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Abstract The structure of the chlorosome baseplate protein
CsmA from Chlorobium tepidum in a 1:1 chloroform:methanol
solution was determined using liquid-state NMR spectroscopy.
The data reveal that the 59-residue protein is predominantly
a-helical with a long helical domain extending from residues
V6 to L36, containing a putative bacteriochlorophyll a binding
domain, and a short helix in the C-terminal part extending from
residues M41 to G49. These elements are compatible with a
model of CsmA having the long N-terminal a-helical stretch im-
mersed into the lipid monolayer confining the chlorosome and the
short C-terminal helix protruding outwards, thus available for
interaction with the Fenna–Matthews–Olson antenna protein.
� 2008 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The sun is the primary source of energy for living organisms.

Despite great diversity in different light-dependent life forms,

the basic principles of photosynthesis remain the same. A de-

tailed understanding of the underlying processes is of great

interest for basic research and for the potential realization of

artificial photosynthetic devices with the perspective of energy

conversion. The first element in a photosynthetic system is a

light-harvesting antenna, which collects photons for further

transmission of excitation energy to the reaction center [1].

The largest known antenna system is the chlorosome found

in green sulfur bacteria. This antenna has an amazing capabil-

ity to extract energy from low intensity light, exemplified by

the findings of species able to survive 100 m below the surface

of the Black Sea [2]. The chlorosome antenna system, which

the green sulfur bacteria share with the green filamentous bac-

teria and the recently discovered aerobic phototroph Candida-

tus Chloroacidobacterium thermophilum [3], is unique in the

sense that the main pigments, chlorosome chlorophylls, are

self-organized in pigment–pigment complexes rather than pig-

ment–protein complexes, as found in all other known photo-
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synthetic antennae. This feature allows for a much higher

pigment density and has served as inspiration for artificial an-

tenna systems [4].

The green sulfur bacterium Chlorobium (Chl.) tepidum has

chlorosomes containing multi-layered and single-layered tubu-

lar structures of self-aggregated bacteriochlorophyll (BChl) c

[5]. The chlorosome is confined by a protein–lipid envelope

[6], with 10 different proteins embedded in a monolayer of lip-

ids [7]. Among these, the most abundant is the 59-residue chlo-

rosome protein A (CsmA) [8] encoded for by the essential

csmA gene [9]. CsmA binds BChl a and carotenoids [8,10,11]

and comprise the so-called chlorosome baseplate, which can

be observed as a 2D para-crystalline structure by freeze-frac-

ture electron microscopy [12]. Following light-harvesting by

BChl c aggregates, the excitation energy is transferred to the

baseplate, then to the Fenna–Matthews–Olson (FMO) protein,

a water-soluble antenna protein sandwiched between the chlo-

rosome and the reaction centers in the plasma membrane (see

schematic representation in Fig. 1).

The CsmA–BChl a baseplate complex is of particular inter-

est as the simplest known antenna complex and may provide

insight into the evolution of photosynthesis. We here present

the first high-resolution structural model of CsmA isolated

from chlorosomes derived from 15N-labelled cells of Chl. tepi-

dum, dissolved in deuterated chloroform:methanol, and ana-

lyzed using high-resolution 1H NMR spectroscopy.
2. Materials and methods

2.1. Isolation of CsmA
Chl. tepidum ATCC 49652 was grown at 45 �C in the medium de-

scribed by Wahlund et al. [13] with the modifications that NH4–acetate
was replaced by Na–acetate (0.5 g/L) and NH4Cl was replaced by
15NH4Cl (0.4 g/L). Batch cultures were set up in 1 L bottles completely
filled with medium in order to ensure anoxic conditions and illumi-
nated with incandescent light giving a photon flux density of 14 lmol
m�2 s�1. After disrupting the cells by a French press, two consecutive
sucrose density gradient centrifugations were applied to produce chlo-
rosomes as described by Milks et al. [14]. Isolated chlorosomes were
extracted with chloroform:methanol (1:1 by vol. containing 0.1 M
ammonium acetate) and CsmA was purified from this extract as de-
scribed previously [10].

