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Abstract The paper introduces a generalized method for analysis of multiple, simultaneous short

circuit, open circuit, and open circuit falling conductor faults in mixed three-phase and six-phase

power systems with untransposed lines. The method is systematic and suitable for all types of faults,

any number of simultaneous faults, and any number of phases. Calculation of all network unbal-

anced voltages and currents during faults is done in one straightforward step. Coupling among

sequence networks in untransposed transmission lines is accounted for. Coupling between the

three-sequence networks of the three-phase part and the six-sequence networks of six-phase part

is also derived. The method is applied also for transient stability study of mixed three-phase and

six-phase power systems during any type of faults. Detailed derivation of the governing equations

in each part is presented. Simulation results on the IEEE 300-bus system and the IEEE 30-bus sys-

tem are given to validate the proposed method.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Analyzing abnormal conditions in power systems, such as

short circuit, and open conductor faults, is important for pro-
tection system design and transient stability assessment. Fault
analysis is well studied in the literature but only few publica-

tions have discussed the analysis of complex simultaneous
faults such as multiple faults at different busses, open circuit
at multiple branches, complex and unusual phase combination

involved in the fault (more than one type of fault at the same
bus), cross-country faults, faults in mixed three-phase/higher-
order-phase networks, effect of transformers phase shift, and

untransposed transmission networks. Multiple simultaneous
faults can occur in natural catastrophes, stormy weather and
intended attacks.

In [1–5], fault analysis is done in phase coordinates using
the three-phase bus admittance matrix. Individual Faults in
unbalanced distribution systems are analyzed using three-
phase bus impedance matrix in [6,7]. When forming the bus

impedance matrix Zbus in phase coordinates for unbalanced
multi-phase power systems, each single-phase is considered a
bus. So, in three-phase case for example, the size of Zbus will

be 3N�3N; where N is the number of three-phase buses. The
size will also increase for higher order phases. Accommodating
multiple faults at multiple locations in the network in bus
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Figure 1 The network branch model.
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impedance matrix constitutes a large computational burden. In
[8], fault points can be added in modular form but this requires
inversion of large augmented matrix containing full admit-

tance matrix is required. Also, this method is suitable for shunt
faults only.

Reduced bus impedance matrix in the form of thevenin

impedances and thevenin voltages to represent the other parts
of the network requires the full Zbus prefault full matrix and the
reduction itself is dependent on fault locations.

On the other hand, in symmetrical component reference
frame, sequence bus admittance matrices are constants and
only the connection between them is altered in the sequence
networks according to the fault type. But handling multiple

faults is a complex task and in some cases the sequence admit-
tance matrices become coupled. It is well known that untrans-
posed transmission lines can only be decoupled into sequence

networks using shunt compensating current sources at the
beginning and end of the lines [9,10]. These injected currents
introduces coupling between sequence networks and this com-

plicates to a great extent the short circuit analysis in symmet-
rical components coordinates. Most of commercial short
circuit packages have neglected this effect. In [11,12], simulta-

neous short circuit faults at two different buses have been ana-
lyzed using two-port network theory.

The use of six-phase or higher-order-phase transmission
lines aims to transmit more power in the same right-of-way

and without increasing the voltage level. Only few publications
have concerned with fault analyses in six-phase networks such
as [13–16] where only basic types of six-phase single faults have

been discussed using circuit combinations of the 6-sequence
networks.

In this paper, a proposed method of fault analysis in sym-

metrical components coordinates is presented for networks
with mixed three-phase and six-phase parts. The method can
accommodate any number of short circuit and open conductor

faults at the same time at any number of buses and branches
with any phase combination. The addition of fault points/lines
is done in modular form in a systematic way and only selected
part of admittance matrix is used in the augmented matrix.

Untransposed line sections and transformer phase shift are
inherently accounted for in the proposed method. Coupling
between sequence networks of three-phase and six-phase parts

is derived. The use of the proposed method in transient stabil-
ity analysis is demonstrated.

