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Abstract

The analytic hierarchy process (AHP) is a popular method for solving multicriteria

analysis (MA) problems involving qualitative data. However, this method is often

criticized due to its use of an unbalanced scale of judgements and its inability to ade-

quately handle the inherent uncertainty and imprecision of the pairwise comparison

process. This paper presents a fuzzy approach for tackling qualitative MA problems in a

simple and straightforward manner. As a result, e�ective decisions can be made based

on adequate modeling of the uncertainty and imprecision in human behavior. An em-

pirical study of a tender selection problem at Monash municipal government of Victoria

in Australia is conducted. The result shows that the approach developed is simple and

comprehensible in concept, e�cient in computation, and robust in modeling human

evaluation processes which make it of general use for solving practical qualitative MA

problems. Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

Multicriteria analysis (MA) often requires the decision maker (DM) to
provide qualitative assessments for determining (a) the performance of each
alternative with respect to each criterion and (b) the relative importance of the
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evaluation criteria with respect to the overall objective of the problem. As a
result, uncertain, imprecise and subjective data are usually present which make
the decision-making process complex and challenging [4,6,17,20,23].

Attempts to handle this uncertainty, imprecision and subjectiveness are
carried out basically by means of probability theory and/or fuzzy set theory.
The former focuses on the stochastic nature of the decision-making process
while the latter concerns the subjectiveness and imprecision of human behav-
ior. As suggested by Chen and Hwang [4], Dubois and Prade [7], Efstathiou [8]
and Zimmermann [23,24], stochastic methods such as statistical analysis can-
not adequately handle the subjectiveness and imprecision of the human deci-
sion-making process.

The analytic hierarchy process (AHP) of Saaty [14,15] is a popular method
for tackling MA problems involving qualitative data, and has successfully been
applied to many actual decision situations. Pairwise comparison is used in the
decision-making process to form a reciprocal decision matrix, thus trans-
forming qualitative data to crisp ratios and making the process simple and easy
to handle. An eigenvector method is used to solve the reciprocal matrix for
determining the criteria importance and alternative performance. The simple
additive weighting (SAW) method [4,9] is used to calculate the utility for each
alternative across all criteria. However this method is often criticized because
of (a) its use of an unbalanced scale of estimations and (b) its inability to
adequately handle the uncertainty and imprecision associated with the map-
ping of the DM's perception to a crisp number [5,13].

Buckley [2] and Laarhoven and Pedrycz [12] extend Saaty's AHP to deal
with the imprecision and subjectiveness in the pairwise comparison process.
Triangular or trapezoidal fuzzy numbers are used to express the DM's as-
sessments on alternatives with respect to each criterion. After the criteria are
weighted, the overall utilities of alternatives, known as fuzzy utilities (repre-
sented by fuzzy numbers), are aggregated by fuzzy arithmetic [11] using the
SAW method. To prioritize the alternatives, their fuzzy utilities need to be
compared and ranked. However this comparison process can be quite complex
and may produce unreliable results due to (a) considerable computations re-
quired, (b) inconsistent ranking outcomes with di�erent ranking approaches,
and (c) counter-intuitive ranking outcomes under some circumstances
[1,4,6,23].

To facilitate the pairwise comparison process and to avoid the complex and
unreliable process of comparing fuzzy utilities, this paper presents an MA
approach for e�ectively solving MA problems involving qualitative data. Tri-
angular fuzzy numbers are used in the pairwise comparison process to express
the DMÕs subjective assessments. The concept of fuzzy extent analysis is ap-
plied to solve the fuzzy reciprocal matrix for determining the criteria impor-
tance and alternative performance. To avoid the complex and unreliable
process of comparing fuzzy utilities, the a-cut concept is used to transform the
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fuzzy performance matrix representing the overall performance of all alter-
natives with respect to each criterion into an interval performance matrix.
Incorporated with the DMÕs attitude towards risk, an overall performance
index is obtained for each alternative across all criteria by applying the concept
of the degree of similarity to the ideal solution using the vector matching
function.

In what follows, we ®rst present some basic concepts to pave the way for the
methodology development. We then present an MA approach for tackling the
general MA problem involving qualitative assessments. Finally we present an
empirical study of a real tender selection problem in Monash municipal gov-
ernment of Victoria, Australia to illustrate the applicability of the approach
developed.

