �uk} of G1 and {�v′, �w1, �w2, . . . , �wl} of G2 in Cn with no zero vectors such that �v = �v′. For
each vector �z in one of the vector representations, define new vector representations of G1 and G2

in Cn+1 by setting �z′ = �z ⊕ c if vertex z is a duplicate of v and �z′ = �z ⊕ 0 otherwise, where c is

defined to be one more than the maximum absolute value taken over inner products of pairs of

vectors in each representation (this ensures the result will still be representations of G1 and G2).

Now, applying Lemma 2.1 as above will result in a vector representation of G of rank n + 1, showing

msr(G) �max{mvr(G1), mvr(G2)} + 1. �

3. Linearly independent vertices

We say that vertices v1, . . . , vn of a graph G are linearly independent if in any vector representation�V of G, �v1, . . . , �vn are linearly independent vectors. In this section, we present amethod for identifying

a set of vertices of a graph G whose representing vectors must be linearly independent in any vector

representation of G.
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Definition 3.1. Let G be a connected graph and let S = {v1, . . . , vm} be an ordered set of vertices of

G. Denote by Gk the subgraph induced by v1, v2, . . . , vk for each k, 1� k �m. Let Hk be the connected

component of Gk such that vk ∈ V(Hk). If for each k, there exists wk ∈ V(G) such that wk /= vl for

l � k, {wk , vk} ∈ E(G), and {wk , vl} /∈ E(G) for all vl ∈ V(Hk) with l /= k, then S is called a vertex set

of ordered subgraphs (or OS-vertex set). The OS-number of a graph G, denoted OS(G), is the maximum

cardinality among all OS-vertex sets of G.

Example 3.2. Given below is an example of the construction of an OS-set, with each vi andwi shown,

and dashed lines indicating non-adjacency showing that each wi satisfies the definition. Inspection

will show the constructed OS-set is maximal.

Proposition 3.3. Let G=(V , E) be a connected graph and let S be anOS-vertex set in G. Then |S| �msr(G).
In particular, msr(G) �OS(G).

Proof. Let S = {v1, . . . , vm} be an OS-vertex set in G. We prove, by induction on |S|, that {�v1, . . . , �vm}
is a linearly independent set in any vector representation �V of G.

If |S| = 1, then {�v1} is linearly independent since �v1 is nonzero. Assume that the result is true

for |S| < k �m. Suppose |S| = k, Gk is the subgraph induced by v1, v2, . . . , vk and Hk is the connected

componentofGk containingvk . By the inductionhypothesis, {�v1, . . . , �vk−1} forma linearly independent

set. Suppose �vk = ∑k−1
i=1 ci�vi. Let {�vn1 , . . . , �vnr } ⊆ {�v1, . . . , �vk−1} be the vectors corresponding to the

vertices of Hk − vk . If {�vl1 , . . . , �vls} ⊆ {�v1, . . . , �vk−1} are the vectors corresponding to the vertices in

any other component of Gk , then

0 =
〈
�vk ,

s∑
i=1

cli�vli
〉

=
∥∥∥∑

cli�vli
∥∥∥2 .

By the induction hypothesis this implies cli =· · ·=cls =0. Therefore �vk = ∑r
i=1 cni�vni . Then 〈�vk , �wk〉=∑r

i=1 cni〈�vni , �wk〉 = 0. This contradicts the assumption that {vk ,wk} ∈ E(G). Hence {�v1, �v2, . . . , �vk} is
linearly independent and msr(G) �OS(G). �

The sum of two positive semi-definite matrices is positive semi-definite and the rank of a sum is

never more than the sum of the ranks [8, p. 13]. If we cover all edges of a graph Gwith (not necessarily

induced) subgraphs of knownmsr, this can lead to useful upper bounds for msr(G). First, suppose that
G is labeled and that G1, . . . , Gk are (labeled) subgraphs of G, that is, each Gi, i = 1, . . . , k is the result

of deleting some edges and/or vertices from G. We say that G1, . . . , Gk cover G if each edge (vertex) of

G is an edge (vertex) of at least one Gi, 1� i � k. The cover G1, . . . , Gk of G is called a clique cover of G

if each of G1, . . . , Gk is a clique of G. The clique cover number of G, cc(G), is the minimum value of k for

which there is a clique cover G1, . . . , Gk of G [17].

Remark 3.4. IfC1, C2, . . . , Ck is a cliquecoverofagraphG, thenmsr(G) � k. Inparticular,msr(G) � cc(G).

