
INFORMATION AND CONTROL 52, 159-171 (1982)

Another Incompleteness Result for Hoare's Logic

JAN A . B E R G S T R A *

Department of Computer Science,
University of Leiden, Leiden, The Netherlands

A N N A CHMIELINSKA

Mathematical Institute, University of Torun, Poland

AND

JERZY TIURYN +

Mathematical Institute, University of Warsaw, Warszawa, Poland

It is known (Bergstra and Tucker (1982) J. Comput. System Sci. 25, 217) that if
the Hoare rules are complete for a first-order structure ~¢, then the set of partial
correctness assertions true over ~¢ is recursive in the first-order theory of ~¢. We
show that the converse is not true. Namely, there is a first-order structure ~ such
that the set of partial correctness assertions true over ~ is recursive in the theory of
~ , but the Hoare rules are not complete for ~ .

1. INTRODUCTION

A first-order partial correctness assertion is a formula {P} a {Q}, where P
and Q are first-order formulae and a is a while-program. The assertion
{P} a {Q} means that if P is true of some machine state, and if the program
a halts when started from this state, then the formula Q will be true in the
halting state of a. Since the set of valid partial correctness assertion is H °-
complete [6], there is no finitary sound and complete axiom system for
partial correctness.

Cook [4] has shown that the axiom system composed of the rules of
Hoare [7] together with the first-order theory of a structure is complete for a
certain class of structures. More precisely, for any first-order structure d ,
the system H L (d) consists of Hoare's inference rules together with the first-
order theory of sO'. The structure d is expressive if, for any while-program a

* Jan A. Bergstra's present address is the Department of Computer Science, Mathematical
Centre, Amsterdam, The Netherlands.

+ Jerzy Tiuryn was partially supported by NSF Grant MCS 8010707, and by a grant to the
M.I.T. Laboratory for Computer Science by the IBM Corporation.

159
0019-9958/82 $2.00

Copyright © 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

160 BERGSTRA, CHMIELINSKA, AND TIURYN

and first-order formula P, the strongest postcondition of a with respect to P,
sp (P , a)= {a@l..~¢'t'°: there exists b E [d] °' such that a with input b
terminates in d with output a and d ~ P[b] } is first-order definable in J .
Cook's theorem states that if w" is expressive, then H L (d) is complete. In
general, however, the set PC(~¢') of partial correctness assertions that are
valid over ~¢ is /-/0, i.e. co-r.e., in the first-order theory T h (d) of J¢" (cf.
[1]) whereas HL(J¢') is Z0, i.e., r.e. in T h (J) . Thus H L (J) is not complete
for arbitrary ~¢.

Although expressiveness is sufficient to guarantee the completeness of
H L (d) , it is not a necessary condition. For example, any nonstandard
model of the integers has a complete Hoare logic, but cannot be expressive
(cf. [2]). Moreover, proving properties of programs over expressive
structures may be considered a degenerate case. When expressiveness holds,
partial correctness assertions reduce to first order formulae.

Since P C (d) is always//0 in T h (d) and HL(z¢') is 2;o in T h (d) , then if
HL is complete the partial correctness theory P C (J) is recursive in T h (d) .
This paper studies the following question: is H L (J) complete for every
structure d such that P C (J) is recursive in T h (d) ? We show that it is
not. We will present a general construction of counterexamples for this
situation. A corollary or our construction is that the ability to code finite
sequence cannot be removed from the hypothesis of Harel's completeness
theorem for arithmetical universes (cf. [5]).

As pointed out in [5], any structure d can be expanded to a structure
with a complete Hoare logic by expanding to an arithmetical universe. This
expansion may increase the degree of undecidability of the first-order theory
of d . However, when HL(W') is incomplete but P C (J) is recursive in
Th(J¢'), the structure d may be expanded in a much simpler way to obtain
a complete Hoare logic. We may consider proof systems H L (S , E) over a
first-order theory E in language d . H L (d) is then identified with
H L (t , T h (d)) , when d is an d structure. It follows from [3] that J " can
be expanded to an d * structure ~¢* with S * - . ~ being finite, such that
for some decidable theory T c Th(~d*), P C (J) ___ H L (t * , Th(~¢') U T).
Thus T h (d) U T, where T is decidable but formulated in an extended
language, contains enough information to derive all of P C (J) ,

2. PRELIMINARIES

We begin by presenting a version of Hoare's inference rules that suits our
purposes. In the following rules, P, Q, and R denote first-order formulae, B
denotes any quantifier-free first-order formula, t a term, and x a variable. We
use Q[t/x] to denote the formula Q with t substituted for all free occurrences
of x. Letters a and fl denote arbitrary while-programs.

