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For a Banach space E and a compact metric space (X,d), a function F : X → E is a Lipschitz
function if there exists k > 0 such that∥∥F (x) − F (y)

∥∥ � kd(x, y) for all x, y ∈ X .

The smallest such k is called the Lipschitz constant L(F ) for F . The space Lip(X, E) of all
Lipschitz functions from X to E is a Banach space under the norm defined by

‖F‖ = max
{

L(F ),‖F‖∞
}
,

where ‖F‖∞ = sup{‖F (x)‖: x ∈ X}. Recent results characterizing isometries on these
vector-valued Lipschitz spaces require the Banach space E to be strictly convex. We
investigate the nature of the extreme points of the dual ball for Lip(X, E) and use the
information to describe the surjective isometries on Lip(X, E) under certain conditions
on E , where E is not assumed to be strictly convex. We make use of an embedding of
Lip(X, E) into a space of continuous vector-valued functions on a certain compact set.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

For a Banach space E (either real or complex) and a compact metric space (X,d), a function F : X → E is a Lipschitz
function if there exists k > 0 such that∥∥F (x) − F (y)

∥∥ � kd(x, y) for all x, y ∈ X .

The smallest such k is called the Lipschitz constant L(F ) for F , and we also have

L(F ) = sup
‖F (x) − F (y)‖

d(x, y)
,

where the supremum is taken over all x, y ∈ X with x �= y. The space Lip(X, E) of all Lipschitz functions from X to E is
a Banach space under the norm defined by

‖F‖ = max
{

L(F ),‖F‖∞
}
,

where ‖F‖∞ = sup{‖F (x)‖: x ∈ X}. When it may help to clarify things, we may occasionally write the Lipschitz space norm
by ‖ · ‖L . When E is the scalar field, we will write Lip(X) instead of Lip(X, E).

Finding characterizations of isometries on specific Banach spaces has a long history; see, for example, [4,5]. Investigations
of surjective isometries on spaces of Lipschitz functions in the scalar case go back to de Leeuw in 1961 [10] and include,
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among others, [6,9,11,13,15,16]. Recently, Jiménez-Vargas and Villegas-Vallecillos [8] turned their attention to the vector-
valued case, showing that any surjective linear isometry from Lip(X, E) onto Lip(Y , E) is a weighted composition operator
of the form

T F (y) = V (y)F
(
ϕ(y)

)
,

where ϕ is a Lipschitz homeomorphism from Y to X , and y → V (y) is a Lipschitz map from Y into the space of isometries
on E . To obtain this result it was assumed that E is strictly convex, and T maps a certain constant function 1X ⊗ e to 1Y ⊗ e.

Even more recently, Araujo and Dubarbie [1], interested in conditions in the vector-valued case that will insure that all
isometries are weighted compositions, have shown that results may be obtained by relaxing the compactness requirements
on X, Y , and using a weaker condition on the operator T , which they call property P. This requires that for each y ∈ Y ,
there is a constant function F such that T F (y) �= 0. In [1], the requirement that the Banach space E be strictly convex is
retained.

Our focus in the current paper is to remove the requirement of strict convexity and to use extreme point methods to
describe the isometries.

A key notion is that we may regard Lip(X, E) as a subspace of a continuous function space C(W , E ⊕∞ K), where K = R

or C, depending on whether E is a real or complex space, respectively. If X̃ = {(x, y): x, y ∈ X, x �= y}, then X̃ × S(E∗),
where the second component space, S(E∗), the surface of the unit ball of E∗ , is given the weak∗-topology, is locally compact
and completely regular, so has a Stone–Čech compactification β( X̃ × S(E∗)). Now W = X ×β( X̃ × S(E∗)) is a compact space
and we define the map ΦX,E from Lip(X, E) into C(W , E ⊕∞ K) by

ΦX,E F (x, ξ) = (
F (x), F β(ξ)

)
,

where F β denotes the continuous extension to β( X̃ × S(E∗)) of the function

F̃
(
(a,b), v∗) = v∗

[
F (a) − F (b)

d(a,b)

]
, (a,b) ∈ X̃, v∗ ∈ S

(
E∗).

Let us denote by M(X, E) the subspace of C(W , E ⊕∞ K) which is the image of Lip(X, E) under the map ΦX,E . Here we
have written the elements of direct sum spaces as pairs. We should point out that the idea of embedding a Lipschitz space
into a continuous function space goes back to de Leeuw [10], and was used in the investigations of isometries in the scalar
case by Roy [13] as well as by Jiménez-Vargas and Villegas-Vallecillos [7].