2. Basic concepts

2.1. Triangular fuzzy numbers

A fuzzy number is a convex fuzzy set [21], characterized by a given interval
of real numbers, each with a grade of membership between 0 and 1. Its
membership function is piecewise continuous, and satis®es the following con-
ditions:

(a) lA�x� � 0 for each x 2 �ÿ1; a1� [ �a4;�1�,
(b) lA�x� is non-decreasing on [a1, a2] and non-increasing on [a3, a4],
(c) lA�x� � 1; for each x 2 [a2, a3],

where a16 a26 a36 a4 are real numbers in the real line R.
Triangular fuzzy numbers are a special class of fuzzy number, de®ned by

three real numbers, often expressed as (a1, a2, a3). Their membership functions
are usually described as

lA�x� �
�xÿ a1�=�a2 ÿ a1�; a16 x6 a2;

�a3 ÿ x�=�a3 ÿ a2�; a26 x6 a3;

0; otherwise;

8<: �1�

where a2 is the most possible value of fuzzy number A, and a1 and a3 are the
lower and upper bounds, respectively which is often used to illustrate the
fuzziness of the data evaluated.

Let A � �a1; a2; a3� and B � �b1; b2; b3� be two positive triangular fuzzy
numbers. The basic fuzzy arithmetic operations on these fuzzy numbers are
de®ned as

(a) Inverse:

Aÿ1 � 1

a3

;
1

a2

;
1

a1

� �
:
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(b) Addition:

A� B � �a1 � b1; a2 � b2; a3 � b3�:
(c) Subtraction:

Aÿ B � �a1 � b3; a2 ÿ b2; a3 ÿ b1�:
(d) Scalar multiplication:

8k > 0; k 2 R; kA � �ka1; ka2; ka3�;
8k < 0; k 2 R; kA � �ka3; ka2; ka1�:

(e) Multiplication:

A B � �a1b1; a2b2; a3b3�:
(f) Division:

A
B
� a1

b3

;
a2

b2

;
a3

b1

� �
:

Fuzzy numbers are intuitively easy to use in expressing the DMÕs qualitative
assessments [2,10,12,13,17±19]. To facilitate the making of pairwise compari-
son, triangular fuzzy numbers de®ned in Table 1 are used. A triangular fuzzy
number �x expresses the meaning of Ôabout xÕ, where 16 x6 9, with its mem-
bership function de®ned as in (1). Fuzzy number �9 used by Juang and Lee [10]
is revised here to better re¯ect the decision situation involved.

2.2. Fuzzy synthetic extent analysis

Assume that X � fx1; x2; . . . ; xng is an object set, and U � fu1; u2; . . . ; umg is a
goal set. According to the method of fuzzy extent analysis [3], fuzzy extent
analysis can be performed with respect to each object for each goal, respectively,
resulting in m extent analysis values for each object, given as l1

i ; l
2
i ; l

m
i ;

i � 1; 2; . . . ; n, where all lj
i �i � 1; 2; . . . ; n; j � 1; 2; . . . ;m� are fuzzy numbers

representing the performance of the object xi with regard to each goal uj.
By using fuzzy synthetic extent analysis, the value of fuzzy synthetic extent

with respect to the ith object xi �i � 1; 2; . . . ; n� that represents the overall
performance of the object across all goals involved can be determined by

Table 1

Fuzzy numbers used for making qualitative assessments

Fuzzy number Membership function

1 �1; 1; 3�
x �xÿ 2; x; x� 2� for x � 3; 5; 7

9 �7; 9; 11�
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Si �
Pm

j�1 lj
iPn

i�1

Pm
j�1 lj

i

; i � 1; 2; . . . ; n: �2�

3. The MA approach

The general MA decision problem usually consists of (a) a number of al-
ternatives, denoted as Ai �i � 1; 2; . . . ; n�; (b) a set of evaluation criteria
Cj �j � 1; 2; . . . ;m�, (c) a qualitative or quantitative assessment xij �i � 1; 2; . . . ;
n; j � 1; 2; . . . ;m� (referred to as performance ratings) representing the perfor-
mance of each alternative Ai with respect to each criterion Cj, leading to the
determination of a decision matrix for the alternatives, and (d) a weighting
vector W � �w1;w2; . . . ;wm� (referred to as criteria weights) representing the
relative importance of the evaluation criteria with respect to the overall ob-
jective of the problem.

