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INTRODUCTION 

Low order explicit Runge - Kutta formulas are quite popular for the solution of partial 
differential equations (PDEs) by semi-discretization, but in general-purpose codes for the 
solution of the initial value problem for a system of ordinary differential equations (ODES), 
current practice favors moderate to high order. Nevertheless, it is observed that a low order 
formula is more efficient at crude accuracies. Also, the stability of the formula is especially 
important at these accuracies, and the stability properties of explicit Runge - Kutta formulas 
worsen considerably as one goes to (efficient) higher order formulas. A matter of considerable 
importance is the availability of “free” interpolants for low order formulas; it is even possible 
to obtain interpolants that preserve qualitative properties like monotonicity and convexity 
[l], [5]. Besides the obvious value of this for plotting, these interpolants are the key to the 
efficient location of events [G]. 

Comparatively little attention has been devoted to low order pairs of explicit Runge - 
Kutta formulas. We shall mention some pairs that have been proposed, and explain why 
the pair we propose is either more efficient, more reliable, or has better stability. We have 
chosen to base our pair on a three stage, third order formula because among the minimal 
cost formulas, it is arguably the best with respect to stability. Also, this is the highest order 
for which the “free” shape preserving interpolants are available. Much of the solution of 
PDEs by semi-discretization is done with a single formula and fixed step size. We observe 
that the automatic control of step size with an efficient pair such as ours involves little cost 
per step. Not only does the control pay for itself by providing the most efficient step size, 
but it also avoids step sizes that lead to instability. 

2. THIRD ORDER FORMULA 

We wish to solve the initial value problem for a system of ordinary differential equations 

Y’(2) = f(X) Y(X)), a<x<b, (2.la) 

y(a) given. (2.lb) 

Approximations zi, are computed to y(x,,) on a mesh a = xc < x1 < . . . < zN = b. Starting 
with GO equal to the given value y(a), an explicit Runge - Kutta formula of s stages advances 
from 0,’ to &+i by a recipe of the form 

ih+l =&+h~Bjki (2.2) 
i=l 

1 This work was supported by the Applied Mathematical Sciences program of the Office of Energy Research 
under DOE grant DEFG05-86ER25024. 
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where 
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d-1 

ki=f(z,+cih,~n+hCai,jIcj), i=2 ,...) s. 
j=l 

Here 

i-l 

cj = c ai,j. 
j=l 

The local solution at z, is the solution U(Z) of (2.la) that has the value &, at 2,. 
error of the Runge - Kutta formula at 2, is u(z,, + h) - &,+I. Taylor expansion 
leads for smooth functions f to 

ni 

u(2, + h) - A+1 = 2 h” c &pji) 
i=l j=l 

(2.3a) 

(2.3b) 

The local 
about 2, 

(2.4) 

Here the Dj” are elementary differentials, sums of products of partial derivatives off, that 

depend only on the problem. The coeffcients &y) depend only on the coefficients aid and 

& defining the Runge - Kutta formula. Expressions for them may be found in [3]. 

The Runge - Kutta formula (2.2) is of order three if the equations of condition 

&.(11) = 0, &y12) = 0, &(13) = 0, c%i(23) = 0 
(2.5) 

are satisfied. This states that the non - zero terms in (2.4) begin with the power h4. It 
is known that at least three stages s are required for order 3. To keep the cost per step 
down, we restrict our attention to the minimum number of stages. There is a two parameter 
family of three stage, third order Runge - Kutta formulas [9]. Naturally we wish to choose 
the parameters to get the best possible formula. All such formulas have the same stability 
region, so we give our attention to the accuracy of the formula. Because of the presence of 
the problem - dependent elementary differentials in the expression for the local error, there 
is no choice of parameters best for all problems. It is conventional to make the coefficients 

c%?) of the leading terms in the local error (2.4), the truncation error coefficients, small 
in some sense so as to have a formula that is accurate for the “typical” problem. Several 
norms of the vector of truncation error coefficients are seen. In our selection of a formula 
of order two, we use the Euclidean norm, but in the present situation the choice of norm is 

^ (4) not important because the two free parameters do not influence the value of a4 , which is 
-A. The best that can be done is to make the remaining coefficients small. An attractive 
possibility is to make some of these coefficients zero because then the formula will be of 
order 4 for some problems. In [9] Ralston presents the formula 

0 

1 4 z 

This formula does not quite minimize the Euclidean norm of the truncation error coefficients, 
but the difference is too small to have any practical significance. The truncation error 

coefficients Sp’ and SF) are zero. The formula has distinct ci, which is advantageous for 
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a reason we take up below. A minor advantage is that the formula has “nice” coefficients. 
Because the formula seems as good as any, we have adopted it as the third order formula of 
the pair we derive. 

3. SECOND ORDER FORMULA 

Now we wish to reuse the stages formed in the evaluation of the formula of order three to 
get a result v,.,+i of order two. Fehlberg [4] and D ormand and Prince [2] give pairs in which 
the first two stages are used for this purpose: 

Ye1 Yta h(blL1 + bzkz) 

This fails to exploit the situation in two ways. All two stage, second order Runge - Kutta 
formulas have the same stability region, just as all three stage, third order formulas do. In 
this way of proceeding, the stability regions are not well matched, and there is nothing that 
can be done about it. With only two stages there is little flexibility for achieving an error 
estimate of high quality. 