INCOMPLETENESS RESULT FOR HOARE'S LOGIC 161

AssignmentRule P D Q[t/x] ~- {P}x := t{Q}

Composition Rule {P} a {Q}, {Q},8 {R} ~- {P} a;fl {R}

Conditionalrule {P A B} a {Q}, {P A ~ B } f l {Q}
~- {P} ifB then a elseflfi {Q}

Iteration rule P ~ R, {R A B} a {R }, R A-~B D Q
~- {P} while B do a od {Q}

Oracle axioms Every P C T h (d) is an axiom.

In the composition rule, the formula Q is called an intermediate assertion,
and in the iteration rule, R is called the loop invariant. Formally, H L (d)
denotes the set of all asserted programs {P} a {Q} provable from T h (J)
using the above rules.

The reader may easily verify that the rule of consequence,

PDP1, {P, Ia {Q1}, Q , ~ Q F - {PIa {Q}

is a derived rule of HL. Another rule that is easily derived is

/P} a {Q} ~- {3xP} a {3xQ},

where x is a variable that does not occur in a. Together, these two rules
imply that superfluous free variables may be eliminated from invariants and
intermediate assertions of proofs.

LEMMA 1. Let X be the set of all variables occurring free in P, Q, or a.
I f H E (J) proves {P} a {Q}, then there exists a proof of {P} a {Q} in
HL(.~) using only invariants and intermediate assertions with free variables
in X.

The idea of the proof is as follows: Suppose we have proof of {P} a {Q} in
H L (~ ') and assume that x is free in P or Q but does not occur in a. This
proof can be transformed into another proof by quantifying over x in each
formula.

We define the disjoint union J " ® ~ of first-order structures J " and ~ in
order to state our theorems. Let .~ and -~2 be two similarity types. Let A
and B be unary predicate symbols and L a constant symbol, none of which
belong to ~ U ~ . Let ~ ' , ~ be f l - , S2-structures, respectively. For any
integer i and set X let X × i denote X × {i}. Let f = .~ U Lf 2 U {A, B, L }.
We define an S-structure J " ® ~ with carrier [~¢ ® ~1 = [~¢ [X 0 U [~[X
1 U {(2, 2)}. We interpret A as the characteristic predicate of]~¢'[X 0, B as
the characteristic predicate of [~'[X 1 and L as (2, 2). We interpret the .W~
(resp. -~-2) function symbols as in s¢" (as in ~ , resp.), provided all arguments

162 BERGSTRA~ CHMIELINSKA~ AND TIURYN

are taken from I~1 x 0 (from I~1 x 1, resp.) Otherwise, we take the value
of a function to be J_. We interpret .~ (resp. $2) predicate symbols as in J
(as in ~,~, resp.), provided all arguments are taken from I~'1 x 0 (from
I~ j X 1, resp.), and set to be false elsewhere. In particular, if R E - ~ r~ t2 ,
then either all arguments of R should be taken from I J IX 0 or all from
13Ix 1.

Clearly, a meaningful alternative to this definition would be to use two-
sorted structure, but the disjoint union keeps us closer to the standard Hoare
formalism.

We are now in position to formulate two general theorems which answer
the question posed in the introduction.

THEOREM 1. For every d there is a structure ~ such that P C (d O ~)
is recursive in T h (d @ ~) .

THEOREM 2. For every two structures d and ~ i f H L (d) is incom-
plete, then so is H L (d @ ~) .

The following corollary, stated as a claim in the Introduction, follows
immediately from these theorems.

COROLLARY. There is a structure ~ such that PC((~) is recursive in
Th(C~) and HL(~) is incomplete.