With the problem structure de®ned above, mainstream fuzzy MA models in
the context of multiattribute additive value theory have been developed along
the line of the evaluation approach involving three phases [4,6,19,23]: (a) the
determination of the criteria importance and alternative performance, (b) the
aggregation of the assessments with respect to all criteria for each alternative,
and (c) the ranking of the alternatives based on their aggregated overall as-
sessments (fuzzy utilities). The main problem with this approach lies in (a) the
inappropriateness of handling the uncertainty and imprecision of the decision-
making process and (b) the complex and unreliable process of comparing fuzzy
utilities.

To circumvent these drawbacks, this paper presents a fuzzy MA approach
based on the synthesis of the following concepts, including (a) fuzzy set theory,
(b) AHP, (c) fuzzy extent analysis, (d) a-cut concept, (e) ideal solution, and
(f) vector matching function. As a result, the cognitive burden of the DM is
greatly reduced, the subjectiveness and imprecision of the evaluation process
are adequately handled, and the complex and unreliable process of comparing
fuzzy utilities is avoided, resulting in e�ective decisions being made in solving
practical qualitative MA problems.

The ranking procedure starts at the determination of the criteria importance
and alternative performance. By using the fuzzy numbers de®ned in Table 1, a
fuzzy reciprocal judgement matrix for criteria importance (W) or alternative
performance with respect to a speci®c criterion (Cj) can be determined as

Cj or W �
�a11 �a12 . . . �a1k

�a21 �a22 . . . �a2k

. . . . . . . . . . . .
�ak1 �ak2 . . . �akk

2664
3775; �3�
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where

�als �
�1; �3; �5; �9; l < s;
1; l � s; l; s � 1; 2; . . . ; k; k � m or n;
1=�asl; l > s:

8<: �4�

With the application of the fuzzy extent analysis on (3) by (1) and (2), the
corresponding criteria weights (wj) or alternative performance ratings (xij) with
respect to a speci®c criterion Cj can then be determined as

xij or wj �
Pk

s�1 �alsPk
l�1

Pk
s�1 �als

; �5�

where i � 1; 2; . . . ; n; j � 1; 2; . . . ;m and k � m or n depending on whether the
reciprocal judgement matrix is for assessing the performance ratings of alter-
natives or the weights of the criteria involved.

As a result, the decision matrix (X) and the weight vector (W) for the MA
decision problem can be respectively determined as

X �
x11 x12 . . . x1m

x21 x22 . . . x2m

. . . . . . . . . . . .
xn1 xn2 . . . xnm

2664
3775; �6�

W � �w1;w2; . . . ;wm�; �7�
where xij represents the resultant fuzzy performance assessment of alternative
Ai �i � 1; 2; . . . ; n� with respect to criterion Cj and wj is the resultant fuzzy
weight of the criterion Cj �j � 1; 2; . . . ;m� with respect to the overall objective
of the problem.

A fuzzy performance matrix (8) representing the overall performance of all
alternatives with respect to each criterion can therefore be obtained by mul-
tiplying the weighting vector by the decision matrix. The arithmetic operations
on these fuzzy numbers are based on interval arithmetic [11].

Z �
w1x11 w2x12 . . . wmx1m

w1x21 w2 x22 . . . wmx2m

. . . . . . . . . . . .
w1xn1 w2 xn2 . . . wmxnm

2664
3775: �8�

By using an a-cut on the performance matrix (8), an interval performance
matrix can be derived as in (9), where 06 a6 1. The value of a represents the
DMÕs degree of con®dence in his/her fuzzy assessments regarding alternative
ratings and criteria weights. A larger a value indicates a more con®dent DM,
meaning that the DMÕs assessments are closer to the most possible value a2 of
the triangular fuzzy numbers (a1, a2, a3).
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Za �

�za
11l; z

a
11r� �za

12l; z
a
12r� . . . �za

1ml; z
a
1mr�

�za
21l; z

a
21r� �za

22l; z
a
22r� . . . �za

2ml; z
a
2mr�

. . . . . . . . . . . .

�za
n1l; z

a
n1r� �za

n2l; z
a
n2r� . . . �za

nml; z
a
nmr�

266664
377775: �9�

Incorporated with the DMÕs attitude towards risk using an optimism index
k, an overall crisp performance matrix is calculated as in (10), where
zk0

ija � k za
ijr � �1ÿ k� za

ijl; k 2 �0; 1�.

Zk0
a �

zk0
11a zk0

12a . . . zk0
1ma

zk0
21a zk0

22a . . . zk0
2ma

. . . . . . . . . . . .

zk0
n1a zk0

n2a . . . zk0
nma

266664
377775 �10�

In practical applications, k � 1; k � 0:5, and k � 0 are used to indicate that
the DM involved has an optimistic, moderate, or pessimistic view, respectively.
An optimistic DM is apt to prefer higher values of his/her fuzzy assessments,
while a pessimistic DM tends to favor lower values.

