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a b s t r a c t

In this paper we study the asymptotic behavior of the positive solutions of the systems of
the two difference equations

(i) xn+1 = a + byn−1e−xn , yn+1 = c + dxn−1e−yn ,

(ii) xn+1 = a + byn−1e−yn , yn+1 = c + dxn−1e−xn ,

where the constants a, b, c, d are positive real numbers, and the initial values
x−1, x0, y−1, y0 are also positive real numbers.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, systems of nonlinear difference equations have attracted the attention of many researchers for varied
reasons. Firstly, the mathematical modeling of a biological problem very often leads to such systems and so difference
equations have many applications in Biology, Biomathematics, Bioengineering, Population Dynamics, Genetics and other
sciences. Moreover, a biological model, which depicts the competition between two populations, may be represented by a
system of two difference equations with solutions (xn, yn), n = 0, 1, . . .where xn and yn correspond to the two populations
at the time n. So, an extended literature has been developed referring to such systems, as we can see in papers [1–3] and
the references cited therein. Furthermore, results concerning difference equations and systems of difference equations of
exponential form are included in the papers [2,4–8].

Motivated by all the above reasons, we study in this manuscript a system of nonlinear difference equations which comes
from the following difference equation

xn+1 = a + bxn−1e−xn

that has been studied in [5]. In more detail, in this paper we investigate the boundedness and the persistence of the
positive solutions, the existence of a unique positive equilibrium and the global asymptotic stability of the equilibrium
of the following systems of difference equations

xn+1 = a + byn−1e−xn , yn+1 = c + dxn−1e−yn , (1.1)

xn+1 = a + byn−1e−yn , yn+1 = c + dxn−1e−xn , (1.2)

where the constants a, b, c, d are positive real numbers and the initial values x−1, x0, y−1, y0 are also positive real numbers.
We note that if x−1 = y−1, x0 = y0 then xn = yn, for all n = −1, 0, . . . and so both systems reduce the previous difference
equation which has been studied in [5]. In addition, in [2] the authors extended results obtained in [5] by studying an
analogous system of difference equations of exponential form.
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It is important that the above systems can be considered as models of two directional interactive and invasive species
model where species xn and yn are affecting each other’s population in both directions. So it is obvious that it is very crucial
for every positive solution of these systems to be bounded, since the population of species xn and yn cannot get infinitely
large due to the limited resources. Furthermore, convergence to the equilibrium point (x̄, ȳ)will apply that the population of
both species tends to the natural ideal population. Finally, system (1.2) represents the rule bywhich two discrete, competing
populations reproduce from one generation to the next. Variables x and y denote population sizes during the n-th generation
and the sequence or orbit (xn, yn), n = 0, 1, 2, . . . describes how the populations evolve over time. Competition between
the two populations is reflected by the fact that the transition function for the population of species xn during the n-th
generation is a decreasing function with respect to the population of species yn−1 during the (n − 1)-th generation and the
transition function for the population of species yn during the n-th generation is a decreasing function with respect to the
population of species xn−1 during the (n − 1)-th generation.

2. Boundedness and persistence

In the first section we study the boundedness and persistence of the solutions of systems (1.1) and (1.2).

Proposition 2.1. Let a, b, c, d be positive real numbers such that

p = bde−a−c < 1. (2.1)

Then the following statements are true:

(i) Every solution of (1.1) is positive, bounded and persists.
(ii) Every solution of (1.2) is positive, bounded and persists.

Proof. (i) Since the initial x−1, x0, y−1, y0 of (1.1) are positive, every solution of (1.1) is positive.
Let (xn, yn) be an arbitrary solution of (1.1). From (1.1) it is obvious that

xn ≥ a, yn ≥ c, n = 1, 2, . . . . (2.2)

Every solution of (1.1) persists.
Moreover from (1.1) and (2.2) it follows that for n = 2, 3, . . .

xn+1 = a + b(c + dxn−3e−yn−2)e−xn ≤ a + bce−a
+ pxn−3,

yn+1 = c + d(a + byn−3e−xn−2)e−yn ≤ c + dae−c
+ pyn−3.