Proof. Take d to be any structure for which H L (d) is incomplete (cf.
[1, 8], for examples). Then, according to Theorem 1, exists ~ such that
P C (~ ¢ @ ~) is recursive in T h (~ ¢ @ ~) . Moreover, according to
Theorem 2, HL(J" @ ~) is incomplete. Thus we can put c~ = d • ~q~- This
corollary states a result about the actual formal system HL that aims at
proving partial correctness facts true in all generality.

In the sense of [1, Theorem 2.3] it certainly is conceivable that a special
purpose logic of partial correctness can be devised for some given structure
9,1 which is complete even if HL(91) is incomplete. Indeed that can be done as
soon as PC(91) is recursive in Th(91). But the artificial logics thus obtained
may well be quite unsatisfactory.

Theorem 1 also gives us some insight into Harel's theorem on arithmetical
universes (cf. [5]). Let N stand for the standard model of arithmetic. By
Theorem 2 we know that for any ~¢" with HL(5,¢) incomplete, H L (d @ N)
is incomplete. Harel's theorem says that if ~ is a structure which contains
the standard model of arithmetic (as a first-order definable part of ~) and if

has the ability to code finite sequences of elements from I ~ I, then the
first-order language is expressive for while-programs over ~ , and therefore
H L (~) is complete. Since obviously N is a first-order definable part of

INCOMPLETENESS RESULT FOR HOARE'S LOGIC 163

d ® N, but H L (~ ® N) is not complete, Harel's encoding assumption is
necessary to ensure the completeness of his axioms.

We prove Theorem 1 in Section 3 and Theorem 2 in section 4.

3. ADDING AN EXPRESSIVE STRUCTURE

This section shows that for any structure J , there is a structure 9 such
that P C (J @ 9) is recursive in Th(s¢" @ 9) . If the domain of 5¢" is finite,
then 9 may be chosen to be any finite structure. Then ~¢" @ 9 is finite and
PC(W" ® 9) is recursive in T h (d ® 9) . When d is infinite, we will define

to be a copy of d which also has the standard arithmetic operations
defined on the elements of its domain. By construction, the first-order theory
of 9 will contain both the first-order theory of ~¢" and the first-order theory
of arithmetic. As a consequence, P C (d @ 9) will be recursive in
Th(J" @ 9) . However, the structure W" @ 9 need not be expressive since
there may not be any way to code pairs of elements of [s¢" I in T h (d @ ~) .

Assume now that J " is infinite and its similarity type is ~ . We construct
9 so that PC(~d @ 9) is recursive in Th(~¢" (i) 9) as follows. First, we
expand d to an arithmetic universe in the sense of [5]. To do this, we add a
defining predicate for "nonnegative integers" N, arithmetic operations,
constants 0 and 1, and in addition, we add a pairing function. The resulting
structure ~ has the same domain as J but has a richer similarity type
which we denote by S 2. For technical reasons we assume that L~ and S 2 are
disjoint.

It is clear that T h (9) is recursive in T h (d @ 9) . This follows
immediately from the definition of the @ construction. Because ~ is
expressive (being an arithmetical universe), H L (9) is complete. Therefore
P C (9) is recursive in Th (9) . Thus, it remains to be shown that
P C (d ® 9) is many-one reducible to P C (9) .

We will outline the reduction of P C (d @ ~) to P C (9) by showing an
effective simulation of computations on 5d @ 9 by those on 9 .

In order to describe a smooth translation of assertions and programs, we
introduce an infinite family of new variables: Y0, Yl The translation will
take a formula with variables X o , X 1 to a formula with variables
X o , Y o , x l , y ~ with double the number of quantifiers. Because the
structure ~ contains in its language names for O, 1, and 2 (since it contains
the language of arithmetic) it is natural to identify the lements o f191 which
correspond to these names with the actual numbers O, 1, 2. By means of this
identification, we can view

1~®91 = l d l x {o} u l ~ l x {1}u {{2, 2}}

164 BERGSTRA~ CHMIELINSKA~ AND TIURYN

as a subset of I~ ' l × [~1 (recall that I d l = I ~ l) . In what follows we use the
projection functions on the coordinates, n I and n2 on elements of I ~ [× I ~ h.