2.2. NMR experiments
CsmA was dissolved in a small volume of trifluoroacetic acid,

which was dried almost completely under a stream of nitrogen. The
resulting protein film was dissolved in 400 lL CD3OH:CDCl3
(1:1 vol) to give a final concentration of 1.4 mM, as determined by
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Schematic representation of the photosynthetic system of
Chlorobium tepidum. Orange arrows sum up the energy-transferring
pathway: self-organized BChl c aggregates collect photons and the
energy is sequentially transferred through two BChl a binding proteins:
CsmA in the baseplate and the trimeric Fenna–Matthew–Olson
(FMO) protein, ending in the special pair of the photosynthetic
reaction centers (RC) situated in the cytoplasmic membrane. Envelope
proteins apart from CsmA are shown in magenta.
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the extinction coefficient (6970 M�1 cm�1 [10]). The solution was filled
into a Shigemi NMR tube (Shigemi Co., Tokyo, Japan). All NMR
spectra were recorded at 298 K.

1H–1H and 1H–15N NMR spectra were obtained on a Bruker
Avance II 800 MHz spectrometer (18.8 T) equipped with a 5 mm
triple-resonance TCI cryogenic probe: NOESY (sm = 200 ms) [15],
TOCSY (sm = 25 and 80 ms) [16], COSY [17], HSQC [18], and 3D
NOESY-HSQC spectra [19] were recorded. The signal of the non-deu-
terated alcohol group of methanol was suppressed using WATER-
GATE [20] and decoupling of 15N during acquisition was achieved
by the GARP sequence [21]. 15N T1 and T2 measurements were carried
out by sampling 6 or 7 time points within the intervals 0–1250 ms and
0–93 ms, respectively. A 3D HNHA spectrum [22] was recorded on a
Bruker Avance II 700 MHz (16.4T) spectrometer using a standard
5 mm TXI triple-resonance probe, in order to obtain Karplus con-
straints on the torsion angle u from 3JHN,Ha couplings. 2D 1H–1H
spectra were recorded with 1000 increments in the indirect dimension
(spectral width: 10 ppm) and 8 transients (NOESY: 16). The 1H–15N
HSQC spectrum was acquired with 1000 increments and a spectral
width of 22 ppm in the 15N dimension and 4 transients, while the
15N relaxation experiments used only 2 transients over 256 increments.
The 1H–15N 3D NOESY-HSQC spectrum was acquired with 8 tran-
sients over 60 increments in the 15N dimension (spectral width:
16 ppm) and 256 increments in the 1H indirect dimension (spectral
width: 10 ppm), while the HNHA spectrum acquired without cryo-
genic probe needed 32 transients over 60 increments in the 15N dimen-
sion and 64 increments in the 1H indirect dimension with the spectral
widths as before. The spectra were processed using either Bruker Top-
spin or NMRPipe [23], and analyzed using SPARKY [24].

2.3. Structure calculation
Distance constraints from the NOESY and 1H–15N 3D NOESY-

HSQC spectra and torsion angle constraints from the HNHA spec-
trum were used as input to a structure calculation by Ambiguous
Restraints for Iterative Assignment (ARIA) 2.2 [25] in combination
with the Crystallography and NMR System (CNS) [26]. A final set
of 40 structures was generated, out of which the 14 structures with
the lowest energy were subject to further analysis. Structures were ana-
lyzed using PROCHECK-NMR [27] and WHATIF [28] and visualized
using PyMOL [29].
3. Results

2D and 3D spectra of 15N-labelled CsmA in a 1:1 (vol) solu-

tion of chloroform:methanol were assigned manually. In addi-

tion to a dominant set of peaks straightforwardly assigned to

the 1H and 15N atoms of CsmA, additional weak peaks were

observed, as seen in the HSQC spectrum (Fig. 2), possibly

stemming from a minor population of CsmA.