The paper is organized as follows. Section 2 gives a detailed

formulation of the proposed method. Short circuit faults are
discussed in Section 3 and open conductor faults are discussed
in Section 4. Treatment of untransposed lines is presented in
Section 5 while the coupling between three-phase and

six-phase sequence networks is investigated in Section 6. The
overall network solution is given in Section 7. The use of the
proposed method in transient stability analysis is demon-

strated in Section 8. Simulation results are given in Section 9,
and finally, conclusions are extracted at Section 10.
2. Network modeling

In the proposed method, each branch is represented as shown
in Fig. 1. Each branch between bus i and bus j is represented by

series impedance Zk ¼ Rk þ jXk, where Rk is branch resistance
and Xk is branch reactance, a voltage source Ek in the same
direction of current to model the generators, and a voltage
source Vk with polarity that opposes current direction to
model the abnormal or special condition in which the branch

is involved if exists such as short circuit, open circuit, and cou-
pling with other branches. A transformer with complex turns
ratio tk is introduced in Fig. 1 to model the 30� phase shift

in D=Y transformers in positive and negative sequence net-
works. For the positive sequence network:

tk ¼

1 If branch k is a line

1\þ 30� If branch k is a D=Y

transformer with Vector Group DY1

1\� 30� If branch k is a D=Y

transformer with Vector Group DY11

8>>>>>><
>>>>>>:

ð1Þ
The angle sign is reversed in negative sequence network and

the turns-ratio is one in zero sequence network. The branch
current is given by

Ik ¼ 1

Zk

ðVi � tkVj þ Ek � VkÞ ð2Þ

The Ek voltage sources exist only in generators’ branches
which are connected between generators’ buses and ground.
Line shunt admittances and load admittances are included in

added branches between corresponding buses and ground.
For a network with nbr branches and nbus buses, Eq. (2) can

be written in the form

Ibr ¼ Z�1
br ðAVbus þ Ebr � VbrÞ ð3Þ

where

Ibr ¼ I1 � � � Inbr½ �T; Ebr ¼ E1 � � � Enbr½ �T;

Vbr ¼ V1 � � � Vnbr½ �T; Vbus ¼ V1 � � � Vnbus½ �T;
Zbr is a diagonal matrix with Zbr�kk ¼ Zk, and A is a mod-

ified branch to node incidence matrix with

Aki ¼
1 If branch k starts at node i

�tk If branch k ends at node i

0 Otherwise

8><
>: ð4Þ

Multiplying both sides of Eq. (3) byA�T, the conjugate
transpose of matrix A, gives:

A�TIbr ¼ A�TZ�1
br AVbus þ A�TZ�1

br Ebr � A�TZ�1
br Vbr ð5Þ

The bus admittance matrix is given by [5]:

Ybus ¼ A�TZ�1
br A ð6Þ

And from KCL,

Jbus ¼ A�TIbr ð7Þ
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where Jbus is a vector of nodal external current sources.

So, Eq. (5) becomes

Jbus ¼ YbusVbus þ A�TZ�1
br Ebr � A�TZ�1

br Vbr ð8Þ
The bus impedance matrix is given by

Zbus ¼ Y�1
bus ð9Þ

From (8), the bus voltages can be calculated as follows

Vbus ¼ ZbusðJbus � A�TZ�1
br Ebr þ A�TZ�1

br VbrÞ ð10Þ
Branch admittance matrix is defined as

Ybr ¼ Z�1
br ð11Þ

Substituting Eqs. (10) and (11) into Eq. (3) gives

Ibr ¼ ðYbr � YbrAZbusA
�TYbrÞðEbr � VbrÞ þ YbrAZbusJbus ð12Þ

It is assumed that no external sources other than the E.M.F
voltage sources exist. So that

Jbus ¼ 0 ð13Þ
Defining

Y ¼ ðYbr � YbrAZbusA
�TYbrÞ ð14Þ

Eq. (12) becomes

Ibr þ YVbr ¼ YEbr ð15Þ
As only short circuit branches, open circuit branches, and cou-
pling branches will have internal voltagesVk, Eq. (15) will be

written only for those special branches as follows

Ibr�red þ YredVbr ¼ YredEbr ð16Þ
where Yred is the Y matrix with only rows corresponding to the
special branches present and other rows omitted. It should be
noted here that Eq. (15) still can be used to calculate the cur-

rent at the other branches after solution of special branches
internal voltages.

Eq. (16) is written for each sequence network s as follows:

Ibr�red�s þ Yred�sVbr�s ¼ Yred�sEbr�s ð17Þ
where s ¼ 0; . . . ; ns � 1 and ns is the number of sequence net-
works which is three for three-phase and six for six-phase
networks.

The number of special branches in three-phase network, m3

and in six-phase network, m6 are given by

m3 ¼ n3sc þ n3oc þ 2n3ut þ n3cp ð18Þ

m6 ¼ n6sc þ n6oc þ 2n6ut þ n6cp ð19Þ
where n3sc; n6sc are number of short circuit branches in three-

phase and six-phase networks, respectively, n3oc; n6oc are num-
ber of open circuit branches in three-phase and six-phase net-
works, respectively, n3ut; n6ut are number of untransposed line

branches in three-phase and six-phase networks, respectively,
andn3cp; n6cp are number of coupling branches between three-

phase and six-phase sequence networks in the three-phase side
and six-phase side, respectively.