We show an effective translation Tr of first-order formulae over the
language of 5¢" ® ~ to first-order formulae over Lz 2. The translation will
have the property that for every P(x 1,..., Xn) over the language of d ® , ~ ' ,
and for all e I cn ~ I "J~ (~ l ,

(~) , ~ ~ P (X 1 Xn)[Cl Cn]

iff

~ Tr (P) (x l , yl,. . . , x , , y ,) [zq(e0 , nz(e,) nl(cn), ~2(e,)].

Because the formal definition of Tr is slightly cumbersome we present its
details. We first introduce some notations. For a term t we define L~(t) to be
true if t is a term over language ~ and false, otherwise.

We define Tr inductively. Suppose P is an equation t = t ' , where t
contains the variables X = { x i : i E J }, and t ' contains the variables
X ' = {x~: i E J ' }. Then we want Tr (P) to be true iff

(a) both t and t ' have values in Idl × 0 and t = t ' , or

(b) both t and t ' have values in [~_~1X 1 and t = t ' , or

(c) both t and t ' yield Z.

Formulas (a) - (c) can be written formally as

(a ') Aiesws,(Yi = 0) A L l (t) A L1(t') A t= t',

(b ') Ai~sus,(Yi = 1) A t = t ' ,

(c ') [Vies(Yi--/:O) V ~ L , (t)] A [Vies(Y,-4: 1)] A [Vi~j,(Y, 4:0) V
~ L l (t ')] A [Vi~j,(Y, 4: 1)].

Suppose P is an atomic formula R(t I tn) with R E - ~ and let
X = {xi: i E J} be the set of variables that occur in P. Then Tr(P) is

n
.

If P is A (t), then Tr(P) is

A (Yi:0) AZl(t).
ieJ

The cases for P of the form B(t) or R(t I tn) with R E Sz -- ~ are simpler
and we omit them.

INCOMPLETENESS RESULT FOR HOARE'S LOGIC 165

If P is P1 V P2, then Tr(P) is Tr(Pl) V Tr(Pz).
If P has free variables X = {xi: i E J}, then Tr(~¢ ~) is

A (v i = O V y i = l V y i = 2) A ~ T r (P) .
i eJ

Finally, Tr(~xiP) is

~x i 3 y i ((y i = 0 V Yi = 1 V Yi = 2) A Tr(P)).

This concludes the inductive definition of Tr for formulae.
The next step is to extend Tr to programs a over the language of d @ ..~

so that for all first order formulae P, Q over the language of d @ 3

d @ .~' > {P} a {Q} iff ~.~ ~ {Tr(P)} Tr(a){Tr(Q)}. (*)

Let a be a program and let {x 0 xn_l} contain all variables occurring in a.
The translation Tr(a) will use variables x 0, Y0 x , _ , , y , _ l in such a way
that the fol lowing c o m m u t e s :

(;'t 1, Zt 2}n (Ttl,~2)n~

We first show how to define Tr for assignment statements. Let x i := t be an
assignment statement, where t is a term over the language of d @ ~ . Let
X = {xj : j C J / be the set of all variables which occur in t.

If t is a variable, say xj, then Tr(x i := t) is x i := xj.; Yi := .Vs. If t is over
2~ and not a variable, then Tr(xi := t) is

i f / ~ Yi = 0 then x i := t; yg := 0, else x i := 2; Yi := 2J7.
j s J

If t is over ~ and not a variable, then Tr(x i := t) is

i f A Y i = 1, then x i := t; Yi := 1, else x i := 2; Yi := 2f t .
j e J

In al l remaining c a s e s T r (x i : = t) is x i : = 2 ; Y i : = 2.

Tr(a) is a program in which every assignment statement x, := t in a is
replaced by Tr(xi := t), and every test P in a is replaced by Tr(P).

It follows from (*) that Tr is a many-one reduction of PC(~¢" @ ~) to
PC(~ ') . This completes the proof of Theorem I.