Recall that a graph is chordal if it does not have an induced subgraph that is a cycle on four or more

vertices, and a vertex is simplicial if its neighborhood is a clique. It is well known that every chordal

graph has a simplicial vertex [3, p. 175].

Algorithm 3.5. Let G be a simple chordal graph. Define E0 = F0 = G0 = G. For the kth step, k � 1,

(1) Select vk to be a simplicial vertex in Gk−1,wk to be any neighbor of vk in Gk−1, and let Ck be the

maximal clique in G containing the closed neighborhood of vk in Gk−1.

(2) Define Ek = Gk−1 − vk .



P. Hackney et al. / Linear Algebra and its Applications 431 (2009) 1105–1115 1111

(3) Define Fk to be the subgraph of Ek obtained by deleting all of the edges covered by any of the

cliques C1, . . . , Ck .
(4) Define Gk to be the induced subgraph of Ek obtained by removing any vertices of Ek that are

isolated in Fk .

The algorithm terminates at a value l when Gl is empty.

Proposition 3.6. Let G be a connected, chordal graph. Algorithm 3.5 constructs an OS-vertex set S ⊆ V(G)
such that |S| = OS(G) = cc(G) and a corresponding minimal clique cover of G.

Proof. Wefirst note that at each step in Algorithm 3.5, vk may be chosen to be a simplicial vertex since

each Gk is an induced subgraph of the original chordal graph G and hence is also chordal. We now

show that the resulting v1, . . . , vl comprise an OS-set in G, and will do so by showing that v1, . . . , vk
comprise an OS-set in G at each step k.

Assume that the vertices v1, . . . , vk−1 formanOS-set inG. By construction, vk is not isolated in Fk−1.

Hence, there exists a vertexwk in Fk−1 such that theedge (wk , vk) is also in Fk−1. LetHk be the connected

component of the subgraph of G induced by {v1, . . . , vk} that contains vk , and label the vertices of Hk

as {vn1 , . . . , vnr , vk}. We must then show that {wk , vni} /∈ E(G) for 1� i � r. Let ni < k, 1� i � r be an

index such that {wk , vni} ∈ E(G). If vni and vk are adjacent in G, then the edge {wk , vk} would be part

of the maximal clique Cni . However, by construction, this would force wk and vk to not be adjacent in

Fk−1, a contradiction. Therefore, if {wk , vni} ∈ E(G) then {vni , vk} /∈ E(G), and, for any ni, since vni and

vk belong toHk , there is a shortest path of length at least two inHk joining vni to vk . Let nj < k, 1� j � r

be an index such vnj is adjacent to wk and the distance between vnj and vk in Hk is minimal among

all vertices vni adjacent to wk . Then no vertex on the shortest path in Hk from vnj to vk is adjacent to

wk , and appending the edges {vk ,wk} and {wk , vnj} to this path produces an induced cycle Cn, n� 4. By

construction, this cycle has no chords. This contradicts that G is a chordal graph. Thus (wk , vni) /∈ E(G)
for all 1� i � r and S = {v1, . . . , vk} is an OS-vertex set in G.

The only way that a vertex v belongs to G but not to Gk for some fixed k is if all of the edges incident

to v are covered by the cliques C1, . . . , Ck . Thus this construction of the OS-vertex set S produces a

clique cover C of G. Using Remark 3.4 and Proposition 3.3, we see that |S| �msr(G) � |C|. Since C has

the same cardinality as S, C is a minimal clique cover, S is an OS-set of maximum cardinality, and

OS(G) = |S| = |C| = cc(G). �

Example 3.7. Consider the chordal graph below.

Using Algorithm 3.5, v1 may be chosen from among vertices 1, 3, and 6, and w1 may be any neighbor.

Choose vertex 1 to be v1 and vertex 4 (or 2) as w1. It follows that vertices 1, 2, and 4 comprise C1.

Removing vertex 1 yields the following graphs:

Since no vertices are isolated in F1, G1 = E1. Only vertices 6 and 3 are simplicial in G1, so choose vertex

6 as v2 and vertex 4 (or 5) asw2. Then vertices 4, 5, and 6 comprise C2. This gives the following graphs:
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Because vertex 4 is isolated in F2, G2 will be the subgraph of E2 induced by vertices 2, 3, and 5. Finally,

v3 can be any of the vertices 2, 3, or 5, and w3 can be either of the two left from the choice of v3. Then

C3 = G2, G3 is empty, and the algorithm ends.

Using Proposition 3.6 along with Remark 3.4, we get that

Corollary 3.8 [5]. If G is a connected, chordal graph, then msr(G) = OS(G) = cc(G).