If Eq. (17) is written for the 3-sequence networks of the

three-phase part of the network and for the 6-sequence net-
works of the six-phase part of the network, we have then
3m3 þ 6m6 complex equations in 6m3 þ 12m6 complex

unknowns which are the special branches currents and internal
voltages. The other equations will be given according to the
type of each special branch as shown in the following sections.

It should be emphasized here that the advantage of this for-

mulation is that it gives direct relations between network
branch currents and branch internal voltages which is used
in conjunction with specific fault or abnormal condition to

solve for network currents and voltages. It should be also
noted that there is no need, in the proposed method, to calcu-
late pre-fault voltages or currents or Thévenin equivalents at

faulted buses and branches. The only need is to calculate the
generators’ internal E.MFs.

3. Short circuit branches

Short circuit at a certain bus is simulated by adding a special
branch between the faulted bus and ground in all sequence net-

works. The equations of any fault branch in phase coordinates
can be put in the form

B3V3p � C3I3p � F3V3p ¼ O3�1 ð20Þ
where V3p; I3p are vectors of three-phase phase-to-ground volt-

ages and currents, respectively, O3�1 is a zero column vector
with size 3 � 1, and the matrices B3;C3;F3 depend on the
phase combination of the fault. Similarly, in six-phase

networks

B6V6p � C6I6p � F6V6p ¼ O6�1 ð21Þ
As an example, for a six-phase fault at a bus as shown in

Fig. 2 where phase a is shorted to ground through impedance
Za, phases b; d are shorted together through impedance Zbd,
and phases c; e are shorted together to ground through impe-

dances Zce�g;Zcx, and Zex while phase f is unfaulted, the fol-

lowing equations can be given

Va ¼ ZaIa; Vb ¼ ZbdIb þ Vd; Ib þ Id ¼ 0

Vc ¼ ZcxIc þ Zce�gðIc þ IeÞ;
Ve ¼ Zce�gðIc þ IeÞ þ ZexIe; If ¼ 0

ð22Þ

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

2
666666664

3
777777775

Va

Vb

Vc

Vd

Ve

Vf

2
666666664

3
777777775

�

Za 0 0 0 0 0

0 Zbd 0 0 0 0

0 0 Zce�g þ Zcx 0 Zce�g 0

0 1 0 1 0 0

0 0 Zce�g 0 Zce�g þ Zex 0

0 0 0 0 0 1

2
666666664

3
777777775

Ia

Ib

Ic

Id

Ie

If

2
666666664

3
777777775

�

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775

Va

Vb

Vc

Vd

Ve

Vf

2
666666664

3
777777775
¼ O6x1 ð23Þ
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Figure 2 Phase combination of the six-phase fault.
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Eq. (22) can be put in the form (21) as shown in (23) at the
bottom of the next page. Transforming phase voltages and cur-

rents in Eq. (20) to sequence coordinates gives

ðB3 � F3ÞT3V3s � C3T3I3s ¼ O3�1 ð24Þ
where V3s; I3s are the vectors of sequence internal voltages and
currents, respectively, and T3 is the three-phase transformation
matrix between phase and sequence coordinates and it is given

by

T3 ¼
1 1 1

1 a2 a

1 a a2

2
64

3
75 ð25Þ

where a ¼ 1\120�; I3p ¼ T3I3s; I3p ¼ Ia Ib Ic½ �T,
I3s ¼ I0 I1 I2½ �T. I0; I1, and I2 are zero, positive, and nega-
tive sequence currents, respectively. Similarly, for six-phase
network

ðB6 � F6ÞT6V6s � C6T6I6s ¼ O6�1 ð26Þ
where T6 is the six-phase transformation matrix between phase
and sequence coordinates [13] and is given by

T6 ¼

1 1 1 1 1 1

1 b5 b4 b3 b2 b

1 b4 b2 1 b4 b2

1 b3 1 b3 1 b3

1 b2 b4 1 b2 b4

1 b b2 b3 b4 b5

2
666666664

3
777777775

ð27Þ

where b ¼ �a2. Eq. (26) gives the relation between the six-
phase sequence voltages and currents of the short circuit
branches shown in Fig. 3.