643/52/2-4

166 BERGSTRA, CHMIELINSKA, AND TIURYN

4. HOARE'S LOGIC OVER DIRECT SUMS

In this section we will show that incompleteness of H L (J) implies incom-
pleteness of H L (J ® ~) . Let P be a first-order formula over the language
of J ® ~q~. We define PA, a relativisation of P to i wl, inductively as
follows:

(i) if P is atomic, then PA is P

(ii) (~P)A is ~(PA)

(iii) (PVQ)A isPAVQA

(iv) (~xP)A is 3x(A(x) A PA)"

If X is a finite set of variables, then A(X) denotes Ax~xA(x). We define P~
and B(X) similarly. Using relativised formulae, we can interpret PC(~¢) in
P C (J Q ~) .

LEMMA 2. Let P, Q be first-order formulae over S~, and let a be a
while-program over Yl . Let X be the set of all variables occurring free in P
or Q or a. Then

J ~ { P } a { Q } iff J @ ~ { A (X) APA}a{A(X)AQA }.

Furthermore, if H L (J @ ~) proves {A (X) A PA } a {A (x) A QA } using only
invariants and intermediate assertions with free variables in X and of the
form A(X) A R A , then H E (J) p r o v e s {P} a {Q}.

The proof of Lemma 2 is straightforward and is omitted. To finish the
proof of Theorem 2, we need

PROPOSITION 3. Let P be a first-order formula over the language of
d ® ~ and let X be the set of all variables occurring free in P. Then there
exists a first-order formula Q over L~ sueh that

J @ ._~ ~ (.4 (X) A P) - (.4 (X) A QA)-

Before we prove Proposition 3, we show how it yields the proof of
Theorem 2.

Proof of Theorem 2. Assume that HL(~ ¢') is incomplete and
H L (d Q ~ ') complete. Choose {P} a {Q} true in ~¢" but not derivable in
HL(~¢). Let X be the set of all variables occurring free in P, Q, or a. By
Lemma 2, {A (X) A PA } a {A (X) A QA } is true in ~¢ ® ~' , and therefore
H L (J @ ~ ') I- {A (X) A PA } a {A (X) A QA }.

We derive a contradiction by constructing a proof of {P} a {Q} in
H E (J) . By Lemma 1, there is a proof of {A(X) A P} a {A(X) A Q} in which

I N C O M P L E T E N E S S R E S U L T F O R HOARE~S L O G I C 167

all intermediate assertions and invariants have their free variables in X. In
addition, each {R} a IS} in the proof may be replaced by
{A(X) A R} a {(X) A S} to yield another valid proof. Then, according to
Proposition 3, all invariants and intermediate assertions can be written in the
form {A(X) AR,~} a {A(X) A S)} with R ' and S ' are first-order formulas
over t 1. By Lemma2, H L (d) proves {P}a {Qt in contrast to our
assumptions. |

The proof of Proposition 3 uses Lemmas 4-6.

LEMMA 4 (L-elimination). For every first-order formula P over
U {A, B, L} there is a formula P± over ~ U {A, B} such that

(i) J ® ~ P - P ±
(ii) J~" O ~ ' ~ (PZ)A ---- (Pa) ±"

Proof It suffices to notice that we can define the constant L using the
unary relations A and B: x = L i f f -~A(x) A ~B(x) . |

We say that a formula P of the language of ~¢" @ 5~ is normalised iff there
is a number n, formulas F ~ F" over _~ U tA,B} and formulas G ~ G"

n i over S 2 U {A,B} such that P is of the form Ai=I(F A V GiB).

LEMMA 5. Let P be a formula over S2~A {A,B}. There exists a
normalised formula Q of the form A~'=I(F] V G~) sueh that J @ 3 ~
A(x) D (PB - Q) and x is not free in Gin, i = 1 n. Moreover, all variables
free in Q are free in P.

Proof Let us consider first the case when formula P~ is atomic. If P~ is
over -~l U {A, B }, then Q can be PB V false, rf x does not occur in PB as a
free variable, then Q can be false V Ps. If P~ is not over -~1 U {A, B},
contains x as a free variable and is of the form R(q), then A(x) implies
PB -- false. The remaining subcase is a formula of the form t~ = t 2, not over
.~ U {A,B}, and containing x as a free variable. Then A(x) implies
PB = tl = t2 = L, which means that PB is equivalent to a propositional
combination of clauses of the form A(y) and B(y).