(2.3)

We consider the system of difference equations

un+1 = a + bce−a
+ pun−3, vn+1 = c + dae−c

+ pvn−3, n = 2, 3, . . . . (2.4)

Let (un, vn) be a solution of (2.4) such that

u−1 = x−1, u0 = x0, u1 = x1, u2 = x2,
v−1 = y−1, v0 = y0, v1 = y1, v2 = y2.

(2.5)

From (2.4) and (2.5) we obtain

u3 = a + bce−a
+ px−1 > 0, v3 = c + dae−c

+ py−1 > 0

and working inductively it follows that

un > 0, vn > 0, n = 2, 3, . . . .

Moreover, from (2.4) for n = 3, 4, . . . , we have

un = λ1p
n
4 + λ2(−p)

n
4 + λ3p

n
4 cos

nπ
2


+ λ4p

n
4 sin

nπ
2


+

a + bce−a

1 − p
, (2.6)

vn = µ1p
n
4 + µ2(−p)

n
4 + µ3p

n
4 cos

nπ
2


+ µ4p

n
4 sin

nπ
2


+

c + dae−c

1 − p
, (2.7)

where λ1, λ2, λ3, λ4 (resp. µ1, µ2, µ3, µ4) are constants defined by x−1, x0, x1, x2 (resp. y−1, y0, y1, y2).
Using (2.3)–(2.5) we can prove by induction that

xn ≤ un, yn ≤ vn, n = −1, 0, . . . . (2.8)

Then from (2.2) and (2.6)–(2.8) we obtain that every solution of (1.1) is bounded.
Hence, the proof of Statement (i) is completed. �
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(ii) Let (xn, yn) be an arbitrary solution of (1.2). Then arguing as in Statement (i), we can show that (xn, yn) is positive,
bounded and persists. This completes the proof of the proposition.

In the next proposition we study the existence of invariant intervals for Systems (1.1) and (1.2).

Proposition 2.2. Let a, b, c, d be positive numbers such that (2.1) hold. Then the following statements are true:
(i) Consider the intervals

I1 =


a,

a + bce−a

1 − p


, I2 =


c,

c + ade−c

1 − p


,

I3 =


a,

a + bce−a
+ ϵ

1 − p


, I4 =


c,

c + ade−c
+ ϵ

1 − p


,

where p is defined in relation (2.1) and ϵ is an arbitrary positive number.
Then, if (xn, yn) is a positive solution of (1.1) such that

x−1, x0 ∈ I1, y−1, y0 ∈ I2, (2.9)

we have

xn ∈ I1, yn ∈ I2, n = 1, 2, . . . .
Moreover, if (xn, yn) is an arbitrary positive solution of (1.1), then there exists an m ∈ N such that

xn ∈ I3, yn ∈ I4, n ≥ m. (2.10)
(ii) Consider the intervals

J1 =


a,

a + bce−c

1 − p


, J2 =


c,

c + ade−a

1 − p


,

J3 =


a,

a + bce−c
+ ϵ

1 − p


, J4 =


c,

c + ade−a
+ ϵ

1 − p


,

where p is defined in relation (2.1) and ϵ is an arbitrary positive number.
Then, if (xn, yn) is a positive solution of (1.2) such that

x−1, x0 ∈ J1, y−1, y0 ∈ J2,
we have

xn ∈ J1, yn ∈ J2, n = 1, 2, . . . .
In addition, if (xn, yn) is an arbitrary positive solution of (1.2), then there exists an m ∈ N such that

xn ∈ J3, yn ∈ J4, n = m,m + 1, . . . .