For cross-country faults, i.e. faults including phases of dif-
ferent buses, the size of matrices V6p; I6p will increase as they

will include six-phase currents and six-phase voltages for each
involved bus in the fault. The size of the matrices

B6;F6;C6;O6�1 will also increase accordingly.
−

+
0iV

0iI

i

−

+
1iV

1iI

i

−

+
5iV

5iI

i

... ... ...

Figure 3 Sequence fault currents and voltages.
4. Open conductor faults

The equations of any open branch in phase variables can be
formulated as follows

B3V3p � C3I3p ¼ O3�1 ð28Þ
where the matrices B3;C3 depend on the phase combination of

the open fault. Similarly, in six-phase networks

B6V6p � C6I6p ¼ O6�1 ð29Þ
As an example, for a six-phase open conductor fault at a

branch where phase a is not open, phase b; c; e; f conductors
are opened through impedances Zb;Zc;Ze;Zf, respectively,

while phase d is opened through infinite impedance, the follow-
ing equations can be given

Va ¼ 0; Vb ¼ ZbIb; Vc ¼ ZcIc; Id ¼ 0;

Ve ¼ ZeIe Vf ¼ ZfIf ð30Þ

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775

Va

Vb

Vc

Vd

Ve

Vf

2
666666664

3
777777775

�

0 0 0 0 0 0

0 Zb 0 0 0 0

0 0 Zc 0 0 0

0 0 0 1 0 0

0 0 0 0 Ze 0

0 0 0 0 0 Zf

2
666666664

3
777777775

Ia

Ib

Ic

Id

Ie

If

2
666666664

3
777777775
¼ O6�1 ð31Þ

Transforming Eqs. (28) and (29) to sequence coordinates gives

B3T3V3s � C3T3I3s ¼ O3�1 ð32Þ

B6T6V6s � C6T6I6s ¼ O6�1 ð33Þ
which gives the required relations between sequence internal

voltages and currents in both three-phase and six-phase
networks.

For open branch falling conductor faults, the original

branch should be divided into two branches with an added
internal bus between them as shown in Fig. 4 for the three-
phase case. One of the two branches has almost zero impe-

dance and the other will have the whole branch impedance.
The open branch falling conductor fault is then simulated by
simultaneous open conductor fault at the zero impedance

branch and short circuit at the fictitious internal added bus.
fI

−

+

ky 2,1,0
ji

fV

2,1,0

2,1,0

s

Figure 4 Treatment of open branch falling conductor fault.
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5. Untransposed transmission lines

When transmission lines are not transposed, the mutual impe-
dances between phases are unequal, this leads to a sequence

impedance matrix which is not diagonal and so, the sequence
networks are coupled. The sequence series admittance matrix
of a transmission line branch k and the sequence half shunt

admittance matrix at the beginning and end of the line are in
the form of Eq. (34).

Ykz
012 ¼

ykz00 ykz01 ykz02
ykz10 ykz11 ykz12
ykz20 ykz21 ykz22

2
64

3
75; Yks

012

2
¼

yks00 yks01 yks02
yks10 yks11 yks12
yks20 yks21 yks22

2
64

3
75 ð34Þ

In order to use only diagonal impedance elements in Ykz
012,

and Yks
012=2 matrices, i.e. decoupled sequence networks, com-

pensating currents must be injected at both ends of the line

in all sequence networks [9]. The three-phase case is shown
in Fig. 5 where the relation between injected sequence currents
and sequence node voltages is given by

Iki0
Ikj0

Iki1

Ikj1

Iki2
Ikj2

2
6666666664

3
7777777775
þ

0 0 ykz01 þ yks01 �ykz01 ykz02 þ yks02 �ykz02
0 0 �ykz01 ykz01 þ yks01 �ykz01 ykz02 þ yks02

ykz10 þ yks10 �ykz10 0 0 ykz12 þ yks12 �ykz12
�ykz10 ykz10 þ yks10 0 0 �ykz12 ykz12 þ yks12

ykz20 þ yks20 �ykz20 ykz21 þ yks21 �ykz21 0 0

�ykz20 ykz20 þ yks20 �ykz21 ykz21 þ yks21 0 0

2
666666664

3
777777775

�

Vk
i0

Vk
j0

Vk
i1

Vk
j1

Vk
i2

Vk
j2

2
6666666664

3
7777777775
¼ O6�1 ð35Þ

For six-phase and any number of phases, the elements of

the admittance matrix of the untransposed line k;Yk are

Yk
iu;jv ¼

0; u ¼ v

�ykzuv; u– v

�

Yk
iu;iv ¼ Yk

ju; jv ¼
0; u ¼ v

ykzuv þ yksuv; u – v

�

u; v ¼ 0; 1; . . . ; ns � 1

ð36Þ
6. Coupling between three-phase and six-phase sequence

networks

Coupling between three-phase and six-phase sequence network
will be derived based on transformer connections between
three-phase and six-phase parts of the network. One connec-
k
iV V