If Ps is not atomic, then we transform it to the desired form in four steps.
Steps 2 and 3 should be skipped in the case where PB is quantifier free.

Step 1. Replace all atomic subformulas of P~ containing x as a free
variable and not over S 1 U {A, B } by false or by a combination of clauses of
the form A(x) and B(x), according to the previous reasoning.

Step 2. Replace each atomic subformula containing both x as a free
variable and at least one occurrence of a bound variable. Since every bound
variable y of Ps is assumed to fulfill B(y), we again can replace such

168 BERGSTRA, CHMIELINSKA, AND TIURYN

subformula by false if it is a relation, and by a combination of A and B
clauses if it is term equality.

Step 3. Transform PB in such a way, that no subformula containing x as
a free variable is in the range of any quantifier, and the set of all
subformulas is unchanged (we can do it, because due to step 2 no such
atomic subformula contains any bound variable).

Step4. Use the laws of distributivity and the de Morgan ' s rule to
Ai=~(F V G/~) such that F ' s are created from transform P~ to the form " i

exactly these atomic subformulas in which x occurs as a free variable.
Due to steps 1-3 formulas F ' s are over ~ U {A}, moreover they are

quantifier free (this is what assures that F is equal to FA). Since all atomic
subformulas introduced in the t ransformation are of the form A(y) or B(x),
the new P~ is still over L/2 U {A,B}. Moreover, no new variable has been
introduced. Thus the new P8 is of the desired form. II

We observe that due to the symmetry of the construction of J " ® ~ ' ,
Lemmas 4 and 5 are true when _~ is interchanged with S 2 and A with B.

LEMMA 6. For every formula P of the language of d ® ~ there is a
normalised formula Q such that d @ ~ ~ P =_ Q.

Proof The proof is by induction on P. In the basis case, if P is over
L~U {A,B} (resp. f 2 U {A,B}), then Q can be PVfa l se (resp. faIseVP).
In the remaining case, if P is of the form R(t 1 ,.,.), then it is equivalent in
~d" @ .~ to false, and if it is of the form tl = t 2 , then it is equivalent to
tl = t z = I . The latter is equivalent in d ® ~ ' to a formula over {A, B}:

The only nontrivial case in the inductive step is for P of the form Vx Q.
We assume inductively, that over d @ ~.~ the formula Q is equivalefit to a
normalised Q' , where Q' is of the form n i Ai=I(FA V G~). Since

~¢ @ ~ , ~ P=_ f~ Vx(FiA V GiR)
i=l

it is enough to show a transformation of every formula Vx (F A V G~) for
i = 1 n into a formula of the desired form. First we observe that such a
formula is equivalent over ~d" ® ~ to the conjunction of the formulas

(aa) riA(5_/x) V Giz)(L/x),

(bb) Vx [A(x) = (r~ V G~)],

(cc) Vx [B(x) = (r~ V G~)].

Using Lemma 4 we convert the (aa) into an equivalent formula of the
desired form. The transformations of (bb) and (cc) are similar and we
present here only a t ransformation of (bb).

INCOMPLETENESS RESULT FOR HOARE'S LOGIC 169

Using Lemma 5, we can replace G~ in (bb):

(bb') Vx [A(x) D(F~AVAT=I(H~VJ;,))].

Since x does not occur free in J~, j = 1 n, (bb') is equivalent over
~ ® ~ to

(bb") (AT=, [(Vx(Fi V HJ))A v J J] .

Because we assumed that F ' s and H ' s are over L~ U {A, B } and J ' s are over
U {A, B}, the last formula is normalised. This completes the proof of the

lemma. II

We can now prove Proposition 3.

Proof Let P be a first-order formula over the language of ~ @ ~ . By
/x, (F i V G/R), where F/s are Lemma 6 it is equivalent over = ~) ~ to z \ i=~ A

over S 1 U {A,B} and G[s are over f 2 U {A,B}. L e t X be the set of all
variables which occur free in P. Using Lemma 5 repeatedly for every
variable from X we can get a normalised formula Q" of the fo rm
Ai m l(K~ V L/8) such that

3g Q ~:~ ~ A (X) A P ---- A (X) A Q"

and in L~ no free variables occur. Let e i be true if • ® ~ ~A(X) A L~,
and false, otherwise.