The atomic resolution structural model of CsmA was de-

rived using 1426 structural NOE restraints, of which 805

were merged from peaks containing the same information.

One thousand three hundred and fifty seven unambiguous

peaks were assigned manually, whereas the rest was assigned

by the algorithms implemented in ARIA (cf. Table 1). Kar-

plus restraints from 31 J couplings were furthermore used as

input for the structure calculation (Fig. 3, top). This struc-

tural model of CsmA is presented in Fig. 4a as an ensemble

of the 14 lowest energy structures found after 9 iterations,

and the average structure is seen in Fig. 4b. Overall, CsmA

is an a-helical protein, as revealed from the structural

ensemble, containing one long a-helix stretching over

residues V6–L36 with a small bend around residues T28–

M31. Furthermore, a short helix stretching over residues

M41–G49 is present in the C-terminal part of the protein.

The a-helical secondary structure is supported by many

(i,i + 3) and (i,i + 4) NOE connectivities and J couplings be-

low 6 Hz (Fig. 3, top). Enhanced backbone amide 15N lon-

gitudinal (R1) relaxation rates and in particular the low 15N

transverse (R2) relaxation rates show a high flexibility on the

ps time scale in both termini (Fig. 3, middle) – from residues

M1 to G5 and from A47 to S59. This explains the high root

mean square deviation (RMSD) values, for these parts of

the protein (Fig. 3, bottom). Whereas the C-terminus con-

tains only five flexible residues, which can be considered as

normal for a protein in solution, the fast time scale flexibil-

ity at the N-terminus is increasing over a relatively wide

range of 13 residues.

Consistently seen in all structure calculations are the bend of

the long a-helix (T28–M31) and the break between the two a-

helices (L36–M41), even though they are not clearly evident

from the NOE connectivities or the relaxation data. From

T28 to M31, the a-helix is unbroken explaining the high num-

ber of (i,i + 3) and (i,i + 4) NOE connectivities and the un-

changed relaxation. On the other hand, the stretch from L36

to M41 shows a more turn-like structure with a break in the

a-helix. Less (i,i + 3) and (i,i + 4) NOE connectivities are ob-

served in this region than in the confined helices, and all of

them are compatible with the break in the helix. We cannot

observe a significant change of dynamics associated with

this turn. No long-range constraints were established dur-

ing assignment; there are no correlation peaks between

amino acids spanning more than five amino acids, as it is ex-

pressed in the lack of any tertiary structure seen in the struc-

tural model.
4. Discussion

The solution NMR structure of CsmA purified from Chl.

tepidum has been solved and is presented in Fig. 4. Under

the present conditions (solution in 1:1 methanol:chloroform),

CsmA is mainly an a-helical protein as evidenced clearly from
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Fig. 2. HSQC spectrum of CsmA. Assignments of 1H–15N peaks (orange) are presented along with side chains containing nitrogen. Unassigned
smaller peaks are ascribed to a minor conformation of the protein. Green color marks negative contour lines.

Table 1
Experimental restraints and structural statistics for CsmA

Experimental restraints
Total restraints 1457
Merged 805
NOEs from 1H–1H NOESY 1186

Unambiguous 1117
NOEs from 1H–15N 3D NOESY-HSQC 240

Unambiguous 240
Distribution of NOEs

Intraresidual 490
Sequential 338
Short range (2 6 i 6 3) 369
Medium range (4 6 i 6 5) 157
Long range (i > 5) 0

J couplings 31

Distance violations
Mean number of NOE violations 0.2–0.5 Å 2.57 ± 0.851
Mean number of NOE violations > 0.5 Å 1.5 ± 0.855
Mean number of dihedral violations > 5� 0

RMSD values
All atoms 6.300
Backbone atoms 5.903
All atoms aligned from residues 6 to 28 1.186
Backbone atoms aligned from residues 6 to 28 0.356

PROCHECK analysis (excl Gly-/end-residues)
Favored regions 83.9 ± 3.2%
Additionally allowed regions 11.5 ± 3.0%
Generously allowed regions 4.5 ± 2.5%
Disallowed regions 0%
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the pattern of distance and torsion constraints, and it holds no

major tertiary structural fold.