Proof. (i) Let (xn, yn) be a positive solution of (1.1), such that (2.9) hold. Then, from (1.1) we obtain

a ≤ x1 = a + by−1e−x0 ≤ a + b
c + ade−c

1 − p
e−a

=
a + bce−a

1 − p

c ≤ y1 = c + dx−1e−y0 ≤ c + d
a + bce−a

1 − p
e−c

=
c + ade−c

1 − p

and working inductively we can prove that

a ≤ xn ≤
a + bce−a

1 − p
, c ≤ yn ≤

c + ade−c

1 − p
, n = 2, 3, . . . .

This completes the proof of the first part of (i). �

Let (xn, yn) be an arbitrary positive solution of (1.1). Then, from Statement (i) of Proposition 2.1, we have
lim sup
n→∞

xn = M < ∞, lim sup
n→∞

yn = L < ∞. (2.11)

Therefore from (2.3) and (2.11) we get

M ≤
a + bce−a

1 − p
, L ≤

c + ade−c

1 − p
,

and so there exists anm ∈ N such that (2.10) hold. This completes the proof of Statement (i).
(ii) Arguing as in Statement (i), we can prove Statement (ii). This completes the proof of the proposition.
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3. Attractivity

In this section we investigate the existence of a unique positive equilibrium for system (1.1) and the attractivity of the
unique positive equilibrium. Arguing as in Theorem 1.6.5 of [9], in Theorems 1.11–1.16 of [4] and in Theorems 1.4.5–1.4.8
of [10] we state the following lemma.

Lemma 3.1. Let f , g, f : R+
× R+

→ R+, g : R+
× R+

→ R+ be continuous functions, R+
= (0, ∞) and a1, b1, a2, b2 be

positive numbers such that a1 < b1, a2 < b2.

(i) Suppose that

f : [a1, b1] × [a2, b2] → [a1, b1], g : [a1, b1] × [a2, b2] → [a2, b2].

In addition, assume that f (x, y) (resp. g(x, y)) is decreasing with respect to x (resp. y) for every y (resp. x) and increasing with
respect to y (resp. x) for every x (resp. y). Finally suppose that, if the real numbers m,M, r, R satisfy the system

M = f (m, R), m = f (M, r), R = g(M, r), r = g(m, R), m ≤ M, r ≤ R

then m = M and r = R. Then the following system of difference equations

xn+1 = f (xn, yn−1), yn+1 = g(xn−1, yn) (3.1)

has a unique positive equilibrium (x̄, ȳ) and every positive solution (xn, yn) of the system (3.1) which satisfies

xn0 ∈ [a1, b1], xn0+1 ∈ [a1, b1], yn0 ∈ [a2, b2], yn0+1 ∈ [a2, b2], n0 ∈ N

tends to the unique positive equilibrium of (3.1).
(ii) Suppose that

f : [a2, b2] × [a2, b2] → [a1, b1], g : [a1, b1] × [a1, b1] → [a2, b2].

In addition, assume that f (u, v) is a decreasing (resp. increasing) function with respect to u (resp. v) for every v (resp. u) and
g(z, w) is a decreasing (resp. increasing) function with respect to z (resp. w) for every w (resp. z). Finally suppose that if the
real numbers m,M, r, R satisfy the system

M = f (r, R), m = f (R, r), R = g(m,M), r = g(M,m), m ≤ M, r ≤ R

then m = M and r = R. Then the system of difference equations

xn+1 = f (yn, yn−1), yn+1 = g(xn, xn−1) (3.2)

has a unique positive equilibrium (x̄, ȳ) and every positive solution (xn, yn) of the system (3.2) which satisfies

xn0 ∈ [a1, b1], xn0+1 ∈ [a1, b1], yn0 ∈ [a2, b2], yn0+1 ∈ [a2, b2], n0 ∈ N

tends to the unique positive equilibrium of (3.2).

