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A modified soft-wall AdS/QCD model with a z-dependent bulk scalar mass is proposed. We argue for 
the necessity of a modified bulk scalar mass from the quark mass anomalous dimension and carefully 
constrain the form of bulk mass by the corresponding UV and IR asymptotics. After fixing the form of 
bulk scalar mass, we calculate the mass spectra of (axial-)vector and pseudoscalar mesons, which have a 
good agreement with the experimental data. The behavior of chiral phase transition is also investigated, 
and the results are consistent with the standard scenario and lattice simulations. Finally, the issue of 
chiral magnetic effects is addressed. We find that the inverse magnetic catalysis emerges naturally from 
the modified soft-wall model, which is consistent with the recent lattice simulations.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Quantum chromodynamics (QCD) in the low energy regime 
is well known to be very tough to solve for its nonperturbative 
nature. To tackle the problems of strong interaction, nonpertur-
bative approaches must be used, such as the chiral perturbation 
theory [1] and the lattice gauge theory [2]. In recent years, an-
other nonperturbative approach motivated from string theory has 
been developed and used in many fields which are relevant to the 
strong coupling problems, i.e., the Anti-de Sitter/Conformal field 
theory (AdS/CFT) correspondence [3–5], which establishes the du-
ality between the weakly coupled supergravity in AdS5 and the 
N = 4 super Yang–Mills gauge theory in the boundary. Particularly, 
this approach has been used to probe the low energy nonpertur-
bative regime of QCD, and it is usually called holographic QCD 
or AdS/QCD. There are roughly two approaches in this direction, 
i.e., the top-down approach using certain brane construction from 
string theory to characterize low energy hadron physics [6–8] and 
the bottom-up approach seizing the fundamental features of low 
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energy QCD, such as the chiral symmetry breaking and confining 
property, to build and constrain the bulk theory. In this work, we 
mainly focus on the bottom-up approach by which many mod-
els have been constructed in recent years, such as the well-known
hard-wall and soft-wall models or the light-front AdS/QCD model 
[9–12]. The hard-wall model [9,10] has a finite cut-off in the ex-
tra dimension which mimics the �QCD energy scale. The chiral 
symmetry breaking is well reproduced in this model, however, it 
cannot attain the linear Regge behavior of hadron spectrum which 
is a typical characterization of QCD confinement. To amend this 
defect, the soft-wall model [11] was constructed by introducing an 
infrared (IR) suppressed dilaton term. The soft-wall model has a 
correct linear Regge behavior, yet it cannot realize the chiral sym-
metry breaking consistently. A number of studies have been done 
to improve the soft-wall model, such as [13–17], and also applied 
to calculate various low energy properties of QCD.

Study of QCD phase transitions under the influence of magnetic 
field has attracted much attention in recent years [18–30], partly 
because magnetic fields with strength around 

√
eB ∼ 0.1–1.0 GeV

can now be generated in the noncentral heavy ion collisions at 
the Relativistic Heavy Ion Collider (RHIC) [31–33] and the Large 
Hadron Collider (LHC), and partly because it is such an issue that 
lattice simulations can approach to study the essential properties 
of strongly interacting matter, which are related to the vacuum 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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and phase structure of QCD. Another motivation is that strong in-
teraction and high magnetic fields coexist during the strong and 
electroweak phase transitions in the early universe [34,35], and the 
same happens in certain neutron stars like magnetars [36]. In the 
research of deconfining and chiral phase transitions under external 
magnetic field, many works including lattice simulations [37–42]
revealed the property of magnetic catalysis (MC), i.e., the increase 
of chiral condensate or phase transition temperature Tc with mag-
netic field B . However, recent lattice results [43,44] indicated that 
the transition temperature Tc decreases with increasing B , i.e., an 
inverse magnetic catalysis (IMC), which has spurred the investiga-
tion of this specific field and has motivated the study in the holo-
graphic framework [45–53]. Most holographic QCD models have 
the property of MC, i.e., Tc(B) increases with B . For exceptions one 
can refer to [51–53]. Authors of [51] studied the chiral magnetic 
effects within the Sakai–Sugimoto model, and showed that the IMC 
appears only at finite chemical potential. The author of [52] found 
that the IMC manifests in the deconfining phase transition within 
the hard-wall model and the holographic duals of flavored and un-
flavored N = 4 super Yang–Mills theories on R3 × S1. Ref. [53]
showed the same property exists in the soft-wall model, however, 
the authors also showed that the chiral phase transition has the 
behavior of MC, contradicting the deconfining transition behavior.