The estimated helical content of CsmA in our structure

is 66%. This value is higher than predicted from the amino

acid sequence of CsmA. Theoretical helix propensity analysis
suggested that the 59 residue CsmA protein has an a-helical

content of 34% with one helix extending from residues 10 to

34, disrupted by the conserved GHW domain (residues 24–

26) [30]. Similar findings were obtained using other secondary

structure predicting programs. As opposed to the prediction



dαN

dNN

dαN(i,i+4)

dαN(i,i+3)
dαβ(i,i+3)

 5 10  20  25 15  30  35  40  45  55 50
MSGGGVFTDILAAAGRIFEVMVEGHWETVGMLFDSLGKGTMRINRNAYGSMGGGSLRGS
 1

dαN(i,i+2)

3JHNHa
R

M
SD

R
2(s

-1
)

R
1(s

-1
)

0
5

 10
 15
 20

0

 0.5

1
 1.5

0

5

 7.5

 2.5

 5 10  20  25 15  30  35  40  45  55 50 1
Residue

Fig. 3. NMR constraints and structure variability. Top-down: J couplings; filled circles indicate 3JHNHa < 6 Hz and cross indicates 3JHNHa > 6 Hz,
NOE connectivities, backbone amide 15N transverse relaxation rates (R2), longitudinal relaxation rates (R1), RMSD values including all atoms (solid
line) and backbone atoms (dot-dashed line) with each alignment including five residues.

2872 M.Ø. Pedersen et al. / FEBS Letters 582 (2008) 2869–2874
program, our results show that the helix is continued through

the GHW domain, and an additional smaller helix is present in

the C-terminal (M41–G49). By circular dichroism, we previ-

ously estimated an a-helix content of around 40% for isolated

CsmA in detergent micelles of n-octyl b-DD-glucopyranoside,

whereas the a-helical content approximates 70% in a solution

of trifluoroethanol [10], known to be an a-helix inducing sol-

vent. The a-helical content of CsmA seems close to the a-heli-

cal content of the protein in trifluoroethanol (66% vs. �70%)

and significantly larger than of the protein in micelles

(�40%) that match well with theoretical predictions (34%).

These numbers suggest that the chloroform:methanol solvent

also induce helicity of the CsmA protein. It has previously

been observed that small, a-helical antenna proteins from pur-

ple bacteria retain their overall fold in chloroform:methanol

[31,32], therefore we presume that the overall CsmA structure

is representative, despite the noted discrepancies.

Previous studies of the topology of CsmA in isolated chlo-

rosomes have suggested that the hydrophobic residues 2–39

are buried in the chlorosome envelope, while both the N-ter-

minal M1 and the hydrophilic residues M41–S59 from the

C-terminal are exposed [14]. In agreement with this, a high

flexibility of the N-terminal (M1–G5) and C-terminal

(A47–S59) was observed by the relaxation rates presented

in Fig. 3. These findings suggest that the axis of the long

a-helical stretch (V6–L36) is found parallel to the surface

of the baseplate. The bend between the two helices around

residues G37–T40 is most likely conserved in vivo allowing
the short helix stretching from residues M41 to G49 and

the remaining C-terminal to protrude out of the baseplate

for interactions with the FMO protein [33]. It is interesting

to note that the short helix contains the highly conserved se-

quence RINxNAY [33].

CsmA is known to form oligomers in the chlorosome base-

plate [34] and dimer formation has been observed even under

the denaturating conditions used for SDS–PAGE [35]. In addi-

tion, the protein has been observed to have limited solubility

[10]. This propensity for aggregation might explain the minor

CsmA population seen in the HSQC spectrum (Fig. 2). Near

infra-red CD spectroscopy either on a baseplate preparation

from Chl. limicola [36] or on a reconstituted complex between

CsmA and BChl a in detergent micelles [10] have showed the

characteristic spectrum of excitonic interactions between at

least two BChl a molecules. In order to assemble two BChl a

in close connection, we propose that in the intact baseplate

of the Chl. tepidum chlorosomes, CsmA exists as dimers, which

subsequently can be organized in long rows resulting in the 2D

crystalline superstructure of the baseplate as observed by

freeze-fracture electron microscopy [12].