It is straightforward to show that ΦX,E is a linear isometry. By ψw we will mean the evaluation function on
C(W , E ⊕∞ K) and by ψ̃x we will mean the evaluation function on Lip(X, E), so that ψ̃x(F ) = F (x). For any Banach space E ,
ext(E∗) will denote the extreme points of the unit ball of E∗ . By B(E) we will mean the unit ball of a Banach space E , and
S(E) will denote the surface of the unit ball.

In the next section we will obtain a characterization of surjective isometries on Lip(X, E) to Lip(Y , D) using extreme
point techniques and mild elements of the M-structure theory of Behrends [2], to which we refer the reader for necessary
definitions and terminology. Unlike the other investigations of isometries on vector-valued Lipschitz spaces as mentioned
above, we do not require that the Banach spaces E, D be strictly convex. Of course some assumptions must be made.

At this point, we wish to introduce a new term.

Definition 1. A Banach space E is quasi sub-reflexive, QSR, if every extreme point of the unit ball of E∗ is norm attaining.
That is, if e∗ ∈ ext(E∗), then there exists e ∈ S(E) such that e∗(e) = 1.

We note that by a theorem of James, [12, p. 262], a space is reflexive if every bounded linear functional is norm attaining.
The term sub-reflexive, due to Phelps, means that the set of norm-attaining members is dense in the dual, but, in fact, every
Banach space is known to be sub-reflexive, a theorem of Bishop and Phelps [12, p. 278]. The space �1 is an example of
a non-reflexive, quasi sub-reflexive space, as are the C(K ) spaces. A non-reflexive space whose dual is strictly convex would
fail to be QSR. Such an example can be found in [12, p. 483].

We also introduce a stronger form of the Araujo and Dubarbie property P, which we call property Q.

Definition 2. An operator T : Lip(X, E) → Lip(Y , D) is said to have property Q if for each y ∈ Y , u ∈ D , there is a constant
function F ∈ Lip(X, E) such that T F (y) = u.

In the third section we replace the assumption of property Q with connectedness assumptions on X, Y , as well as slightly
stronger restrictions on E, D , while in the last section we include some special results.

2. The non-strictly convex case using property Q

We begin by identifying important extreme points in the dual of the Banach space Lip(X, E). We make use here of ideas
that go back to de Leeuw [10] and Roy [13]. We also note that Johnson [9] gives a characterization of extreme points of the
unit ball of a subspace of C(X) that relates to our next theorem.
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Theorem 3. Suppose (X,d) is a compact metric space and E is a quasi sub-reflexive Banach space. If x ∈ X and e∗ ∈ ext(E∗), then
e∗ ◦ ψ̃x is an extreme point for the unit ball of Lip(X, E)∗ .

Proof. Let x ∈ X and e∗ ∈ ext(E∗) be given and suppose

e∗ ◦ ψ̃x = 1

2
γ ∗ + 1

2
δ∗, (1)

where γ ∗ and δ∗ are elements of the unit sphere of Lip(X, E)∗ . By the identification of Lip(X, E) with a subspace of
C(W , E ⊕∞ K), we know that there are regular Borel measures μ∗ and ν∗ on W with values in (E ⊕∞ K)∗ = E∗ ⊕1 K and
total variation equal to 1, such that

γ ∗(F ) =
∫
W

Φ F dμ∗ and δ∗(F ) =
∫
W

Φ F dν∗ for all F ∈ Lip(X, E).

For convenience we have dropped the subscript X, E on the map Φ . We will let μ∗ and ν∗ denote both the measures and
the functionals they define. We note that the characterization of elements of the dual of a vector-valued continuous function
space C(K , E) was first given by Singer [14]. Another, even more general statement of this characterization, is given in [3,
p. 182].

Let e ∈ S(E), x0 ∈ X , and λ ∈ R be defined such that

e∗(e) = 1, d(x0, x) = sup
{

d(y, x): y ∈ X
}
, and λ = 2 + d(x0, x).

Note that the existence of such an e is guaranteed by the facts that e∗ ∈ ext(E∗) and E is quasi sub-reflexive. Define H on
X by

H(z) = (
λ − d(z, x)

)
e.

Then

2 �
∣∣2 + d(x0, x) − d(z, x)

∣∣‖e‖ = ∥∥H(z)
∥∥ = ∣∣λ − d(z, x)

∣∣ � λ,

and since ‖H(x)‖ = λ, we have ‖H‖∞ = λ. Furthermore, if (s, t) ∈ X̃ , then∥∥H(s) − H(t)
∥∥ = ∣∣d(s, x) − d(t, x)

∣∣ � d(s, t),

so that L(H) � 1. Thus ‖H‖ = max{‖H‖∞, L(H)} = λ. Observe also, that ‖H(z)‖ < λ whenever z �= x, and that (e∗ ◦ ψ̃x)(H) =
e∗(H(x)) = λ. Hence, from (1) we have

λ =
∣∣∣∣1

2
γ ∗(H) + 1

2
δ∗(H)

∣∣∣∣ � 1

2

∣∣γ ∗(H)
∣∣ + 1

2

∣∣δ∗(H)
∣∣ � 1

2
‖H‖ + 1

2
‖H‖ = λ.