In this work, we put emphasis on the chiral magnetic effects 
in a soft-wall AdS/QCD model with the modified conformal mass 
of bulk scalar field. We argue that a z-dependent bulk mass is 
necessary for the mass anomalous dimension in QCD theoretically 
and for the mass split of chiral parters phenomenally, and is also 
indispensable for the realization of chiral phase transition. To char-
acterize QCD as real as possible, we carefully constrain the form of 
the IR-modified conformal mass and the parameters in the model 
by the meson spectrum and the chiral transition temperature Tc . 
Under an AdS black hole background with constant magnetic field, 
the behavior of chiral phase transition will be studied following 
[54,55]. We find that in our model the chiral transition tempera-
ture Tc decreases with the increasing magnetic field B , which is 
consistent with the IMC revealed by the recent lattice simulations. 
It should be noted that the magnetized AdS black hole solution we 
used was obtained by solving the Einstein–Maxwell system in [56,
57], while a full background solution should have been attained 
by solving the Einstein–Maxwell–Dilaton system when taking the 
dilaton effect into consideration. As a preliminary try, we just take 
the simplified version without the back-reaction of dilaton, and 
only consider the perturbative background solution up to order B2, 
following [52], so all the results related to the magnetic field B are 
only valid at small B . However, that is enough for us to get the 
convincing qualitative behavior of the chiral transition under the 
influence of magnetic field in our model and compare with the 
other ones. What’s more, the quantitative results of IMC consistent 
with lattice simulations can even be extracted.

The paper is organized as follows. In Sec. 2, we set up the 
thermal background and give the outline of the modified soft-wall 
AdS/QCD model. In Sec. 3, we argue and specify the form of the 
modified bulk scalar mass, then we calculate the mass spectra of 
(axial-)vector and pseudoscalar mesons and the temperature de-
pendent chiral condensate, which will be found that have a good 
agreement with the experimental data or lattice results. The pa-
rameters of the model will be fixed in the process. In Sec. 4, 
we turn to the main theme of the paper, i.e., the chiral mag-
netic effects in the modified soft-wall model. The magnetized AdS 
black hole solution is reviewed firstly [57], then the chiral thermal 
transition under the constant magnetic field will be studied. The 
magnetic dependent behavior of chiral condensate at fixed tem-
peratures is also investigated. In Sec. 5, we give a short summary 
and conclusion for the study.
2. The modified soft-wall model with z-dependent bulk mass

As we mainly concern the finite temperature effects, let us con-
sider directly the finite temperature case by introducing an AdS–
Schwarzchild black hole with the metric ansatz:

ds2 = e2A(z)(− f (z)dt2 + dxidxi + 1

f (z)
dz2) (1)

with

A(z) = − log
z

L
; f (z) = 1 − z4

z4
h

, (2)

where zh is the black hole horizon defined by f (zh) = 0, and L is 
the AdS curvature radius. Below we will set L = 1 in the cal-
culation. The temperature of the system is then defined by the 
Hawking formula:

T = 1

4π

∣∣∣∣df

dz

∣∣∣∣
z→zh

= 1

π zh
, (3)

from which we see that the case with zero temperature corre-
sponds to zh → ∞ or f (z) = 1.

The action of the modified soft-wall model can be written as 
follows:

S = − 1

κ

∫
d5x

√−g e−�(z)

× Tr

[
|D X |2 + m2

5|X |2 + λ|X |4 + 1

4g2
5

(F 2
L + F 2

R)

]
, (4)

where D M X = ∂M X − i AM
L X + i X AM

R , g the determinant of the 
metric, and �(z) = μ2

g z2 the dilaton profile. By comparing the 
two-point correlation function of scalar operator and vector cur-
rent with the QCD results, the parameters κ and g5 can be de-
termined as κ

L = 16π2

Nc
with Nc the color number and g2

5 = 3
4 [10,

13]. The action also includes a bulk scalar field X and the chiral 
gauge fields AM