k
iI

−

+
k
jI

−

+

kzy 00 , 11 , 22 ji

k
j

ksy 00 , 11 , 22
ksy 00 , 11 , 22

0,1,2

0,1,2 0,1,2

0,1,2

Figure 5 Sequence networks of three-phase untransposed line.
tion is given in the following as an example for illustration
in Fig. 6 where a D connection is used in the three-phase side
and a center-tap connection is used in the six-phase side and

the center-tap points are connected together to form the six-
phase neutral point. From figure, it can be shown that

V6p ¼ nG1G2V3p ð37Þ
where V6p;V3p are six-phase and three-phase per unit phase-to-

ground voltages, respectively. G1 gives the transformer transfer
matrix, and G2 gives the transformation between primary per
unit phase-to-ground voltages and per unit phase-to-phase

voltages; namely

V6a

V6b

V6c

V6d

V6e

V6f

2
666666664

3
777777775
¼ 1ffiffiffi

3
p

1 0 0

0 0 �1

0 1 0

�1 0 0

0 0 1

0 �1 0

2
666666664

3
777777775

1 �1 0

0 1 �1

�1 0 1

2
64

3
75

V3a

V3b

V3c

2
64

3
75

ð38Þ
Transferring (38) into sequence coordinates gives

T6V6s � 1ffiffiffi
3

p G1G2T3V3s ¼ O6�1 ð39Þ

The current relation is

I3p ¼ � 1

2
ffiffiffi
3

p GT
2G

T
1 I6p ð40Þ

where I6p; I3p are six-phase and three-phase per unit line cur-

rents, respectively. Transforming (40) to sequence coordinates

gives

T3I3s þ 1

2
ffiffiffi
3

p GT
1G

T
2T6I6s ¼ O3�1 ð41Þ

Eqs. (39) and (41) give the relation between the currents
and voltages of three special coupling branches in the 3-

sequence networks at the three-phase side and six special cou-
pling branches in the 6-sequence networks at the six-phase side
as shown in Fig. 7. This connection makes the following rela-

tions between base phase-to-ground voltage and base current
of three-phase and six-phase networks

Vbase�pg�6ph ¼
ffiffiffi
3

p

n
Vbase�pg�3ph ð42Þ

Ibase�6ph ¼ n

2
ffiffiffi
3

p Ibase�3ph ð43Þ
a3

c3

b3

n

b6

d6

c6
f6

e6

a6

Figure 6 Type 1 three/six phase connection.
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Figure 7 Coupling between three-phase and six-phase sequence

networks.

Table 1 Un-transposed branches.

(195–219) (194–219) (212–215)
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Trans.
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Bus
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Figure 8 The six-phase sub-network.
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where n is the ratio between primary turns and half the sec-
ondary turns. Inclusion of coupling transformer leakage impe-
dance is also straightforward but is not given here due to lack

of space.

7. The overall network solution

For both three-phase and six-phase parts, Eq. (17), for special
branches currents for all sequences, (24) and (26), for each
short circuit branch, (32) and (33), for each open fault branch,

(35), for each untransposed transmission line, (39) and (41) for
each pair of coupling branches between three-phase and six-
phase parts, are solved together for currents and voltages of

special branches. The total number of complex equations is
6m3 þ 12m6 which is equal to number of complex unknowns.
After that, the current of any branch can be evaluated by
Eq. (15).

8. Transient stability analysis

Using Eq. (15) the currents at the generators’ branches can be

calculated as

Igbr þ YredgVbr ¼ YredgEbr ð44Þ
where Igbr is the vector of currents at the generators’ branches

and Yredg is the matrix Y in (14) with only rows corresponding

to generators’ branches present and other rows omitted. The

active output power of generator i is given by

Pgi ¼ RealðEgbr�iI
�
gbr�iÞ ð45Þ

And the system dynamic equations are given by

hgi
p f0

dDxgi

dt
¼ Pmgi � rgiDxgi � Pgi � dgiDxgi ð46Þ

ddgi
dt

¼ Dxgi ð47Þ

xgi ¼ x0 þ Dxgi ð48Þ
where, for generator i; hgi is the per unit generator inertia con-

stant, and f0 is the system nominal frequency, Pmgi is the per
unit mechanical input power, Dxgi is the generator angular

speed deviation from nominal speed, dgi is the generator damp-

ing coefficient, x0 is the synchronous frame angular speed and
dgi is the angle of the generator internal E.M.F with respect to

the voltage of the slack bus of the power flow solution. Gener-
ator internal voltages are calculated after pre-fault power flow

solution and loads are converted to constant impedance and
are modeled as added branches between load buses and
ground.