To facilitate the vector matching process, a normalization process in regard
to each criterion is applied to (10) by using (11), resulting in a normalized
performance matrix expressed as in (12):

zk
ija �

zk0
ija����������������������Pn

i�1�zk0
ija�2

q ; �11�

Zk
a �

zk
11a zk

12a . . . zk
1ma

zk
21a zk

22a . . . za
2ma

. . . . . . . . . . . .

zk
n1a zk

n2a . . . zk
nma

266664
377775: �12�

Zeleny [22] ®rst introduced the concept of the ideal solution in decision
analysis as the best or desired decision outcome for given decision situation.
Hwang and Yoon [9] further extended this concept to include the negative ideal
solution to avoid the worst decision outcome. This concept has since been
widely used in developing various methodologies for solving practical decision
problems [16,19,20]. This is due to (a) its simplicity and comprehensibility in
concept, (b) its computation e�ciency, and (c) its ability to measure the relative
performance of the decision alternatives in a simple mathematical form.

In line with this concept, the positive ideal solution Ak�
a and the negative

ideal solution Akÿ
a can be determined by selecting the maximum value and the

minimum value across all alternatives with respect to each criterion, given as in
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(13). They respectively represent the best possible and the worst possible results
among the alternatives across all criteria.

Ak�
a � �zk�

1a ; zk�
2a ; . . . ; zk�

ma �;
Akÿ

a � �zkÿ
1a ; z

kÿ
2a ; . . . ; zkÿ

ma�;
�13�

where

zk�
ja � max �zk

1ja; z
k
2ja; . . . ; zk

nja�;
zkÿ

ja � min �zk
1ja; z

k
2ja; . . . ; zk

nja�:
�14�

By applying the vector matching function, the degree of similarity between
each alternative and the positive ideal solution and the negative ideal solution
can be calculated, respectively by

Sk�
ia �

Ak
iaAk�

a

max �Ak
iaAk

ia;Ak�
a Ak�

a �
; �15�

Skÿ
ia �

Ak
iaAkÿ

a

max �Ak
iaAk

ia;Akÿ
a Akÿ

a �
; �16�

where Ak
ia � �zk

i1a; z
k
i2a; . . . ; zk

ima� is the ith row of the overall performance matrix
in (12), representing the corresponding performance of alternative
Ai �i 2 f1; 2; . . . ; ng� in regard to each criterion Cj �j � 1; 2; . . . ;m�. The larger
the value of Sk�

i a and Skÿ
i a , the higher the degree of similarity between each al-

ternative and the positive ideal solution and the negative ideal solution, re-
spectively [19].

A preferred alternative should have a higher degree of similarity to the
positive ideal solution, and at the same time a lower degree of similarity to the
negative ideal solution [9,16,19,20,22]. Therefore, an overall performance index
for each alternative with the DMÕs a level of con®dence in his/her fuzzy as-
sessments and k degree of optimism towards risk can be determined by (17) as

P k
ai �

Sk�
ia

Sk�
ia � Skÿ

ia

; i � 1; 2; . . . ; n: �17�

The larger the index value, the more preferred the alternative.
In summarizing the discussion above, we present the steps required for the

approach developed as follows:
1. Formulate the decision problem as an MA problem and identify the hierar-

chical structure of the problem.
2. Determine the decision matrix as expressed in (6) by (3)±(5) using the AHP

method based on the fuzzy numbers de®ned in Table 1.
3. Obtain the weighting vector (7) for the criteria by (3)±(5) using the AHP

method based on the fuzzy numbers de®ned in Table 1.
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4. Determine the fuzzy performance matrix (8) by multiplying the decision ma-
trix obtained at Step 2 by the weighting vector determined at Step 3.

5. Obtain the interval performance matrix (9) by using an a-cut on the perfor-
mance matrix determined at Step 4.

6. Determine the crisp performance matrix (10) by incorporating the DMÕs at-
titude towards risk represented by an optimism index k.

7. Calculate the normalized performance matrix (12) by (11).
8. Determine the positive ideal solution and the negative ideal solution by (13)

and (14).
9. Calculate the degree of similarity between each alternative and the positive

ideal solution and the negative ideal solution by (15) and (16).
10. Determine the overall performance index for each alternative by (17).
11. Rank the alternatives in the descending order of their corresponding perfor-

mance index values.