L,R = AM a
L,R ta with ta the generators of SU(2)F sat-

isfying Tr[tatb] = δab/2. These bulk fields are dual to relevant QCD 
operators at the boundary z = 0. The mass of bulk scalar is deter-
mined as m2

5 = −3 by the AdS/CFT dictionary m2
5 = 	(	 − 4) and 

	 = 3, which is the dimension of dual operator q̄RqL [10]. How-
ever, as QCD is not a conformal field theory, we indeed need a 
z-dependent bulk scalar mass which will deviate from −3 when 
z �= 0, so we take m2

5(z) = −3 + m(z). We will argue for the ne-
cessity to consider a z-dependent bulk scalar mass and specify the 
form of m2

5(z). In general, the bulk scalar X could be decomposed 
into the scalar meson field S(x, z) and pseudoscalar meson field 
π(x, z) = πa(x, z)ta in the form of X = (

χ
2 + S)e2iπ , where χ(z) is 

the vacuum expectation value (VEV) of X which is dual to the chi-
ral condensate 〈q̄q〉. The bulk gauge field strength has the form as 
follows:

F MN
L,R = ∂M AN

L,R − ∂N AM
L,R − i[AM

L,R , AN
L,R ], (5)

where the gauge fields AM
L,R can be recombined into the vector 

field V M = 1
2 (AM

L + AM
R ) and the axial-vector field AM = 1

2 (AM
L −

AM
R ), then the action (4) can be rewritten as

S = − 1

κ

∫
d5x

√−g e−�(z)

× Tr

[
|D X |2 + m2

5|X |2 + λ|X |4 + 1

2g2
5

(F 2
V + F 2

A)

]
(6)

with
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F MN
V = ∂M V N − ∂N V M − i[V M , V N ] − i[AM , AN ], (7)

F MN
A = ∂M AN − ∂N AM − i[V M , AN ] − i[AM , V N ], (8)

and the covariant derivative of X becomes D N X = ∂N X −
i[V N , X] − i{AN , X}.

We note that the only difference of action (4) from the original 
soft-wall model [11] is the z-dependent bulk scalar mass m5(z)
and a quartic term of X which are necessary for a consistent de-
scription of meson spectrum [14–17] and for the realization of 
chiral phase transition [54,55].

3. Bulk scalar mass, meson spectrum and chiral thermal 
transition

In this section, we will specify the form of the bulk scalar mass 
m5(z) which, as noted above, is critical for a reasonable description 
of the meson spectrum and the chiral thermal transition. In the 
meantime, the mass spectra of the (axial-)vector and pseudoscalar 
mesons will be calculated, and the behavior of chiral thermal tran-
sition will be investigated. The parameters of the model will be 
fixed by comparing relevant quantities with the experimental or 
lattice results.

As has been said, the VEV of bulk scalar field χ(z) is dual 
to the quark condensate 〈q̄q〉, and m5 is related to the dimen-
sion of 〈q̄q〉 by the standard AdS/CFT dictionary m2

5 = 	(	 − 4), 
so the quark mass anomalous dimension might induce a modi-
fied bulk mass m5(z) running with z. From the respect of QCD, 
the trace of the stress tensor of quark sector can be written as 
T μ
μ = ∑

mq〈q̄q〉 with 
∑

summing over different flavors. For ar-
bitrary energy scale μ, we have d〈q̄q〉/d logμ = (	 − 3)〈q̄q〉 with 
	 the actual scaling dimension (canonical scaling dimension plus 
anomalous dimension) of 〈q̄q〉. As T μ

μ is renormalization-group-
invariant, it scales classically and we have dT μ

μ/d logμ = 0. Taking 
the derivative of T μ

μ = ∑
mq〈q̄q〉 with respect to logμ, we then 

obtain

0 =
∑

mq γ (α) 〈q̄q〉 +
∑

mq (	 − 3) 〈q̄q〉
= (γ (α) + 	 − 3) T μ

μ (9)

with the quark mass anomalous dimension defined as γ (α) ≡
1

mq

d mq
d log μ , from which we get 	 = 3 − γ (α). As a result, a z-de-

pendent bulk scalar mass m5(z) might be necessary by including 
the quark mass anomalous dimension in the boundary. We note 
that a similar argument for the anomalous dimension of the gluon 
condensate 〈Tr F 2

μν〉 was given in [62]. However, to fix the spe-
cific form of m5(z) in the soft-wall framework is another issue as 
one needs to pay attention to the low energy phenomena of QCD, 
such as the meson spectrum or the chiral and deconfining ther-
mal transitions, etc. Below we will turn to the calculation of the 
mass spectra of vector, axial-vector and pseudoscalar mesons, and 
the temperature dependence of chiral condensate will also be ad-
dressed. The form of m5(z) and the parameters of the model will 
be fixed. After fixing all the ones, we will see that this model can 
give a very good description of both meson spectrum and chiral 
phase transition, which are consistent with lattice simulations and 
experiments.