9. Applications and results

The proposed method is applied for analysis of the IEEE 300-

bus system [17] during simultaneous unbalanced open circuit,
and short circuit faults. The system contains 69 generators
and three subsystems. The following modifications are applied
to the system.

1- All generator transformers in subsystem 3 are assumed
D=Grounded Y transformers with vector group DY1.

All other transformers are assumed star-earthed at both
terminals.

2- Generators’ positive, negative, and zero sequence reac-

tances are: Xg1 ¼ Xg2 ¼ 0:1 pu, and Xg0 ¼ 0:05 pu. All

generators have solidly-earthed star connections.

3- For transmission lines, negative sequence reactances are
assumed equal to positive sequence ones, while zero
sequence values are twice the values of positive sequence

ones.
4- Five three-phase transmission lines are assumed to be

untransposed and they are given in Table 1. The

sequence impedance matrices of these lines will have
off-diagonal elements which are assumed to be half the
positive sequence impedances.

5- Transformer reactances are assumed equal in all

sequences.
6- A six-phase sub-network containing two transmission

lines and 3 buses, shown in Fig. 8 is assumed to be con-

nected between bus 81, and bus 188, connecting sub-
networks 2, and 3.Without loss of generality, the lines
are assumed well-transposed and their sequence reac-

tances are given in Table 2. Each of the 3 buses is
assumed to have a load of 50þ j30 MVA. The two
transformers connecting three-Phase and six-phase net-

works are assumed to be of the connection shown in
Fig. 6.



Table 2 Six-phase lines parameters.

Zs ¼ 0:1 pu Zm ¼ 0:05 pu

Z0 ¼ Zs þ 5Zm

Zi ¼ Zs � Zm, i ¼ 1; . . . ; 5

Table 5 Six-phase short circuit faults.

Faulted buses Faulted phases

2 a to ground bolted fault

b to d through Zfbd ¼ 0:01 pu

c to e to ground through Zfce�g ¼ 0:02 pu

Table 6 Three-phase open conductor currents and voltages.

Branch (9006–9007)

Ia ¼ 0:6739 \ �24:27� kA Va ¼ 0:0 kV

Ib ¼ 0:6811 \ �166:24� kA Vb ¼ 0:0030 \ �76:24� kV

Ic ¼ 0:0 kA Vc ¼ 0:2816 \ 158:51� kV

Branch ( 9023–9026)

Ia ¼ 0:0438 angle �44:38� kA Va ¼ 0:0004 \ 45:62� kV

Ib ¼ 0:0 kA Vb ¼ 3:7224 \ 144:15� kV

Ic ¼ 0:0 kA Vc ¼ 3:6712 \ 96:25� kV

Branch (2–6)

Ia ¼ 0:0 kA Va ¼ 0:0006 \ �68:63� kV

Ib ¼ 0:0 kA Vb ¼ 0:0006 \ 176:97� kV

Ic ¼ 0:0 kA Vc ¼ 38:8210 \ �63:41� kV

Branch (45–74)

Ia ¼ 0:0 kA Va ¼ 29:1189 \ 33:32� kV

Ib ¼ 0:0 kA Vb ¼ 31:7059 \ �52:91� kV

Ic ¼ 0:4168\87:42� kA Vc ¼ 0:0 kV

Branch (129–133)

Ia ¼ 0:0 kA Va ¼ 44:6902 \ 0:49� kV

Ib ¼ 0:2994 \ �81:82� kA Vb ¼ 4:7521 \ 8:18� kV

Ic ¼ 0:0 kA Vc ¼ 32:0045 \ 100:86� kV
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Pre-fault generators’ E.M.F are obtained after power flow
solution of the system taking into account the phase shift
introduced by D=Y transformers. For power flow solution,

the six-phase sub-network is represented by three-phase equiv-
alent of six-phase lines and loads [5].

17 simultaneous abnormal conditions are simulated in the

system. These include 8 open circuit faults in three-phase
sub-network with 2 of them falling to ground, 8 short circuit
faults in three-phase sub-network, and one short circuit fault
in the six-phase sub-network. Details of these faults are

described in Tables 3–5; respectively. All results are obtained
using MATLAB.