Suppose G′ is an induced subgraph of G and S is an OS-vertex set in G′. Since each of the Gk in

Definition 3.1 are induced subgraphs of G′, they are also induced subgraphs of G. Hence S is also an

OS-vertex set of G. This, combinedwith the following result, gives that there is an OS-vertex set of size

ts(G) − 1 in any graph G.

Corollary 3.9. Given a tree T , for each v ∈ V(T), V(T) \ {v} is an OS-vertex set.

For an induced forest of G with components T1, T2, . . . , Tk , take the sum of the tree size of each Ti
and subtract off the number of components that are not isolated vertices. Among all induced forests

of Gmaximize this count and call this number fm(G), the forest measure of G [5]. Any isolated vertices

occurring in an induced subgraph of a connected graph G contribute 1, rather than 0, to msr(G), as an
irreducible positive semidefinite matrix has positive diagonal entries.

Proposition 3.10. For a connected graph G, OS(G) � fm(G).

Proof. Let F be an induced forest of G. Each tree Ti that is not a single vertex of F has a nonempty

OS-vertex set Si of cardinality |V(Ti)| − 1 by Corollary 3.9. Because no vertex of Si is adjacent to a

vertex of Sj for i /= j, S = ⋃
Si is an OS-vertex set of F . Let v1, . . . , vj be the set of isolated vertices

of the induced forest F . Since G is connected, each vi is adjacent to some vertex in G which is not in

S because S ⊆ V(F). Therefore S′ = S ∪ {v1, . . . , vj} is an OS-vertex set of G. If F is an induced forest

realizing fm(G), then OS(G) � fm(G). �
We end this section with the following conjecture:

Conjecture 3.11. For any graph G, OS(G) = msr(G).

4. Orthogonal vertex removal

In this section, we consider a generalization of the minimum semidefinite rank problem by van

der Holst [18]. Given an undirected graph G = (V , E) on n vertices that has no loops, but may have

multiple edges, denote by H(G) the set of all n by n Hermitian matrices A = [aij] such that

• ai,j /= 0 if i and j are joined by exactly one edge, and

• ai,j = 0 if i /= j and i and j are not adjacent.

We say �V = {�v1, . . . , �vn} ⊂ Cm is a vector representation of G when 〈�vi, �vj〉 /= 0 if i and j are joined

by a single edge, and 〈�vi, �vj〉 = 0 if i and j are not adjacent and i /= j. By the complement G of a

multigraph G, we will mean the simple graph on the same vertex set where two vertices are adjacent

if and only if they are not adjacent in G.
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Given a vector representation �V of a graph G, for fixed i, we may “orthogonally remove” the

vector �v by orthogonally projecting onto the complement of the span of �v. That is, replace each �vj
with

�vj − 〈�v, �vj〉
〈�v, �v〉 �v

to get a vector representation �V � �v of a graph G′ with rank and order decreased by one (this process

corresponds to taking a Schur complement in the Gram matrix). The graph G′ may be obtained from

G by altering edges of the subgraph of G induced by N(v) in the following manner: for u,w ∈ N(v), if
v is connected to u and w by a single edge, and u is not connected to w in G, then u is connected to w

by a single edge in G′. In any other case, u and w may or may not be connected in G′.
To reflect this situation, define G � v as follows: in the induced subgraph G − v of G, between any

u,w ∈ N(v) add e − 1 edges, where e is the sum of the number of edges between u and v and the

number of edges betweenw and v. This process ensures that if �V is a vector representation of a graph

G, �V � �v is a vector representation of G � v, and proves msr(G) �msr(G � v) + 1. Unfortunately,

msr(G) − msr(G � v) may be arbitrarily large [5], and seems difficult to calculate.

We are particularly interested, then, in determining conditions on the vertex v that allow us

to calculate msr(G) − msr(G � v). Some success has already been recorded in this direction. The

case where the vertex v to be removed has degree two with connected neighbors has been used

to characterize trees in terms of their minimum semidefinite rank [18, Lemma 3.7]. This was

expanded to

Theorem 4.1 [5]. Suppose v is a simplicial vertex of a graph G that is adjacent to at least one neighbor by

exactly one edge. Thenmsr(G) = msr(G � v) + 1.

Also, it was shown that msr(G) = msr(G � v) + 1 for v a vertex of a simple graph G where the

subgraph induced byN(v) is either complete or lacks one or two edges [4]. In what follows, we expand

upon this result.

A star is a tree that has one vertex adjacent to all of the other vertices [19]. A star forest is a forest

of stars.