There have been many studies on the calculation of meson 
spectrum in a variety of soft-wall models. For some of them one 
can refer to [14–17]. Study of chiral phase transition in the frame-
work of soft-wall models has also attracted considerable atten-
tions, e.g. [54,55,58]. We only give the corresponding equation of 
motion (EOM) concerned and then present the numerical calcu-
lations which will be compared with the experimental or lattice 
results. In certain places, the conditions to specify the bulk scalar 
mass m5(z) and the model parameters will be noted.
3.1. UV condition of the bulk scalar mass m5(z)

Let us first give the EOM of the VEV of bulk scalar field χ(z)
which is closely related to the chiral condensate 〈q̄q〉. Inserting 
X = (

χ
2 + S)e2iπ in the action (4), one can derive the EOM of χ(z)

as

χ ′′(z) +
(

3A′(z) − �′(z) + f ′(z)

f (z)

)
χ ′(z)

− e2A(z)

f (z)
∂χ V (χ(z)) = 0 (10)

with the potential V (χ) = 1
2 m2

5χ
2 + 1

8 λχ4.
According to the AdS/CFT dictionary [10], the UV expansion of 

χ(z) has the form as follows:

χ(z) = mqz + σ z3 + · · · (11)

with mq the current quark mass and σ related to the chiral con-
densate. Now from Eq. (10), the UV asymptotic expression of m5(z)
can be derived as

m2
5(z ∼ 0) = −3 − (2μ2

g + λm2
q/2)z2 + · · · . (12)

It should be remarked that in this model we do not consider 
the effects of the quark mass anomalous dimension on the near-
boundary behavior of m5(z) or χ(z). This is because the UV region 
of QCD has been identified as the boundary of the bulk theory 
with conformal property, as dictated by the AdS/CFT dictionary. It 
is just this identification that validates the bottom-up approach in 
which the UV physics of QCD can be matched with the boundary 
ones. However, in the top-down approach with a bias of theoretical 
considerations, it should be given more careful treatments as the 
supergravity approximation usually makes the boundary (the UV 
region of QCD) inaccessible from the bulk. A way to circumvent 
this problem is to fix the anomalous dimension at certain scale 
using perturbative QCD, as has been done in [62]. However, in the 
model addressed here, the UV behavior of m5(z) or χ(z) has only 
little effects on the low-energy phenomena we concerned, and the 
most important effect comes from the IR region (z → ∞) of the 
bulk theory, which is identified as the low-energy QCD, so even 
we might neglect the QCD anomalous dimension on the boundary, 
this will not affect the results obtained in this work. The IR condi-
tion of m5(z) will be given below by constraint from the mass split 
of chiral partners, i.e., the vector and axial-vector mesons. Now we 
turn to the calculation of meson spectrum.

3.2. Vector meson

In the axial gauge V z = 0, the EOM of vector meson can be 
derived from the action (6) as

−v ′′
n(z) + V v(z)vn(z) − m2

n vn(z) = 0, (13)

where the Schrödinger-like potential has the form:

V v(z) = 1

2
(A′′(z) − �′′(z)) + 1

4
(A′(z) − �′(z))2. (14)

It should be noted that the meson spectrum will be calculated at 
zero temperature with f (z) = 1. We see that the EOM of vector 
meson only includes the parameter μg , the inverse of which could 
be related to the �QCD energy scale. This is the same as the orig-
inal soft-wall model [11], and analytical solution indeed exists in 
this case. To simplify the discussion, we only present the numer-
ical results, which are shown in Table 1, and μg = 430 MeV has 
been fixed by fitting the experimental data.
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Table 1
Vector meson spectrum from experiment and our model calculation. The experi-
mental data is taken from [59].