As seen from the helical wheel presented in Fig. 5a, the

envelope embedded and hydrophobic a-helix stretching over

V6–T28 has an amphipathic nature. It is therefore tempting

to position the hydrophilic part of this helix in the surface of

the baseplate with dimerization occurring through hydropho-

bic interactions between two a-helices. H25, the candidate

for BChl a coordination, is positioned exactly opposite of



Fig. 4. NMR structure of CsmA. The structures are shown with the a-
helical, chlorosome embedded part (residues S2–T40) at the top and
the flexible N-terminal, which anchors CsmA to the FMO protein,
pointing downwards. (a) The 14 lowest energy structures from an
ensemble of 40. The structures are aligned from residues V6 to T28. (b)
Average structure of CsmA. H25 and W26 are labeled in red and blue,
respectively.

Fig. 5. Hypothetical model of the CsmA-BChl a arrangement in the
chlorosome baseplate. (a) Helical wheel of V6-T28, compiled by [39].
(b) Top view of a hypothetical model of the arrangement of the
amphipathic a-helix of CsmA (grey/purple) and BChl a (yellow) in the
baseplate. The hydrophilic side of the helix is indicated by purple and
the short C-terminal a-helix is labeled by the letter C. H25, believed to
coordinate BChl a,is marked in red. (c) Side view of a hypothetical
model of the CsmA–BChl a dimer. BChl c molecules are indicated as
concentric circles (green) with the long axis of the chlorosome
projecting into the page, and FMO is light blue with the 7 BChl a
molecules marked in yellow. W26 (blue) is situated in the interface
between lipid heads and tails in the chlorosome envelope.
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the hydrophilic residues and this arrangement will place H25 in

the interior of the baseplate positioning the BChl a bacterio-

chlorin ring parallel with the surface of the baseplate. A draw-

back of this arrangement is that baseplate BChl a will be

positioned far from the acceptor pigment in the FMO protein.

Alternatively, dimerization might occur via electrostatic inter-

actions involving the hydrophilic residues on opposing helices,

as sketched in Fig. 5b and c. The helices might arrange in

either a parallel or anti-parallel manner, and we arbitrarily

chose the latter in our illustration in Fig. 5. In this hypothetical

model, BChl a molecules are positioned by H25 in a hydropho-

bic environment between two CsmA dimers with the bacterio-

chlorin rings perpendicular to the baseplate surface, thus

allowing for the observed excitonic interaction between two

BChl a pigments described above being compatible with the

chosen arrangement of the helices. We note, however, that

more structural data is required to provide constraints for a

more detailed dimerization model with a less arbitrary helix

arrangement. Furthermore, in the model W26 can be posi-

tioned in the surface of the baseplate, as this amino acid has

a preference for locating in water–lipid interfaces close to lipid

head groups [37]. It is interesting to note that fluorescence

anisotropy measurements on isolated chlorosomes derived

from Chloroflexus aurantiacus have shown that the Qy optical

transition dipole moment of BChl a in the baseplate is almost

perpendicular to the long axis of the chlorosomes [38] and this

arrangement is also the case for chlorosomes of Chl. tepidum

(H. Tamiaki, personal communication).

At present we are not able to provide further information on

the detailed organization of the CsmA–BChl a complex in Chl.

tepidum. We are currently using solid-state NMR to obtain

structural data for CsmA and its interactions with BChl a.
Supplementary material

1H and 15N chemical shifts for CsmA have been deposited in

the BioMagResBank (BMRB accession number 15742) and a

structural ensemble is available at the RCSB Protein Data

Bank (PDB ID code 2k37).
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