Proposition 3.1. Let a, b, c, d be positive numbers. Then the following statements are true:

(i) Assume that

θ1 = be−a < 1, θ2 = de−c < 1. (3.3)

Suppose also that

(1 + a)p + cθ1 < 1, (1 + c)p + aθ2 < 1 (3.4)

and

λ =
p(1 − p)2

1 − (1 + a)p − cθ1


1 − (1 + c)p − aθ2
 < 1. (3.5)

Then the system (1.1) has a unique positive equilibrium (x, y) and every solution of (1.1) tends to the unique positive
equilibrium of (1.1) as n → ∞.

(ii) Assume that

ζ1 = be−c < 1, ζ2 = de−a < 1 (3.6)

and

µ =
p(1 − p + c + aζ2)(1 − p + a + cζ1)

(1 − p)2
< 1. (3.7)

Then the system (1.2) has a unique positive equilibrium (x, y) and every positive solution of (1.2) tends to the unique positive
equilibrium of (1.2) as n → ∞.
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Proof. (i) Let f : R+
× R+

→ R+, g : R+
× R+

→ R+ be continuous functions, such that

f (x, y) = a + bye−x, g(x, y) = c + dxe−y.

Then, if x ∈ I3, y ∈ I4 from (3.3) we have

a ≤ f (x, y) ≤ a + b
c + ade−c

+ ϵ

1 − p
e−a

=
a + cθ1 + ϵθ1

1 − p
<

a + cθ1 + ϵ

1 − p

c ≤ g(x, y) ≤ c + d
a + bce−a

+ ϵ

1 − p
e−c

=
c + aθ2 + ϵθ2

1 − p
<

c + aθ2 + ϵ

1 − p
.

Therefore f , g are continuous functions such that f : I3 × I4 → I3, g : I3 × I4 → I4.
Let now,m,M ∈ I3, r, R ∈ I4 be positive real numbers such that

M = a + bRe−m, m = a + bre−M , R = c + dMe−r , r = c + dme−R, m ≤ M, r ≤ R. (3.8)

Then, from (3.8), we have

m = a + bce−M
+ bdme−Re−M , r = c + dae−R

+ bdre−Me−R

and so

m =
a + bce−M

1 − bde−R−M
, r =

c + ade−R

1 − bde−R−M
. (3.9)

Then sinceM ≥ a, R ≥ c it holds

m ≤
a + bce−a

1 − p
=

a + cθ1
1 − p

, r ≤
c + ade−c

1 − p
=

c + aθ2
1 − p

. (3.10)

Furthermore, there exists a ξ,m ≤ ξ ≤ M such that

eM − em = eξ (M − m). (3.11)

From (3.8) and (3.11) and sinceM,m ≥ awe get

M − m = b(Re−m
− re−M) = be−m(R − r) + bre−m−M(eM − em)

= be−m(R − r) + bre−m−M+ξ (M − m) ≤ θ1(R − r) + rθ1(M − m). (3.12)

Hence from (3.10) and (3.12) it follows that

M − m ≤ θ1(R − r) +
θ1(c + aθ2)

1 − p
(M − m). (3.13)

Then since p = θ1θ2, from (3.13) we obtain

(M − m)


1 − p − cθ1 − ap

1 − p


≤ θ1(R − r). (3.14)

Therefore from (3.4) and (3.14) we have

M − m ≤
θ1(1 − p)

1 − cθ1 − (a + 1)p
(R − r). (3.15)

Similarly, we have

R − r ≤
θ2(1 − p)

1 − aθ2 − (c + 1)p
(M − m). (3.16)

Relations (3.15) and (3.16) imply that

M − m ≤ λ(M − m). (3.17)

Therefore from (3.5) and (3.17) we have M = m and so from (3.8) r = R. Consequently, from Lemma 3.1, System (1.1) has
a unique positive equilibrium (x, y) and every positive solution of System (1.1) tends to (x, y). This completes the proof of
the Statement (i). �
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(ii) We define the functions f : R+
× R+

→ R+, g : R+
× R+

→ R+ as follows

f (u, v) = a + bve−u, g(z, w) = c + dwe−z .

