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Abstract

In this paper, a special lattice Boltzmann model is proposed to simulate two-dimensional unsteady Burgers’ equation. The
maximum principle and the stability are proved. The model has been verified by several test examples. Excellent agreement is
obtained between numerical predictions and exact solutions. The cases of steep oblique shock waves are solved and compared with
the two-point compact scheme results. The study indicates that lattice Boltzmann model is highly stable and efficient even for the
problems with severe gradients.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, the lattice Boltzmann method (LBM) has been developed into an alternative and promising numerical
scheme for simulating fluid flows [1,8,3] and solving various mathematical–physical problems [7,4,10–12]. This method
can be either regarded as an extension of the lattice gas automaton [6] or as a special discrete form of the Boltzmann
equation for kinetic theory [5]. Unlike conventional numerical schemes based on discretizations of partial differential
equations describing macroscopic conservation laws, the LBM is based on solving the discrete-velocity Boltzmann
equation from statistical physics. It describes the microscopic picture of particles movement in an extremely simplified
way, while on the macroscopic level it gives a correct average description.

The Burgers’ equation, which is also called the nonlinear advection–diffusion equation, is a simplified model of
Navier–Stokes equations. It retains the nonlinear aspects of the governing equation in many practical transport prob-
lems such as aggregation interface growth, the formation of large-scale structures in the adhesion model for cosmology,
turbulence transport, shock wave theory, wave processes in thermoelastic medium, transport and dispersion of pollutants
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in rivers and sediment transport. Therefore, it is usually used to test different numerical methods. The unsteady two-
dimensional Burgers’ equation in one unknown variable take the following form:
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�t
+ u

�u

�x
+ u

�u

�y
= �

�2u

�x2 + �
�2u

�y2 , x0 �x�xN, y0 �y�yN, t > 0, (1)

with the initial condition u(x, y, 0) = u0(x, y). Here the viscous coefficient � = 1/Re > 0, Re is the Reynolds number.
For a small value of �, Burgers’ equation behaves merely as hyperbolic partial differential equation and the problem
becomes very difficult to solve as a steep shock-like wave fronts developed.

Elton [4] and Shen et al. [11] have proposed lattice Boltzmann models for 2D Burgers’equation in which there is only
one convective term. In the paper, we developed a 4-bit model for Eq. (1). By using Taylor expansion and multi-scale
analysis, the time-dependent two-dimensional Burgers’ equation is recovered from the lattice Boltzmann equation,
and the local equilibrium distribution functions are obtained. It is generally recognized that the LBM is a Lagrangian
discretization of a discrete-velocity Boltzmann equation. In this view, we find such lattice Boltzmann scheme satisfies
maximum principle, therefore, we complete the proof of stability.

The rest of the paper is organized as follows. Section 2 proposes a lattice Boltzmann model and derives the 2D
Burgers’ equation from the model. A stability analysis of the LBM is also given in Section 3. In Section 4 some
numerical experiments are made using our model. And the conclusions are given in the end.

2. Lattice Boltzmann method

According to the theory of the LBM, it consists of two steps: (1) streaming, where each particle moves to the nearest
node in the direction of its velocity; and (2) colliding, which occurs when particles arriving at a node interact and
possibly charge their velocity directions according to scattering rules. Usually, with the single-relaxation-time BGK
approximation [2], these two steps can be combined into the following LBE:

f�(x + e��t, t + �t) − f�(x, t) = −1

�
(f� − f

eq
� ), (2)

where f� is the distribution function of particles; f
eq
� is the local equilibrium distribution function of particles; �x

and �t are space and time increments, respectively; c = �x/�t is “the speed of light” in the system; e� is the velocity
vector of a particle in the � link and � is the dimensionless single-relaxation-time which controls the rate of approach
to equilibrium. Virtually it is a full discretization of time, space, and velocity. The macroscopic velocity, u is defined
in terms of the distribution functions as

u =
∑
�

f� =
∑
�

f
eq
� =

∑
�

f
(0)
� . (3)

The lattice Boltzmann schemes are established on the square grids with four perpendicular directions:

e1 = (c, 0), e2 = (0, c), e3 = (−c, 0), e4 = (0, −c).

This is a 4-bit model shown in Fig. 1. To derive the macroscopic equation from the lattice BGK model, we employ
the Taylor expansion and multi-scale analysis. The distribution functions are expanded up to linear terms in the small
expansion parameter �

f� = f
(0)
� + �f (1)

� + O(�2).