ρ 0 1 2 3 4 5 6

Exp. (MeV) 775.5 1465 1570 1720 1909 2150 –
Theory (MeV) 860 1216 1489 1720 1923 2107 2275

3.3. Axial-vector and pseudoscalar mesons

To get the EOM of axial-vector meson, we need to decompose 
the bulk gauge field Aa

μ into Aa
μ = Aa

μ⊥ + ∂μφa in the Az = 0
gauge. The radial component ∂μφa has a mixing with the pseudo-
scalar meson, as we will see later. The EOM of axial-vector meson 
is then derived from the action (6) as

−a′′
n(z) + Va(z)an(z) − m2

nan(z) = 0 (15)

with the Schrödinger-like potential

Va(z) = 1

2
(A′′(z) − �′′(z)) + 1

4
(A′(z) − �′(z))2

+ g2
5 e2A(z)χ2(z). (16)

We note that the only difference of the EOM of axial-vector 
meson from that of vector meson is the last term of the potential 
Va(z) which induces the mass split of chiral partners phenome-
nally, and in turn constrains the VEV of bulk scalar field χ(z) to 
be linear at large z, i.e., χ(z → ∞) = a z. Inserting this asymptotic 
expression in Eq. (10) and setting f (z) = 1, we obtain the IR ex-
pression of m5(z):

m2
5(z → ∞) = (−2μ2

g − λa2/2) z2 − 3 + · · · . (17)

In consideration of Eqs. (12) and (17), the simplest form of m2
5(z)

which satisfies the given UV and IR asymptotics will be used, i.e., 
m2

5(z) = −3 − μ2
mz2. Now all the ingredients of the modified soft-

wall model are known. The EOM of pseudoscalar meson can also 
be obtained from the action (6) following the same procedure of 
derivation of the (axial-)vector meson:

∂z

(
e A−�∂zφ

a
n

)
+ g2

5 χ2e3A−�(πa
n − φa

n) = 0, (18)

m2
n ∂zφ

a
n − g2

5 e2Aχ2∂zπ
a
n = 0. (19)

Before calculating the mass spectra of axial-vector and pseudo-
scalar mesons, we need to specify the other parameters appearing 
in the model, i.e., mq , μm and λ, in addition to the parameter 
μg which has been fixed by the vector meson spectrum to be 
μg = 430 MeV. We found that mq is most relevant to the mass of 
the ground state of pseudoscalar meson, which is reasonable as the 
π meson is usually considered as a pseudo Goldstone boson which 
attains mass by the explicit chiral symmetry breaking originating 
from the nonzero current quark mass. The chiral transition tem-
perature Tc is most sensitive to the value of μm , which indicates 
a close relation between the modified bulk scalar mass and chiral 
phase transition. λ is associated tightly with the value of σ and so 
is the VEV of bulk scalar, which determines the mass difference of 
vector and axial-vector mesons. Physically this is also reasonable 
as we know that it is just chiral symmetry breaking induces the 
mass split of chiral partners. It should be noted that a satisfying 
way to specify the real chiral condensate indeed needs holographic 
renormalization, which will also be referred in the study of chiral 
thermal transition later. Now we give the best fit of the parameters 
to the experimental or lattice data: mq = 6.3 MeV, μm = 1.46 GeV
and λ = 1.76. The numerical results of the spectra of axial-vector 
and pseudoscalar mesons are presented in Table 2 and 3.
Table 2
Axial-vector meson spectrum from experiment and our model calculation. The data 
is taken from [59].

a1 0 1 2 3 4 5

Exp. (MeV) 1230 1647 1930 2096 2270 –
Theory (MeV) 1283 1630 1860 2057 2235 2398

Table 3
Pseudoscalar meson spectrum from experiment and our model calculation. The data 
is taken from [59].

π 0 1 2 3

Exp. (MeV) 139.6 1300 1812 –
Theory (MeV) 138.6 1473 1776 1995

Fig. 1. The profile of the VEV of bulk scalar field χ(z) at T = 0.