Clearly

:~ (D,:@~A(X) A P - A (X) A A (K] V ei).
i - I

Let the formula A~'=I(K] V ei) be called Q' and let Q be obtained from Q'
by replacing subformulas of the form A(t) by true, and subformulas of the
form B(t) by false. It is easy to check that such a Q fulfills our
requirements. II

5. CONCLUDING REMARKS

Because HL is a very natural system, classifying the structures for which
HL is complete and for which it is incomplete is an interesting issue.
Previous examples of structures with an incomplete HL such as in [1, 8]
share the property that PC(N) is not recursive in Th(lI) (from which incom-
pleteness of HL(9~) immediately follows). Our corollary yields a different
example. Further it is worthwhile to find generalized logics of partial
correctness even for the simple case of while-programs.

1 70 BERGSTRA, CHMIELINSKA, AND TIURYN

We would like to state some questions based on the following simple
definitions:

DEFINITION 1. 92 is PC-compact if for each asserted program {p} S {q}
true in 92 there is a sentence ~0 E f (9 2) such that mod(~0)~ {p} S {q}.

DEFINITION 2. A logic of partial correctness LPC(92) for 92 is an r.e. set
of pairs ((9i, {Pi} Si {qi}) with ~0 i @ S(92) and {Pi} Si {qi} an asserted
program over Y(92). LPC(92) is sound if for all @, {p} S {q}) E LPC(92),
mod(O) ~ {p} S {q}. LPC(92) is complete if whenever 92 ~ {p} S {q} there is

E Th(92) such that @, {p} S {q}) E LPC(92).

DEFINITION 3. 92 is PC-complete if there exists a sound and complete
logic LPC(92) for 92.

It is easily seen that if HL(92) is complete 92 is PC-complete, and that PC-
completeness implies PC-compactness . Moreover, if 92 is PC-complete
PC(92) is recursive in Th(92).

6. QUESTIONS

(i)

(ii)
complete?

(iii)

(iv)

I f 92 is computable and HL(92) is complete must 92 be expressive?

If PC(92) is recursive in 92 and 92 is PC-compac t must HL(92) be

I f the answer in (ii) is negative, must 92 be PC-complete?

Is there a sound LPC which is complete for all PC-complete
structures of a given signature?

ACKNOWLEDGMENTS

We thank Piotr Berman and an anonymous referee for criticism and suggestions concerning
this paper.

REFERENCES

1. BERGSTRA, J. A., & TUCKER, J. V. (1982), Some natural structures which fail to possess a
sound and decidable Hoare-like logic for their while-programs, Theor. Comput. Sci. 17 (3),
235.

2. BERGSTRA, J. A., ~, TUCKER, J. V. (1982), Expressiveness and the completeness of Hoare's
logic, J. Comput. System Sci. 25, 217.

3. BERGSTRA, J. A., & TUCKER, J. V. (1982), Two theorems on the completeness of Hoare's
logic, Inf. Process. Lett. 15 (4), 143.

INCOMPLETENESS RESULT FOR HOARE'S LOGIC 171

4. COOK, S. A. (1978), Soundness and completeness of an axiom system for program
verification, S l A M J. Comput. 7, 129.

5. HAREL, D. (1979), "First-Order Dynamic Logic," Lecture Notes in Computer Science,
Vol. 68, Springer-Verlag, Berlin/New York.

6. HAREL, D., MEYER, A. R., & PRATt, V. (1977), Computability and completeness in logics
of programs: Preliminary report, in "9th ACM Symposium on Theory of Computing,
Boulder, Colorado, May, 1977," pp. 261-268; revised version, M.I.T. Lab. for Computer
Science TM-97, 16 pp., February 1978.

7. HOARE, C. A. R. (1969), An axiomatic basis for computer programming, Commun. ACM
12 (10), 576.

8. WAND, M. (i978), A new incompleteness result for Hoare's system. J. Assoc. Comput.
Math. 25(1), 168.