Then, if z, w ∈ J3, u, v ∈ J4 and arguing as in Statement (i) we have

f (u, v) ∈ J3, g(z, w) ∈ J4.

So f and g are continuous functions such that

f : J4 × J4 → J3, g : J3 × J3 → J4.

Let now, m,M ∈ J3, r, R ∈ J4 be real numbers such that

M = a + bRe−r , m = a + bre−R, R = c + dMe−m, r = c + dme−M , m ≤ M, r ≤ R. (3.18)

Moreover, there exists a ξ, r ≤ ξ ≤ R such that

ReR − rer = (1 + ξ)eξ (R − r). (3.19)

Then from (3.18) and (3.19) and since r, R ≥ c we get

M − m = b(Re−r
− re−R) = be−r−R(ReR − rer) = be−r−R+ξ (1 + ξ)(R − r) ≤ be−c(1 + ξ)(R − r). (3.20)

Moreover, from (3.18), we obtain

r = c + dae−M
+ bdre−Re−M , R = c + dae−m

+ bdRe−re−m

which implies that

r =
c + ade−M

1 − bde−R−M
≤

c + aζ2
1 − p

, R =
c + ade−m

1 − bde−r−m
≤

c + aζ2
1 − p

. (3.21)

Furthermore since ξ ≤ R, from (3.21) it follows that

ξ ≤
c + aζ2
1 − p

. (3.22)

Thus, from (3.20) and (3.22), we get

M − m ≤
ζ1(1 − p + c + aζ2)

1 − p
(R − r). (3.23)

Similarly, we obtain

R − r ≤
ζ2(1 − p + a + cζ1)

1 − p
(M − m). (3.24)

So, from (3.23) and (3.24) we have

M − m ≤ µ(M − m). (3.25)

Then, from (3.7), (3.18) and (3.25) it is obvious that M = m and R = r . Therefore, from Lemma 3.1, System (1.2) has a
unique positive equilibrium (x, y) and every positive solution of System (1.2) tends to (x, y). This completes the proof of the
proposition.

Proposition 3.2. Let a, b, c, d be positive numbers. Then the following statements are true:

(i) Assume that (3.3)–(3.5) hold. Suppose also that

κ =
cθ1 + aθ2 + (a + c)p

1 − p
+

p(a + cθ1)(c + aθ2)
(1 − p)2

+ p < 1 (3.26)

Then the unique positive equilibrium (x̄, ȳ) of (1.1) is globally asymptotically stable.
(ii) Assume that (3.6) and (3.7) hold. Then the unique positive equilibrium (x̄, ȳ) of (1.2) is globally asymptotically stable.
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Proof. (i) First we will prove that (x̄, ȳ) is locally asymptotically stable. The linearized system of (1.1) about (x̄, ȳ) is the
following:

xn+1 = −bȳe−x̄xn + be−x̄yn−1, yn+1 = de−ȳxn−1 − dx̄e−ȳyn, (3.27)

which is equivalent to the system

wn+1 = Awn, A =

α 0 0 β
0 γ δ 0
1 0 0 0
0 1 0 0

 , wn =

xn
yn
xn−1
yn−1

 ,

α = −bȳe−x̄, β = be−x̄ γ = −dx̄e−ȳ, δ = de−ȳ.

Then the characteristic equation of A is

λ4
− (α + γ )λ3

+ αγλ2
− βδ = 0. (3.28)

Using Remark of 1.3.1 of [11] all the roots of Eq. (3.28) are of modulus less than 1, if

|α| + |γ | + |αγ | + |βδ| < 1. (3.29)

Since (x̄, ȳ) is an equilibrium for (1.1) we have that

x̄ = a + b(c + dx̄e−ȳ)e−x̄, ȳ = c + d(a + bȳe−x̄)e−ȳ.