Results of the open branch faults are given in Table 6

including phase currents and voltages. Similar results for the
three-phase short circuit faults are given in Table 7. Currents
and voltages for the two falling conductors are given in Table 8.

Results of the Six-Phase Short circuit are presented in
Table 9 giving the six-phase currents and voltages.

Transient stability of the IEEE 300-bus system is simulated

using the proposed method for a short circuit fault in the six-
phase sub-network. Fault specifications are as given in Table 5
but the fault is bolted and at bus 1 in the six-phase sub-
network. The per unit inertia constants, damping constants,
Table 3 Three-phase open branch faults.

Branch buses Open phases

(9006–9007) c; b through Zb ¼ 0:01 pu

(9023–9026) b; c; a through Za ¼ 0:02 pu

(2–6) a; b; c Three phases Fall near bus 6

( 45–74) a; b

(129–133) a; c; b through Zb ¼ 0:03 pu

( 217–220) a; b; c through

Za ¼ 0:01 pu Zb ¼ 0:02 pu Zc ¼ 0:03 pu

(63–64) a; b; c

(7130–130) c; a through Za ¼ 0:02 pu Phase c falls

near bus 130

Table 4 Three-phase short circuit faults.

Faulted buses Faulted phases

6 a; b to ground bolted fault

20 c to ground through Zfc ¼ 0:02 pu

a to b through Zfab ¼ 0:01 pu

23 a; b; c bolted fault

121 b to c to ground through Zfbc�g ¼ 0:01 pu

171 a; c to ground bolted fault

221 a to c bolted fault

7011 a; b; c to ground through Zfa ¼ 0:01 pu

Zfb ¼ 0:02 pu Zfc ¼ 0:03 pu

9533 c to ground bolted fault

Branch (217–220)

Ia ¼ 0:8182 \ �152:08� kA Va ¼ 1:5582 \ �62:08� kV

Ib ¼ 0:0969 \ 30:24� kA Vb ¼ 0:3692 \ 120:24� kV

Ic ¼ 0:6923 \ 33:41� kA Vc ¼ 3:9552 \ 123:41� kV

Branch (63–64)

Ia ¼ 0:0 kA Va ¼ 35:4824 \ �106:81� kV

Ib ¼ 0:0 kA Vb ¼ 34:5977 \ 130:55� kV

Ic ¼ 0:0 kA Vc ¼ 33:5402 \ 13:46� kV

Branch (7130–130)

Ia ¼ 69:9229 \ �34:76� kA Va ¼ 2:6632 \ 55:24� kV

Ib ¼ 64:7511 \ �176:48� kA Vb ¼ 0:0 kV

Ic ¼ 0:0 kA Vc ¼ 4:4431 \ �67:16� kV
and regulator constants of the generators are given in Table 10.
Governor action is disabled and input mechanical power is

assumed constant. The magnitudes of internal EMFs are
assumed also constants. The fault is applied at t ¼ 0:1 s and
is cleared after 2 cycles (40 ms). The speed of the first 5 gener-

ators as well as the difference between their angle and the angle
of the slack generator, (generator No. 56), is given in Fig. 9
where the system is shown to retain its stability with a very lit-

tle change in the generators’ angles.
Another example is given for the 6 generators, IEEE 30-bus

system [17]. A six-phase sub-network as shown in Fig. 8 is con-
nected between buses 3, and 14 with a load of 10 + j6 MVA at

each six-phase bus. A six-phase bolted fault with the same
specifications as Table 5 is simulated at bus 1 of the six-
phase sub-network at t ¼ 0:1 and is cleared after 2 cycles.

The response of the speed of generators 2–6 and the difference
between their angles and the angle of the slack generator



Table 7 Three-phase short circuit currents and voltages.