In calculating the axial-vector meson spectrum, we need the 
VEV of bulk scalar χ(z) which can be obtained by solving Eq. (10)
at zero temperature ( f (z) = 1). Details for solving the EOM of χ(z)
at finite temperature can be found in [55,58] and will be outlined 
later when considering the chiral thermal transition. The profile of 
χ(z) is plotted in Fig. 1, where the linear asymptotics at large z
can be seen clearly. The value of σ can be extracted from the UV 
expansion of χ(z) and in our case σ  0.4 GeV3. The chiral con-
densate is related to σ by a scaling factor proportional to Nc [53,
58].

3.4. Chiral thermal transition

Now we consider the behavior of chiral thermal transition. The 
starting point is Eq. (10), i.e., the EOM of bulk scalar VEV χ(z), 
which is dual to the chiral condensate 〈q̄q〉 by the AdS/CFT dic-
tionary. As our model involves two light flavors, we only discuss 
chiral phase transition in the two-flavor case. As is well known, 
in the standard scenario, the chiral phase transition in the chiral 
limit is second order, while it becomes crossover when the quark 
mass is finite [60,61]. The chiral transition temperature Tc with 
physical quark mass is around 170 MeV in the two-flavor case. We 
remark that another soft-wall model with modified dilaton term 
has been proposed to address the issue of chiral phase transition 
in [54,55], and there the correct behaviors of chiral phase transi-
tion with both zero and finite quark masses have been realized. In 
our model, with modified bulk scalar mass, the behaviors of chiral 
phase transition are the same as those in [54,55].

The temperature dependence of chiral condensate can be de-
rived from Eq. (10) with a regular condition at horizon zh imposed 
to get the complete solution, from which the value of σ at each 
temperature can be extracted [55,58]. Using the above fixed pa-
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Fig. 2. The temperature dependent behavior of the rescaled chiral condensate σ/σ0.

rameters, the temperature dependent chiral condensate σ(T ) is 
obtained and the numerical result is shown in Fig. 2, where we 
have rescaled σ by the value σ0 = σ(0).

From Fig. 2 we can see obviously the crossover behavior of 
chiral thermal transition, which is completely consistent with the 
lattice simulations. As noted above, we have tuned the parame-
ter μm to obtain the chiral transition temperature Tc  170 MeV. 
The zero-temperature value σ(0) is approximated by σ(T ) at T =
0.0001 GeV in the real calculation, as we can see that σ(T ) is 
almost unchanging when T < 0.07 GeV. It should be noted that 
the solution of σ(T ) shown in Fig. 2 is not the unique one from 
solving Eq. (10), which is just as the case in [54,55], e.g., there is 
also the negative σ(T ) at low temperatures with the same struc-
ture as that in [54,55]. To select the physical solution (as shown 
in Fig. 2), we need to choose the most stable one thermodynami-
cally by comparing the free energy, which can be derived from the 
on-shell action of the bulk scalar VEV as

F ≡ F

V 3
= −1

8

∫
dze5A−�λχ4 − 1

2
(χe3A−� f χ ′)|ε . (20)

We would like to remark here that both in [54,55] and in 
this work we need a quartic interaction term of the bulk scalar 
with positive coupling to realize the spontaneous chiral symmetry 
breaking and the correct behavior of chiral phase transition. Ac-
cording to the study, if we tune the coupling of the quartic term 
smaller and smaller, the value of σ at near-zero temperature will 
increase faster and faster until the solution of the bulk scalar VEV 
χ(z) cannot be found. As for the modified dilaton profile or the 
bulk scalar mass, we only need one of these two conditions, as 
shown in [54,55] and this paper.

It should be emphasized that the actual chiral condensate is 
not σ , but related to σ by a scaling factor proportional to Nc [53,
58]. However, this will not affect our result as we only consider the 
rescaled quantity σ/σ0. Another issue that needs to be clarified 
is that there indeed exists some indeterminacy in the calculation 
of σ , which can be seen from the UV expansion of χ(z):

χ(z) = mqz + σ z3 + 1

4
(4mqμ

2
g + m3

qλ − 2mqμ
2
m)z3 log(cz) + · · ·

= mqz +
[
σ + 1

4
(4mqμ

2
g + m3

qλ − 2mqμ
2
m) log c

]
z3

+ 1

4
(4mqμ

2
g + m3

qλ − 2mqμ
2
m)z3 log z + · · · (21)

with c an arbitrary constant. However, as the log(cz) term is in-
dependent of temperature, the quantity σ(T ) − σ(T0) with fixed 
temperature T0 is definite without ambiguity, and the final form 
of chiral condensate can be determined by the fact that σ(T ) ap-
proaches to zero at large T , which is just the case shown in Fig. 2.
Fig. 3. The temperature T as a function of zh for B = 0.1 GeV2.