4. An empirical study

In this section we present an empirical study of a tender selection problem
faced by a local government in Victoria, Australia to illustrate the applicability
of the approach developed. The complexity of the tender selection process is
highlighted, and the need for a structured approach to make fair and consistent
tender selection decisions is demonstrated.

Monash municipal government is one of the largest local governments in
Victoria, Australia. Every year it has a large number of public projects to be
contracted out to various private companies in order to serve the local com-
munity e�ectively. As the demand for accountability and transparency of the
decision-making process in the local government department increases, a for-
mal procedure of evaluating and selecting the most quali®ed tender (the con-
tracting company) for a speci®c project on a competitive basis becomes an
important issue in its daily operations.

Selecting the best-quali®ed tender from available tenders for a speci®c
project is a complex decision-making process in which the overall performance
of the available tenders needs to be evaluated with respect to multiple selection
criteria. Subjective (qualitative) assessments are often involved with regard to
the criteria importance and tender performance, resulting in fuzzy and im-
precise data being used which requires the use of a fuzzy approach for e�ec-
tively tackling this kind of decision problem.

Various selection criteria may be involved depending on the type of project
present. In the current discussion, a speci®c project (Public Building Mainte-
nance at Monash Municipal Government) worthwhile up to two million
Australian dollars in a two-year period is considered. Nine tender submissions
have been received. After the initial screening process with respect to a few
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rigorous cuto� criteria such as the conformity to the tending requirements and
the maximum project cost allowed, etc., three tenders are left for further
evaluation. Based on the comprehensive discussion of the relevant government
department, four selection criteria including the Tending Cost Attractiveness
(C1), Technical Capability (C2), References (C3), and Services (C4) have been
identi®ed. Fig. 1 describes the hierarchical structure of the tender performance
evaluation process. We discuss these selection criteria individually below.

(a) Tending Cost Attractiveness (C1). Tending cost attractiveness of a tender
submission concerns about the proposed cost of the project with respect to the
allocated budget and other tender submissions. From the government point of
view, it is preferable to spend less money on the project as long as the project
can be completed satisfactorily. Based on the available information, a fuzzy
reciprocal judgement matrix (C1) based on the pairwise comparison process
using the fuzzy numbers de®ned in Table 1 was obtained as follows

C1 �

A1 A2 A3

A1

A2

A3

�1 �3 �9
�3ÿ1 �1 �5
�9ÿ1 �5ÿ1 �1

:

264
375

(b) Technical Capability (C2). The technical capability of a tender refers to
the tenderÕs ability to carry out the project technically in a satisfactory manner.
This is often determined subjectively depending on the information provided
by the tender together with speci®c technical requirements of the project.
Along with the AHP method based on the fuzzy numbers de®ned in Table 1, a
fuzzy reciprocal judgement matrix (C2) for determining the performance of
three tenders with respect to this criterion was given as follows

Fig. 1. The hierarchical structure of the tender performance evaluation process.
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C2 �

A1 A2 A3

A1

A2

A3

�1 �3 �5ÿ1

�3ÿ1 �1 �9
�5 �9ÿ1 �1

264
375 :

(c) References (C3). The reference of the tenders is related to the past per-
formance of the tenders involving the same or similar types of project. This is
often determined subjectively by asking the involved companies listed in their
tender submissions. Similarly, a reciprocal fuzzy judgement matrix (C3) was
determined based on the available information as

C3 �

A1 A2 A3

A1

A2

A3

�1 �9ÿ1 �7
�9 �1 �3ÿ1

�7ÿ1 �3 �1

264
375 :

(d) Services (C4). The Services criterion concerns about the services pro-
vided by the tender after the completion of the project. Factors such as after-
sale training, maintenance availability, reliability, etc. usually need to be
considered. For this speci®c project, the fuzzy reciprocal judgement matrix
(C4) with respect to the tender performance in regard to this criterion was
obtained as

C4 �

A1 A2 A3

A1

A2

A3

�1 �7ÿ1 �3
�7 �1 �9

�3ÿ1 �9ÿ1 �1

264
375 :

By applying (3)±(5) using the fuzzy extent analysis on these reciprocal
judgement matrices, the performance ratings (xij) of alternative Ai �i � 1; 2; 3�
with respect to each criterion Cj �j � 1; 2; 3; 4� were calculated as

X1 �
�1� �3� �9

�1� �3� �9� �3ÿ1 � �1� �5� �9ÿ1 � �5ÿ1 � �1
;