Bus 6

Ia ¼ 6:9051 \ �83:23� kA Va ¼ 0:0 kV

Ib ¼ 7:7100 \ 153:95� kA Vb ¼ 0:0 kV

Ic ¼ 0:0 kA Vc ¼ 38:8213 \ 116:59� kV

Bus 20

Ia ¼ 11:2791 \ �59:62� kA Va ¼ 17:8144 \ �50:22� kV

Ib ¼ 11:2791 \ 120:38� kA Vb ¼ 21:2846 \ �93:96� kV

Ic ¼ 7:5410 \ 22:28� kA Vc ¼ 19:9459 \ 112:28� kV

Bus 23

Ia ¼ 8:1249 \ �87:82� kA Va ¼ 0:0 kV

Ib ¼ 8:6860 \ 164:99� kA Vb ¼ 0:0 kV

Ic ¼ 9:0962 \ 37:80� kA Vc ¼ 0:0 kV

Bus 121

Ia ¼ 0:0 kA Va ¼ 64:1109 \ �19:40� kV

Ib ¼ 9:1017 \ 161:83� kA Vb ¼ 8:1302 \ �176:89� kV

Ic ¼ 8:9460 \ 21:65� kA Vc ¼ 8:1302 \ �176:89� kV

Bus 171

Ia ¼ 23:7652 \ �96:28� kA Va ¼ 0:0 kV

Ib ¼ 0:0 kA Vb ¼ 56:9005 \ �140:36� kV

Ic ¼ 22:7064 \ 20:49� kA Vc ¼ 0:0 kV

Bus 221

Ia ¼ 17:8942 \ �131:41� kA Va ¼ 38:6312 \ 35:55� kV

Ib ¼ 0:0 kA Vb ¼ 77:8255 \ �145:36� kV

Ic ¼ 17:8942 \ 48:59� kA Vc ¼ 38:6312 \ 35:55� kV

Bus 7011

Ia ¼ 67:5753 \ �89:51� kA Va ¼ 1:2869 \ 0:49� kV

Ib ¼ 57:0013 \ 154:97� kA Vb ¼ 2:1711 \ �115:03� kV

Ic ¼ 47:9656 \ 30:50� kA Vc ¼ 2:7404 < 120:50� kV

Bus 9533

Ia ¼ 0:0 kA Va ¼ 1:5040 \ �32:69� kV

Ib ¼ 0:0 kA Vb ¼ 1:5204 \ �133:32� kV

Ic ¼ 23:6764 \ 7:71� kA Vc ¼ 0:0 kV

Table 8 Falling conductor currents and voltages.

Branch (2–6) near bus 6

Ia ¼ 11:5667 \ �77:28� kA Va ¼ 0:0 kV

Ib ¼ 12:2210 \ 162:69� kA Vb ¼ 0:0 kV

Ic ¼ 12:0337 \ 38:21� kA Vc ¼ 0:0 kV

Branch (7130–130) near bus 130

Ia ¼ 0:0 kA Va ¼ 129:1042 \ 23:15� kV

Ib ¼ 0:0 kA Vb ¼ 110:1065 \ �120:74� kV

Ic ¼ 5:2154 \ 68:43� kA Vc ¼ 0:0 kV

Table 9 Six-phase short circuit faults voltages and currents.

Bus 2

Ia ¼ 1:1774 \ �67:31� kA Va ¼ 0:0 kV

Ib ¼ 0:9530 \ �96:44� kA Vb ¼ 162:1079 \ �114:80� kV

Ic ¼ 1:2780 \ 170:93� kA Vc ¼ 118:4896 \ �158:56� kV

Id ¼ 0:9530 \ 83:56� kA Vd ¼ 194:5797 \ �134:19� kV

Ie ¼ 1:1157 \ 30:77� kA Ve ¼ 118:4896 \ �158:56� kV

If ¼ 0:0 kA Vf ¼ 229:4339 \ 80:20� kV

Table 10 Generators’ dynamic constants.

hgi ¼ 10 second, rgi ¼ 0 for slack generator

hgi ¼ 3 second, rgi ¼ 0 for other generators

dgi ¼ 0:1 for all generators f0 ¼ 50 Hz
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Figure 9 Response of the first 5 generators in the IEEE 300-bus
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system.
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(generator No. 1) are shown in Fig. 10 where it is obvious that
the system retains its stability depending only on the inherent

damping although the governors’ control is disabled.
It should be emphasized here that stabilization is not the
purpose of this paper but the way transient stability is simu-

lated for simultaneous complicated abnormal conditions. All
voltages and currents of the system can be easily computed.
Dynamics of exciters, voltage regulators and power system sta-

bilizers (PSS) can also be added easily to the method.

10. Conclusion

A new method for analyzing simultaneous open circuit and
short circuit faults for mixed three-phase and six-phase power
systems is proposed in this paper. The method accounts for
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transformer phase shifts and un-transposed transmission lines.
Generalized treatment of all types of faults is given for three-
phase and six-phase systems. Coupling between three-phase

and six-phase sub-network is handled in a systematic way.
The algorithm is general and can be applied to any number
of phases. All network currents and voltages can be easily

computed at one step. The use of the algorithm for simulating
system transient stability after any complicated abnormal con-
dition is demonstrated. Results are given for the IEEE 300-bus

and IEEE 30-bus systems after modifications and inclusion of
six-phase sub-network.
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