Proposition 4.2. Let G be a connected graph, let v be a vertex of G not adjacent to any of its neighbors by

multiple edges, and let H be the graph induced by the vertices of N(v). If H is a star forest then msr(G) =
msr(G � v) + 1.

Proof. First, msr(G) �msr(G � v) + 1. To show the reverse inequality, assume that �V is a vector

representation of G � v of rank m in Cm. We will construct from �V a vector representation of G with

rank m + 1. First, view the vectors of �V as vectors in Cm+1 orthogonal to some unit vector �e. Now,

consider one of the s stars that comprise H. Let w be the vertex at the center represented by vector

�w in �V , and let w1, . . . ,wk be the pendant vertices of the star represented by vectors �w1, . . . , �wk .

Observe that for each c ∈ C \ {0} and each vertexwi, because v is not adjacent to any of its neighbors

by multiple edges, 〈�w, �wi〉 is nonzero in �V , there exists a unique nonzero complex number ai such

that

〈�w + c�e, �wi + ai�e〉 = 0.

Further, although 〈�wi, �wj〉 may be nonzero in �V , for all but finitely many such c, we have

〈�wi + ai�e, �wj + aj�e〉 /= 0

for all i and j. Suppose that v1, . . . , vr are those vertices ofG adjacent to v that are isolated inH. Consider

also replacing each vector �vi of �V that represents vertex vi by �vi + bi�e. To achieve our aim, we must

select complex numbers c1, . . . , cs and b1, . . . , br so that in the vector representation resulting from

the replacements described above we avoid
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• some ai or bi is zero, and• there exist two orthogonal vectors that represent neighbors of v not belonging to the same

star in H.

However, each of these conditions is satisfied by at most finitely many sets of ci and bi. Choosing, then

c1, . . . , cs and b1, . . . , br so that neither condition holds, and letting �e represent v, we get a new vector

representation �U of some graph G′ on the same vertices as G.

Recall that the vectors in �U representing vertices not adjacent to v in G are orthogonal to �e.
Thus, since the ai and bi are nonzero, v is adjacent in G′ only to its neighbors in G. Also, since G � v

has the same edges of G except between neighbors of v, so does G′. Because there do not exist two

orthogonal vectors in �U that represent neighbors of v not belonging to the same star, and because we

forced the ai to depend upon the choice of c in such a way as any two neighbors of the same star are

represented by orthogonal vectors in �U, G′ and G either both have a single edge or both have multiple

edges between any two neighbors of v. Thus P(G′) = P(G), and �U is a vector representation of Gwith

rankm + 1. �

Proposition 4.3. Let G be a connected graph with a vertex v that is not adjacent to any of its neighbors by

multiple edges, and let H be the graph induced by the vertices of N(v). Suppose there exist m star forests

F1, . . . , Fm that are subgraphs of H and together cover all of the edges of H. If, for each i, Fi is an induced

subgraph of the graph with vertex set V(H) and edge set E(H) \ (∪j<iE(Fj)), then msr(G) �msr(G �
v) + m.

Proof. Denote v by vm, and consider the graph G0 obtained by adding vertices v1, . . . , vm−1 to G so

that vi is joined by single edges to the vertices of Fi. Consider the graphs

Gi = ((. . . ((G0 � v1) � v2) . . .) � vi).

From the conditions on the Fi, the complement of the subgraph of H induced by the vertices of N(vi)
in Gi−1 is a single star forest. Therefore, we may apply Proposition 4.2 repeatedly to the vertices

v1, . . . , vm, to see thatmsr(Gm) = msr(G0) − m. Further, by construction, Gm is a supergraph of G � v

on the same verticeswhichmay be obtained fromG � v by the possible addition of edgeswhere edges

already exist in G � v. Therefore, msr(Gm) �msr(G � v). Finally, msr(G0) �msr(G), so that

msr(G � v) �msr(Gm) = msr(G0) − m�msr(G) − m,

establishing the desired result. �

Example 4.4. Consider the graph G with vertex v and the complement of N(v) below.

The subgraph of G − v induced by vertices 1, 2, and 4 is a star, so we add a vertex v1 to G adjacent to

those three vertices to get a new graph G′, and by Proposition 4.2, msr(G′ � v1) = msr(G′) − 1.
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Since (G′ � v1) − v is a star, letG
′′ = G′ � v1, and apply Proposition 4.2 to see thatmsr(G

′′ � v) =
msr(G

′′
) − 1.

By inspection, msr(G
′′ � v) = 1, so that msr(G) � 3 by Proposition 4.3.
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