Additional flexibility is gained by realizing that most steps are a success, and if a step is 
a success, the first stage of the next step is always f(~,,+i, &+I). If we add the stage 

h=f(2,+h, A+heijlt,), 
j=l 

and consider second order formulas of the form 

(3.1) 
i=l 

we gain flexibility at very little additional cost. This approach is now called FSAL, First 
Same As Last. In this approach we must specify which of the pair of formulas will be used 
to advance the step. We prefer the higher order formula because it is more accurate and 
more stable. This choice, called local extrapolation, is seen in all the popular codes now, 
but in [4] Fehlberg chose to advance with his second order formula. To get a more accurate 
second order formula, he used three stages, and the stage gained as described here is used 
for the construction of a third order formula. 

Because we consider FSAL formulas, we evaluate f at zcn + h. One of the reasons we 
chose the Ralston third order formula is that it does not evaluate at this point. Thus our 
pair will sample f at four values of z in each step, and further, the two formulas do not 
share all these samples. We believe that this provides a little more robustness than, say, the 
Dormand - Prince pair which samples at three values, and that it improves the reliability of 
the estimate of the error of the second order formula. 

Because all the stages used in the formula (3.1) have been specified by our choice of the 
third order formula and our decision to use FSAL along with local extrapolation, we need 
only select the coefficients bi. The equations of condition 

cy(ll) = 0, $) = 0 

leave us with two free parameters. We select the parameters so as to obtain a pair of 
formulas of high quality. Prince and Dormand [8] d iscuss suitable criteria. In addition to 
their criteria, we add the natural desire for an accurate second order formula, namely that 
I] (~(~1 ]]z be “small”. The construction makes it clear that we could make this quantity 
vanish, i.e., make the formula of order 3. Other measures of quality that we take up prevent 

AML 2:4-B 



324 P. BOGACKI, L.F. SHAMPINE 

this degeneration, but it is also important to avoid having either of the two truncation 
error coefficients c@’ and c$) vanish. If one were to vanish, the formula would be of third 
order for some problems. This erratic behavior causes difficulties for step size adjustment 
algorithms. We have restricted our attention to formulas such that the two truncation error 
coefficients are the same, and non-zero, in order that the behavior of the formula be as 
uniform as possible. In the truncation error expansion (2.4) we want the leading term to 
dominate so that the formula “looks like” a second order formula for even comparatively 
large step sizes h. As a measure of this we use 

B= 11 d4) 112 
II d3) 112’ 

The error in the second order formula is estimated by comparison to the third order formula. 
Subtracting the Taylor series expansions of their local errors shows that an accurate estimate 
of the error will be provided by formulas for which the measure 

C= ]I 
(y(4) - h(4) 112 

II d3) II2 
is “small”. Our goal was to choose the parameters so that B and C are of similar size and 
” small)) . As a final measure of quality, we sought parameters that would yield a second 
order formula with a stability region that includes that of the third order formula, but is 
not a lot bigger. 

Certain of the constraints mentioned can be translated into mathematical constraints on 
the parameters, but most are sufficiently vague that one must explore the space of parameters 
in a heuristic way. After finding a “best” formula, we modified the coefficients slightly to 
obtain a pair of high quality that involved only “nice” coefficients. Our result is the line to 
be added to the array of (2.6) 

Naturally we should compare our new pair to those of Dormand and Prince and Fehlberg. 
The Dormand - Prince pair has a two stage, second order formula combined with a three 
stage, third order formula. The stability regions of both are then fully specified, and con- 
sultation of the literature, e.g.[7, p.2271, shows that the regions are not well matched. In 
contrast, our second order formula has a stability region that includes that of the third order 
formula. It is not greatly larger, but the details do not matter in view of the fact that we 
advance the integration with the third order formula. Dormand and Prince [3] agree that a 
poor match of stability regions “could cause severe problems in step size control, resulting 
in a loss of computational efficiency.” Fehlberg’s second order formula has a stability region 
that matches that of his third order formula very closely. Unfortunately, this is because his 
second order formula has truncation error coefficients that are so small that the formula 
“looks like” a third order formula. For the pair to behave as expected, and in particular for 
the error estimate to be accurate, the step size must be small enough that the leading term 
in the error expansion dominates. With this pair, the step size must be very small for this 
to be true, so small that a higher order formula would usually be more efficient. In contrast, 
the second order formula of Dormand and Prince is considerably less accurate than ours, 
which makes it less efficient. These facts are quantified by the measures of quality displayed 
in the following table. 
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Method II cJ3) 112 B C 

Bogacki-Shampine 3(2) 2.94 x 10s2 1.35 1.38 
Dormand-Prince 3(2) 1.72 x 10-l 0.81 1.01 

Fehlberg 2(3) 6.70 x 1O-4 72.5 4.66 

Table 1. Measures of quality for some Runge - Kutta pairs of orders two and three. 
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