4. Chiral magnetic effects and inverse magnetic catalysis

In this section, we investigate the behavior of chiral thermal 
transition under a background magnetic field, which is the primary 
motivation of the paper. The magnetic field in the boundary can be 
modeled by the flavor-diagonal bulk gauge field which is naturally 
incorporated in the action (4) of the modified soft-wall model. The 
electric charge of light quarks supply as the source of the back-
ground magnetic field defined by the VEV of vector gauge field in 
the action (6). As a preliminary study, we just take the perturba-
tive magnetized AdS black hole solution of the Einstein–Maxwell 
system with a constant magnetic field in the x3 direction up to 
order B2, which has the form as follows [56,57]

ds2 = e2A(z)(− f (z)dt2 + eP (z)(dx2
1 + dx2

2) + eQ (z)dx2
3 + 1

f (z)
dz2)

(22)

with

f (z) = 1 − z4

z4
h

+ 2B2

3
z4 log

z

zh
, (23)

P (z) = −4

3
B2

z∫
0

dx
x3 log(x/zh)

1 − (x/zh)
4
, (24)

Q (z) = 8

3
B2

z∫
0

dx
x3 log(x/zh)

1 − (x/zh)
4
, (25)

where we can see obviously that f (zh) = 0 with zh the horizon 
of the black hole. It should be remarked that the real magnetic 
field B in the boundary is related to the bulk magnetic field B by 
a relation eB = 1.6 B/L with e the elementary electric charge and 
L the AdS curvature radius [53]. For convenience, we will set e and 
L to one below.

The Hawking temperature can then be obtained as

T = 1

4π

∣∣∣∣df

dz

∣∣∣∣
z→zh

= 1

4π

∣∣∣∣ 4

zh
− 2

3
B2z3

h

∣∣∣∣ = 1

4π

∣∣∣∣ 4

zh
− 25

96
B2z3

h

∣∣∣∣ .
(26)

Generally, there are two possible values of zh for a given B and T , 
as shown in Fig. 3, where it is obviously seen that the two 
branches of the curve T (zh) join at a point with T (zh0) = 0. Physi-
cally, one can only choose the descending part with zh � zh0 from 
analysis of the scaling behavior of free energy with T at high tem-
peratures [53].
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Given the magnetized thermal background, we are ready to in-
vestigate the property of chiral thermal transition in the magnetic 
field. The EOM of the VEV of bulk scalar field χ(z) can be derived 
from the action (4) as

χ ′′(z) +
(

3A′(z) − �′(z) + f ′(z)

f (z)

)
χ ′(z)

− e2A(z)

f (z)

(
m5 χ(z) + λ

2
χ3(z)

)
= 0, (27)

which has the same form as Eq. (10), but with a different f (z)
containing a magnetic term. The Eq. (27) can be tackled similarly 
as Eq. (10), and the value of σ as a function of B and T can be ex-
tracted from the UV expansion of χ(z). For fixed magnetic field B, 
the numerical results of σ(T , B) are presented in Fig. 4, where we 
can already see an IMC effect, i.e., the transition temperature de-
creases with the increasing magnetic field. It should be noted that 
in Fig. 4 we also ignore other solutions of σ(T ) which is unfavor-
able thermodynamically, as in Sec. 3.4. To characterize this effect 
quantitatively, we need to extract the chiral transition temperature 
Tc which can be defined by the extremum of ∂σ/∂T . The results 
are shown in Fig. 5, where one can see clearly that Tc decreases 
monotonously with B, which is consistent with the recent lattice 
indications for the IMC phenomenon [43,44].

We shall remark that the conclusions for the case of large 
enough magnetic fields are indefinite from the sense that the per-
turbative magnetized background solution we used is only valid 

Fig. 4. The temperature dependent behavior of σ for different magnetic fields B.
for small B , and at low temperatures far from Tc , even the re-
sults with small magnetic field will be unconvincing as the large 
zh would lead the high order terms of B to be unnegligible. Nev-
ertheless, with this in mind, we give the numerical calculations of 
(σ (T , B) − σ(T , 0))/σ (0, 0) at fixed temperatures in Fig. 6.