From the kinetic equation (2), we expand the distribution function f�(x + �te�, t + �t) in its Taylor expansion and
calculate an approximation of f

(1)
� ,

f�(x + e��t, t + �t) = f�(x, t) + �te�i�xi
f� + �t�t f� + O(�2)

=
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)
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�
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f� + �t f�) + O(�2), (4)
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Fig. 1. The 4-bit lattice configuration.

where the Greek subscript � is used to label discrete velocities and the Roman subscripts i, j denote the Cartesian
coordinates x, y.

Introduce time scale t2 = �2t , and space scale x1 = �x, then the time derivation and the space derivation can be
expanded formally

�t = �2�t2
, �x = ��x1

.

Inserting the expansion and the scalings into the conservation relation, we obtains up to second order in �
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∑
�
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Substituting Eq. (4) into the above equation and neglecting the terms of order O(�3), we get multi-scale equation
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Corresponding to the macroscopic equation (1), we let

∑
�
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(0)
� = u2

2
,

∑
�

e�ie�j f
(0)
� = �u�ij . (5)

From (3) and (5) we get the equilibrium distributions

f
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u

4
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u

4
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and � = c2/2. So the viscosity � is defined by

� = �(� − 1
2 )�t = 1

2 (� − 1
2 )�tc2.

then the Burgers equation (1) can be obtained.
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3. Stability analysis

In this section, we will prove the lattice Boltzmann model is stable. First LBE (2) can be rewritten by classical finite
difference notation,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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where n denotes the nth layer time, i, j are spatial grids,

� = 2�

�tc2 + 1

2
, (8)

subject to initial distribution

f 0
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At time (n + 1)�t , u is

un+1
i,j = f n+1

1,i,j + f n+1
2,i,j + f n+1

3,i,j + f n+1
4,i,j . (10)

We assume initial value u0(x) is bounded and smooth enough. We will prove lattice Boltzmann schemes (7) are stable
in L1(R2) ∩ L∞(R2). Suppose

u0(x) ∈ L1, |u0(x)|�1. (11)

By combining (10) with (7), it is not difficult to see that if un
i,j �1, and

��1, �t/�x� 1
2 , (12)

then the scheme (7) is monotonic. ��1 means

��t

�x2 � 1

4
. (13)

Now we will point out that the solution of the scheme (7) satisfies the maximum principle.

Lemma 1 (maximum principle). If initial value |u0(x)|�1 and the restrictions (12) holds, then for ∀i, j ∈ Z,
there are

min
l,m

u0
l,m �un+1

i,j � max
l,m

u0
l,m, n�0. (14)

Using (7), (9), (10) and induction we can prove (14). Assume that ũ(x) is another solution of Eq. (1), with subject
to initial condition

ũ(x, 0) = ũ0(x), (15)

where ũ0(x)�1. The numerical schemes and restrictions are still (7) and (12), respectively.
So we can prove that
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Lemma 2. If the conditions of Lemma 1 are fulfilled, there are inequalities

∑
i,j

max(un+1
i,j , ũ n+1
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‖un
�x

− ũ n
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i,j , ũ n+1
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Summing the absolute value to all i, j, by Lemma 2, we have

∑
i,j
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If we let ũ�x(., ., t) = 0 in (18), we can get (19). �

Remark. The restrictions (12), (13) are sufficient but not necessary. In the following experience, we give out on
purpose the spatial and time steps violating one of conditions, but we can still obtain the correct result.

4. Numerical experiments

To show the effectiveness of the 4-bit lattice Boltzmann model, we present three numerical examples in this section.
In the first two examples, the numerical solutions are compared with the analytical solutions or available finite difference
results. In the third example, we take numerical solutions computed on a very fine mesh as the “exact” solutions, and
then compare the numerical solutions with them.

Example 1. The first test is the solution of two-dimensional unsteady Burgers’ equation that is dominated by moderate
gradients [9]. Eq. (1) with the following Dirichlet boundary conditions is solved by the LBM with 4-bit model

u(0, y, t) = 1

1 + e(y−t)/2� , u(1, y, t) = 1

1 + e(1+y−t)/2� ,

u(x, 0, t) = 1

1 + e(x−t)/2� , u(x, 1, t) = 1

1 + e(1+x−t)/2� ,

and the initial condition

u(x, y, 0) = 1

1 + e(x+y)/2� , 0�x�1, 0�y�1.
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Table 1
L∞ and L2 errors at different viscosities and grids at time = 0.25

Viscosities Grids L∞ error L2 error

� = 1 4 × 4 4.423E − 005 1.914E − 005
10 × 10 7.882E − 005 2.016E − 005
20 × 20 1.483E − 004 2.652E − 005
40 × 40 2.921E − 004 3.681E − 005
80 × 80 5.820E − 004 5.181E − 005

� = 0.1 10 × 10 1.061E − 002 2.565E − 003
20 × 20 3.077E − 003 4.536E − 004
40 × 40 1.626E − 002 1.875E − 003
80 × 80 3.820E − 002 3.125E − 003

� = 0.01 80 × 80 5.893E − 002 7.610E − 003
200 × 200 5.713E − 002 4.372E − 003
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Fig. 2. LBM solutions (Re = 500): (a) 20 × 10 grid; (b) 80 × 40 grid.