"
�3ÿ1 � �1� �5

�1� �3� �9� �3ÿ1 � �1� �5� �9ÿ1 � �5ÿ1 � �1
;

�9ÿ1 � �5ÿ1 � �1
�1� �3� �9� �3ÿ1 � �1� �5� �9ÿ1 � �5ÿ1 � �1

#
;
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X2 �
�1� �3� �5ÿ1

�1� �3� �5
ÿ1 � �3

ÿ1 � �1� �9� �5� �9
ÿ1 � �1

;

"
�3ÿ1 � �1� �9

�1� �3� �5
ÿ1 � �3

ÿ1 � �1� �9� �5� �9
ÿ1 � �1

;

�5� �9ÿ1 � �1

�1� �3� �5
ÿ1 � �3

ÿ1 � �1� �9� �5� �9
ÿ1 � �1

#
;

X3 �
�1� �9ÿ1 � �7

�1� �9
ÿ1 � �7� �9� �1� �3

ÿ1 � �7
ÿ1 � �3� �1

;

"
�9� �1� �3ÿ1

�1� �9
ÿ1 � �7� �9� �1� �3

ÿ1 � �7
ÿ1 � �3� �1

;

�7ÿ1 � �3� �1

�1� �9
ÿ1 � �7� �9� �1� �3

ÿ1 � �7
ÿ1 � �3� �1

#
;

X4 �
�1� �7ÿ1 � �3

�1� �7
ÿ1 � �3� �7� �1� �9� �3

ÿ1 � �9
ÿ1 � �1

;

"
�7� �1� �9

�1� �7
ÿ1 � �3� �7� �1� �9� �3

ÿ1 � �9
ÿ1 � �1

;

�3ÿ1 � �9ÿ1 � �1

�1� �7
ÿ1 � �3� �7� �1� �9� �3

ÿ1 � �9
ÿ1 � �1

#
;

where

X1 � �x11; x21; x31�; X2 � �x12; x22; x32�;

X3 � �x13; x23; x33�; X4 � �x14; x24; x34�:

As a result, the decision matrix for the tender selection problem was de-
termined using fuzzy arithmetic [11] as

X �
�0:27; 0:63; 1:32� �0:06; 0:12; 0:58� �0:17; 0:36; 0:74� �0:06; 0:18; 0:50�
�0:13; 0:31; 0:76� �0:24; 0:50; 1:04� �0:23; 0:46; 0:91� �0:37; 0:75; 1:40�
�0:04; 0:06; 0:24� �0:12; 0:30; 0:70� �0:06; 0:18; 0:50� �0:04; 0:06; 0:25�

24 35:
To determine the relative importance of the selection criteria, fuzzy pairwise

comparison process is conducted, resulting in a fuzzy reciprocal judgement
matrix (W) as
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W �

C1 C2 C3 C4

C1

C2

C3

C4

�1 �3 �7 �5
�3ÿ1 �1 �9 �3
�7ÿ1 �9ÿ1 �1 �3ÿ1

�5ÿ1 �3ÿ1 �3 �1

26664
37775

Similarly, the weighting vector was determined by (3)±(5) using fuzzy extent
analysis as

w1 �
�1� �3� �7� �5

�1� �3� �7� �5� �3
ÿ1 � �1� �9� �3� �7

ÿ1 � �9
ÿ1 � �1� �3

ÿ1 � �5
ÿ1 � �3

ÿ1 � �3� �1
;

w2 �
�3ÿ1 � �1� �9� �3

�1� �3� �7� �5� �3
ÿ1 � �1� �9� �3� �7

ÿ1 � �9
ÿ1 � �1� �3

ÿ1 � �5
ÿ1 � �3

ÿ1 � �3� �1
;

w3 �
�7ÿ1 � �9ÿ1 � �1� �3ÿ1

�1� �3� �7� �5� �3
ÿ1 � �1� �9� �3� �7

ÿ1 � �9
ÿ1 � �1� �3

ÿ1 � �5
ÿ1 � �3

ÿ1 � �3� �1
;

w4 �
�5ÿ1 � �3ÿ1 � �3� �1

�1� �3� �7� �5� �3
ÿ1 � �1� �9� �3� �7

ÿ1 � �9
ÿ1 � �1� �3

ÿ1 � �5
ÿ1 � �3

ÿ1 � �3� �1
:

Based on the fuzzy arithmetic [11], the criteria weights were calculated as

w1 � �0:17; 0:45; 1:05�; w2 � �0:16; 0:38; 0:87�;

w3 � �0:02; 0:04; 0:19�; w4 � �0:04; 0:13; 0:41�:
A fuzzy performance matrix for the problem was therefore obtained by (8)

as

Z �
�0:046; 0:284; 1:386� �0:010; 0:046; 0:505� �0:003; 0:014; 0:141� �0:002; 0:023; 0:205�
�0:022; 0:140; 0:798� �0:038; 0:190; 0:905� �0:005; 0:018; 0:173� �0:015; 0:098; 0:574�
�0:007; 0:027; 0:252� �0:019; 0:114; 0:609� �0:001; 0:007; 0:095� �0:002; 0:008; 0:103�

24 35:
Let a� 0.5, k� 0.5 (for a moderate DM). The performance index for each

tender and its corresponding ranking was determined by applying Eqs. (6)±
(17). Table 2 shows the result. Obviously tender A1 is the best choice in this
situation.

Similarily, letting a � 0:0; 0:1; 0:3; 0:7; . . . ; 0:9; 1:0, and k� 0.0 (for a pessi-
mistic DM), k � 1:0 (for an optimistic DM), we can calculate the overall
performance index for each tender and determine its corresponding ranking.
Figs. 2±4 show the results, respectively.
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The results in Figs. 2±4 show that tender A1 is clearly the best choice under
almost any degree of con®dence of the DM with various attitudes towards risk.
It is also clear that this method can adequately re¯ect the uncertainty and
imprecision associated with the DMÕs subjective judgement in human thinking.
It provides the DM an appropriate tool to better understand the decision
problem and his/her decision behavior. E�ective and consistent decisions can
therefore be made.

Fig. 2. Performance index and ranking of the tenders for a moderate DM.

Fig. 3. Performance index and ranking of the tenders for a pessimistic DM.

Table 2

Performance index and ranking of the tenders

Tenders Performance index Ranking

A1 0.77 1

A2 0.67 2

A3 0.28 3
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For the sake of comparison, we have used SaatyÕs traditional AHP method
to treat the same problem. The resulting pairwise comparison matrices for
tender performance with respect to each criterion and criteria importance were
obtained individually as follows:

C1 �

A1 A2 A3

A1

A2

A3

1 3 9

1=3 1 5

1=9 1=5 �1

264
375 ; C2 �

A1 A2 A3

A1

A2

A3

1 3 1=5

1=3 1 9

5 1=9 1

264
375 ;

C3 �

A1 A2 A3

A1

A2

A3

1 1=9 7

9 1 1=3

1=7 35 �1

264
375 ; C4 �

A1 A2 A3

A1

A2

A3

1 1=7 3

7 1 9

1=3 1=9 1

264
375 ;

W �

C1 C2 C3 C4

C1

C2

C3

C4

1 3 7 5

1=3 1 9 3

1=7 1=9 1 1=3

1=5 1=3 3 1

26664
37775 :

The procedure of the AHP for solving these reciprocal matrices is well es-
tablished [14,15]. Here we only present the ®nal overall performance index for
each tender and its corresponding ranking, as shown in Table 3. It is clear that
tender A1 is the best choice.

Same results were obtained with the traditional AHP method and the ap-
proach developed. This would give the DM reasonable assurance in making

Fig. 4. Performance index and ranking of the tenders for an optimistic DM.
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his/her decisions in the tender selection process. However in comparison with
the traditional AHP method, the approach developed clearly has its advan-
tages. These advantages include (a) better modeling of the uncertainty and
imprecision associated with the pairwise comparison process, (b) cognitively
less demanding on the DM, and (c) adequate re¯ection of the DMÕs attitude
toward risk and their degrees of con®dence in their subjective assessments.
Real experience in applying the approach developed in selecting the most ap-
propriate tender at the Monash municipal government has reinforced these
®ndings.

5. Conclusion

The AHP method is widely used for tackling MA decision problems in real
situations. Despite its simplicity in concept and e�ciency in computation, it
su�ers from a few shortcomings. To improve the AHP method, this paper
presents an MA approach using fuzzy pairwise comparison for e�ectively
solving the general MA decision problem involving qualitative data.