We see from Fig. 6 that σ increases monotonously with B at 
low temperatures, and falls off gradually with B at higher tem-
peratures. As T is high enough, the effect of magnetic field on σ
becomes small. This nonmonotonous behavior of the magnetic de-
pendence of chiral condensate at different temperatures is consis-
tent with the lattice simulation [44], at least qualitatively. Though 
the analysis for the cases of low temperatures and large magnetic 
fields has gone beyond the apply condition of the background solu-
tion, it deserves for us to show the results which might give some 
guidance to the possible behavior had we taken into consideration 
the full magnetized background solution.

5. Summary and conclusions

In this paper, we have proposed a modified soft-wall AdS/QCD 
model with a z-dependent bulk scalar mass which has been 
proved to be crucial for a consistent description of both meson 
spectrum and chiral phase transition in the soft-wall framework. 
We argued from the respect of quark mass anomalous dimen-
sion for the necessity of a modified bulk scalar mass which is 
constrained by the UV and IR asymptotics. The mass spectra of 
(axial-)vector and pseudoscalar mesons have been calculated, and 

Fig. 6. The magnetic dependence of (σ (T , B) − σ(T , 0))/σ (0, 0) at different tem-
peratures.
Fig. 5. The derivative ∂σ/∂T as a function of T for different magnetic fields B (left) and the relation of chiral transition temperature Tc with magnetic field B (right). In 
the right panel, the green and red bands are the continuum of lattice results determined from the renormalized chiral condensate ūur + d̄dr and the strange quark number 
susceptibility, respectively [43], and the blue points denote the numerical results extracted from the extremum of ∂σ/∂T in our model. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
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the results have a good agreement with the experimental data. The 
behavior of chiral thermal transition has also been investigated. 
We remark that in our model the behavior of chiral phase transi-
tion consistent with the standard scenario can be realized both in 
the chiral limit and in the case of finite quark mass, as has been 
said.

As the main motivation of the paper, we have studied the chiral 
magnetic effects under a magnetized AdS black hole background, 
which has been solved from the Einstein–Maxwell system in [57]
and has been used to address the similar issues in the original 
soft-wall AdS/QCD model [53]. It showed that there is no IMC in 
the original soft-wall model, which can be expected as this model 
cannot reproduce the chiral symmetry breaking consistently, and 
furthermore it can neither give a consistent description of me-
son spectrum nor a correct realization of chiral phase transition. 
In our model, a modified bulk scalar mass m5(z) has been intro-
duced to improve the soft-wall model. It is remarkable that only 
a very simple version of m5(z) can lead to satisfying results of all 
the aforementioned low energy physics. We found that the IMC ef-
fect emerges naturally from the modified soft-wall model, and the 
numerical calculations are consistent with the lattice simulations 
[43,44].

We would like to remark that the full magnetic effects are just 
incorporated in the expression of f (z) as we consider the chiral 
magnetic property. It means that the external magnetic field affects 
the chiral transition behavior only by an indirect interaction with 
the gauge background in our setup. This is, nevertheless, reason-
able physically when we consider effects with light quark masses 
and around transition temperature for the enhanced influence of 
the gluonic fluctuations on the quark sector in these cases. How-
ever, in the confining phase with low temperatures, the influence 
of gauge fluctuations on the chiral dynamics will be suppressed, 
and taken over by the hadronic effects. In this case, one might 
need to consider the direct interaction of magnetic field with quark 
matters. This is another reason for that our analyses in the low 
temperature case are inconclusive, which might also explain the 
rigidness of the chiral condensate under the influence of magnetic 
field at low temperatures (see Fig. 4), which is inconsistent with 
the lattice simulations [44].

We have reached the conclusion that the IMC effect can be re-
alized in the soft-wall model with a simply modified bulk scalar 
mass, by which a consistent characterization of meson spectrum 
and chiral phase transition can also be attained. However, to tackle 
the issue of chiral magnetic effects consistently in the soft-wall 
framework, we need the full magnetized AdS black hole solution 
solved from the Einstein–Maxwell–Dilaton system which would be 
considered in the future.
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