Hence

x̄ =
a + bce−x̄

1 − bde−x̄−ȳ
≤

a + cθ1
1 − p

, ȳ =
c + ade−ȳ

1 − bde−x̄−ȳ
≤

c + aθ2
1 − p

. (3.30)

Then, since x̄ ≥ a, ȳ ≥ c , from (3.26) and (3.30), we get

|α| + |γ | + |αγ | + |βδ| = bȳe−x̄
+ dx̄e−ȳ

+ bdx̄ȳe−x̄−ȳ
+ bde−x̄−ȳ

≤ κ < 1

and so (3.29) is satisfied. Therefore (x̄, ȳ) is locally asymptotically stable. So, since from Statement (i) of Proposition 3.1,
every positive solution of (1.1) tends to the unique positive equilibrium of (1.1), the proof of Statement (i) is completed. �

(ii) First we will prove that (x̄, ȳ) is locally asymptotically stable. The linearized system of (1.2) about the unique positive
equilibrium of (1.2) (x̄, ȳ) is the following:

xn+1 = be−ȳyn−1 − bȳe−ȳyn, yn+1 = de−x̄xn−1 − dx̄e−x̄xn

which is equivalent to the system

vn+1 = Bvn, B =

0 α 0 β
γ 0 δ 0
1 0 0 0
0 1 0 0

 , vn =

xn
yn
xn−1
yn−1

 ,

α = −bȳe−ȳ, β = be−ȳ γ = −dx̄e−x̄, δ = de−x̄.

Then the characteristic equation of B is

λ4
− αγλ2

− (αδ + βγ )λ − βδ = 0. (3.31)

Using Remark of 1.3.1 of [11] all the roots of Eq. (3.31) are of modulus less than 1, if

|αγ | + |αδ| + |βγ | + |βδ| < 1. (3.32)

Since (x̄, ȳ) satisfies

x̄ = a + b(c + dx̄e−x̄)e−ȳ, ȳ = c + d(a + bȳe−ȳ)e−x̄

we get

x̄ =
a + bce−ȳ

1 − bde−x̄−ȳ
≤

a + cζ1
1 − p

, ȳ =
c + ade−x̄

1 − bde−x̄−ȳ
≤

c + aζ2
1 − p

. (3.33)
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Then since x̄ ≥ a, ȳ ≥ c, p = ζ1z2, from (3.7) and (3.33) we obtain

|αγ | + |αδ| + |βγ | + |βδ| ≤ bde−a−c


(a + cζ1)(c + aζ2)

(1 − p)2
+

c + aζ2
1 − p

+
a + cζ1
1 − p

+ 1



= p


1 +

a + cζ1 + c + aζ2
1 − p

+
(a + cζ1)(c + aζ2)

(1 − p)2



=
p(1 − p)2 + p(1 − p)(a + cζ1 + c + aζ2) + p(a + cζ1)(c + aζ2)

(1 − p)2
= µ < 1.

Then inequality (3.32) is satisfied. Therefore (x̄, ȳ) is locally asymptotically stable. So, from Statement (ii) of Proposition 3.1,
the proof of Statement (ii) is completed. This completes the proof of the proposition.

4. Unbounded solutions

In this section we find unbounded solutions for systems (1.1) and (1.2).

Proposition 4.1. The following statements are true:

(i) Suppose that

θ1 > 1, θ2 > 1, (4.1)

where θ1, θ2 are defined in (3.3). Then there exist unbounded solutions (xn, yn) of (1.1) such that one of the following relations
hold:

lim
n→∞

x2n+1 = ∞, lim
n→∞

x2n = a, lim
n→∞

y2n+1 = ∞, lim
n→∞

y2n = c (4.2)

lim
n→∞

x2n+1 = a, lim
n→∞

x2n = ∞, lim
n→∞

y2n+1 = c, lim
n→∞

y2n = ∞. (4.3)

(ii) Suppose that

ζ1 > 1, ζ2 > 1, (4.4)

where ζ1, ζ2 are defined in (3.6). Then there exist unbounded solutions (xn, yn) of (1.2) such either relations (4.2) or (4.3) hold.