The numerical steady state solutions of Eq. (1), with the above initial and boundary conditions, have been obtained
using the LBM at time = 0.25 for different grid sizes and viscosities, � = 1.0, � = 0.1 and � = 0.01. To test the
computational efficiency and accuracy of this model, error has been measured using both L2-norm and L∞-norm. For
every grid we choose c = �x/�t = 10. The LBM produces more accurate and hence more efficient solutions, even on
a course grid, as shown in Table 1. It is sufficient to obtain convergent steady solutions with only four grid points in
each spatial direction with � = 1.0. From Table 1, it can be seen that the error increases with an increasing Reynolds
number. Hence we need to choose finer grids for high Reynolds number.

Example 2. The second problem is the solution of the 2D unsteady Burgers equation with a steep oblique shock in the
domain: −0.1�x�0.1 and −0.05�y�0.05. The following Dirichlet boundary conditions are set to form an “oblique”
shock in the domain [9]:

u(−0.1, y, t) = − tanh

(−0.1 − 0.4y

2�

)
, u(0.1, y, t) = − tanh

(
0.1 + 0.4y

2�

)
,

u(x, −0.05, t) = − tanh

(
x + 0.02

2�

)
, u(x, 0.05, t) = − tanh

(
x − 0.02

2�

)
.

The computed steady state solutions using the 4-bit lattice Boltzmann model, � = 0.002 and on two different grids
(20 × 10), (80 × 40), at time = 0.1 are shown in Fig. 2. Here we choose c = 2. Again, the LBM is capable of producing
convergent and stable solution with steep oblique shock on relatively coarse grid (20 × 10), the same as the finite
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Fig. 3. LBM solutions: (a) Re = 5000, 200 × 100 grid; (b) Re = 10 000, 400 × 200 grid.

Fig. 4. x–y solution contours: (a) N = 128 LBM solution; (b) “exact” solution.

difference solution [9]. Moreover, the 4-bit lattice Boltzmann model efficiently solves the same problem with steeper
oblique shock cases of � = 0.00005 − 0.0002, even smaller viscosity, without any oscillations. It just needs finer grids
with an increasing Reynolds number. The LBM solutions with � = 0.0002 and � = 0.0001, namely Re = 5000 and
10 000, on different grids (200 × 100), (400 × 200), respectively, are shown in Fig. 3. This concludes that the 4-bit
lattice Boltzmann model is stable and efficient for solving the 2D unsteady Burgers equation, especially with severe
gradients.

Example 3. In this example, we consider the Burgers’ equation (1) in (x, y) ∈ [0, 1] × [0, 1], which satisfies periodic
boundary condition, and corresponding initial value is

u(x, y, 0) = sin(2�x) cos(2�y).

We compute the solutions using 4-bit lattice Boltzmann model at t = 1
8 . Where the viscosity �= 0.01, and c = 1. The

exact solution of this problem is unknown. We take the numerical solution computed on a very fine mesh (2048 grid
points) as the “exact” solution for the purpose of comparison. The x–y solution contours are plotted in Fig. 4 for grid
points N = 128, and “exact” solution. We can see that the numerical solution agrees well with the “exact” solution.
Fig. 5(a) shows the surface plot of the numerical solution for N = 64. Fig. 5(b) are the solutions for y = 0.5 at t = 1

8
on different grids. When the mesh is coarser, the error appears. When N = 64 the error is very small, but it converges
to the “exact” solution rapidly when the mesh is refined.
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Fig. 5. (a) LBM solutions for N = 64; (b) solutions for y = 0.5 at t = 1
8 .

5. Conclusion

In conclusion, the 4-bit lattice Boltzmann model is used to solve the 2D unsteady Burgers’ equation, for problems
that are dominated by moderate to severe internal and boundary gradients. We have proved the maximum principle and
the stability which has also been discussed. The computational efficiency and the stability of the model are tested by
comparing the numerical results with the exact solutions, especially with the two-point compact scheme solutions in
solving steep gradient problems.
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