An empirical study of a real selection situation faced by Monash municipal
government in Victoria, Australia is conducted using the approach developed.
It shows that the approach developed is favorable for solving practical MA
problems involving qualitative data. The underlying concept of the approach
developed is simple and comprehensible, and the computation involved is e�-
cient. In particular, the approach developed can adequately handle the inherent
uncertainty and imprecision of the human decision-making process and provide
the ¯exibility and robustness needed for the DM to better understand the de-
cision problem and their decision behaviors. These merits of the approach de-
veloped facilitate its use in real situations for making e�ective decisions.
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Table 3

Performance index and ranking of the tenders with the traditional AHP

Tenders Performance index Ranking

A1 0.51 1

A2 0.37 2

A3 0.12 3

230 H. Deng / Internat. J. Approx. Reason. 21 (1999) 215±231



References

[1] G. Bortolan, P. Degani, A review of some methods for ranking fuzzy subsets, Fuzzy Sets and

Systems 15 (1985) 1±19.

[2] J.J. Buckley, Ranking alternatives using fuzzy numbers, Fuzzy Sets and Systems 15 (1985)

1±31.

[3] D.Y. Chang, Applications of the extent analysis method on fuzzy AHP, European Journal of

Operational Research 95 (1996) 649±655.

[4] S.J. Chen, C.L. Hwang, Fuzzy Multiple Attribute Decision Making: Methods and Applica-

tions, Springer, New York, 1992.

[5] C.H. Cheng, Evaluating naval tactical missile systems by fuzzy AHP based on the grade value

of membership function, European Journal of Operational Research 96 (1996) 343±350.

[6] H. Deng, C.H. Yeh, Fuzzy ranking of discrete multicriteria alternatives, in: Proceedings of the

IEEE Second International Conference on Intelligent Processing Systems (ICIPSÕ98), 1998,

pp. 344±348.

[7] D. Dubois, H. Prade, Recent models of uncertainty and imprecision as a basis for decision

theory toward less normative frameworks, in: E. Hollnagel, G. Mancini, D. Woods (Eds.),

Intelligent Decision Support in Process Environments, Springer, Berlin, 1985, pp. 3±24.

[8] J. Efstathiou, Practical multi-attribute decision-making and fuzzy set theory, TIMS/Studies in

the Management Science 20 (1984) 307±320.

[9] C.L. Hwang, K.S. Yoon, Multiple Attribute Decision Making: Methods and Applications,

Springer, Berlin, 1981.

[10] C.H. Juang, D.H. Lee, A fuzzy scale for measuring criteria weights in hierarchical structures,

in: Proceedings of IFES, 1991, pp. 415±421.

[11] A. Kaufmann, M.M. Gupta, Introduction to Fuzzy Arithmetic Theory and Application, Van

Nostrand Reinhold, New York, 1985.

[12] P.J.M. Laarhoven, W. Pedrycz, A fuzzy extension of Saaty's priority theory, Fuzzy Sets and

Systems 11 (1983) 229±241.

[13] D.L. Mon, C.H. Cheng, J.C. Lin, Evaluating weapon system using fuzzy analytic hierarchy

process based on entropy weight, Fuzzy Sets and Systems 62 (1994) 127±134.

[14] T.L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New York, 1980.

[15] T.L. Saaty, Decision Making for Leaders, RWS Publications, New York, 1995.

[16] M.F. Shipley, A. deKorvin, R. Obid, A decision making model for multi-attribute problems

incorporating uncertainty and bias measures, Computers and Operations Research 18 (1991)

335±342.

[17] R.M. Tong, P.P. Bonissone, Linguistic solutions to fuzzy decision problems, TIMS/Studies in

the Management Sciences 20 (1984) 323±334.

[18] E. Triantaphyllou, C.T. Lin, Development and evaluation of ®ve multiattribute decision-

making methods, International Journal of Approximate Reasoning 14 (1996) 281±310.

[19] C.H. Yeh, H. Deng, An algorithm for fuzzy multi-criteria decision making, in: Proceedings of

the IEEE First International Conference on Intelligent Processing Systems (ICIPSÕ97), 1997,

pp. 1564±1568.

[20] C.H. Yeh, H. Deng, H. Pan, Multi-criteria analysis for dredger dispatching under uncertainty,

Journal of the Operational Research Society 50 (1999) 35±43.

[21] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338±353.

[22] M. Zeleny, Multiple Criteria Decision Making, McGraw-Hill, New York, 1982.

[23] H.-J. Zimmermann, Fuzzy Sets Decision Making and Expert Systems, Kluwer Academic

Publishers, Boston, 1987.

[24] H.-J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer Academic Publishers,

Boston, 1996.

H. Deng / Internat. J. Approx. Reason. 21 (1999) 215±231 231