Proof. (i) First we find solutions of (1.1) such that (4.2) are satisfied. Let (xn, yn) be a solution of (1.2) with initial values
x−1, x0, y−1, y0 which satisfy

x0 < m1, x−1 > M, y0 < m2, y−1 > M (4.5)

where

m1 = ln b, m2 = ln d, M = max


ln


dm1

m2 − c


, ln


bm2

m1 − a


.

Then using (1.1) and (4.5) we have

x1 = a + by−1e−x0 > a + by−1e−m1 = a + y−1,

y1 = c + dx−1e−y0 > c + dx−1e−m2 = c + x−1,

x2 = a + by0e−x1 < a + bm2e−y−1 < a + bm2


m1 − a
bm2


= m1,

y2 = c + dx0e−y1 < c + dm1e−x−1 < c + dm1


m2 − c
dm1


= m2,

and working inductively we obtain

x2n+1 > a + y2n−1, y2n+1 > c + x2n−1, x2n < m1, y2n < m2, n = 1, 2, . . . . (4.6)

Using (1.1) and (4.6) we can prove that (4.2) hold.
Let now (xn, yn) be a solution such that

x−1 < m1, x0 > M, y−1 < m2, y0 > M.

Then arguing as above we can prove relations (4.3). This completes the proof of (i). �
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(ii) Let (xn, yn) be a solution of (1.2) with initial values x−1, x0, y−1, y0 satisfying

x0 < p2, x−1 > L, y0 < p1, y−1 > L, (4.7)

where

p2 = ln d, p1 = ln b, L = max


ln


bp1

p2 − a


, ln


dp2

p1 − c


.

Then using (4.7) and arguing as above we can prove that (4.2) hold.
Finally suppose that

x−1 < p2, x0 > L, y−1 < p1, y0 > L.

Then arguing as above we have that (4.3) are satisfied. This completes the proof of the proposition.

Acknowledgments

The authors would like to thank the referees for their helpful suggestions.

References

[1] M.R.S. Kulenović, M. Nurcanović, Asymptotic behavior of a competitive system of linear fractional difference equations, Adv. Difference Equ., 2006
1–13. Article ID 19756.

[2] G. Papaschinopoulos, C.J. Schinas, On the system of two difference equations xn+1 = a + bxn−1e−yn , yn+1 = c + dyn−1e−xn , Math. Comput. Modelling
54 (2011) 2969–2977.

[3] S. Stević, On a system of difference equations, Appl. Math. Comput. 218 (2011) 3372–3378.
[4] E.A. Grove, G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman & Hall, CRC, 2005.
[5] E. El-Metwally, E.A. Grove, G. Ladas, R. Levins, M. Radin, On the difference equation, xn+1 = α + βxn−1e−xn , Nonlinear Anal. 47 (2001) 4623–4634.
[6] S. Stević, Asymptotic behaviour of a sequence defined by iteration with applications, Colloq. Math. 93 (2) (2002) 267–276.
[7] S. Stević, Asymptotic behaviour of a nonlinear difference equation, Indian J. Pure Appl. Math. 34 (12) (2003) 1681–1687.
[8] S. Stević, On a discrete epidemic model, Discrete Dyn. Nat. Soc., 2007 10. Article ID 87519.
[9] E. Camouzis, G. Ladas, Dynamics of Third-Order Rational Difference Equationswith Open Problems and Conjectures, Chapman &Hall, CRC, Boca Raton,

London, 2008.
[10] M.R.S. Kulenovic, G. Ladas, Dynamics of Second Order Rational Difference Equations, Chapman & Hall, CRC, 2002.
[11] V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht,

1993.


	On the dynamics of two exponential type systems of difference equations
	Introduction
	Boundedness and persistence
	Attractivity
	Unbounded solutions
	Acknowledgments
	References