We conclude that

λ = ∣∣γ ∗(H)
∣∣ = ∣∣δ∗(H)

∣∣.
Let ξ be a fixed element of β( X̃ × S(E∗)). If |μ∗|(W \ {(x, ξ)}) > 0, there is, by the regularity of μ∗ , a compact subset Q of
W \ {(x, ξ)} such that |μ∗|(Q ) > 0, where by |μ∗| we mean the total variation of μ∗ . Since Q is compact, there exists λ0
such that

sup
w∈Q

∥∥ΦX,E H(w)
∥∥ = λ0 < λ.

Thus,

λ = ∣∣γ ∗(H)
∣∣ =

∣∣∣∣
∫
W

ΦH dμ∗
∣∣∣∣ =

∣∣∣∣
∫

{(x,ξ)}
Φ(H)dμ∗ +

∫
Q

Φ(H)dμ∗ +
∫

W \{(x,ξ)}\Q

ΦH dμ∗
∣∣∣∣

�
∫

{(x,ξ)}
‖ΦH‖d

∣∣μ∗∣∣ +
∫
Q

‖ΦH‖d
∣∣μ∗∣∣ +

∫
W \{(x,ξ)}\Q

‖ΦH‖d
∣∣μ∗∣∣

� λ
∣∣μ∗∣∣({(x, ξ)

}) + λ0
∣∣μ∗∣∣(Q ) + λ

∣∣μ∗∣∣(W \ {
(x, ξ)

} \ Q
)

< λ
∣∣μ∗∣∣(W ) = λ.

This contradiction means that we must have |μ∗|(W \ {(x, ξ)}) = 0, so μ∗(W \ {(x, ξ)}) = 0 as well. The same argument
implies the same result holds also for ν∗ . Let G be any element of Lip(X, E). From the display above we have
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e∗(G(x)
) = (

e∗ ◦ ψ̃x
)
(G) = 1

2
γ ∗(G) + 1

2
δ∗(G)

= 1

2

[ ∫
{(x,ξ)}

ΦG dμ∗ +
∫

{(x,ξ)}
ΦG dν∗

]

= 1

2
μ∗({(x, ξ)

})(
G(x), Gβ(ξ)

) + 1

2
ν∗({(x, ξ)

})(
G(x), Gβ(ξ)

)
= 1

2

[
ϕ∗(G(x)

) + μ1Gβ(ξ)
] + 1

2

[
v∗(G(x)

) + ν1Gβ(ξ)
]
.

Here we have used the fact that, as a functional, μ∗({(x, ξ)}) = ϕ∗ ⊕ μ1 = (ϕ∗,μ1) and ν∗({(x, ξ)}) = v∗ ⊕ ν1 = (v∗, ν1),
where ϕ∗, v∗ are elements of B(E∗) and μ1, ν1 are scalars. If in the display above, we let u ∈ E and G = 1X ⊗ u, then
Gβ(ξ) = 0 and we get

e∗(u) = 1

2
ϕ∗(u) + 1

2
v∗(u),

and since e∗ is extreme, we must have e∗ = ϕ∗ = v∗ . Hence, μ1 = ν1 = 0. Therefore, using the display above again, we have
for any G ∈ Lip(X, E) that γ ∗(G) = δ∗(G) = e∗ ◦ ψ̃x(G), and the proof is complete. �

Recall that a bounded operator T on a Banach space E is called a multiplier of E if every element of ext(E∗) is an
eigenvector for T ∗ . Thus, for each e∗ ∈ ext(E∗), there is a scalar aT (e∗) such that

T ∗e∗ = aT
(
e∗)e∗.

For such a multiplier T , a multiplier S is said to be an adjoint of T if aS = aT . The centralizer of E , written Z(E), is the set
of all multipliers for which an adjoint exists. The reader should consult [2] for information concerning these ideas.

Let the set Z̃(Lip(X, E)) consist of all bounded linear operators W on Lip(X, E) such that e∗ ◦ ψ̃x is an eigenvector for
W ∗ for each x ∈ X , e∗ ∈ ext(E∗) and where we suppose the corresponding adjoint exists. This set will be called the pseudo-
centralizer of Lip(X, E). We observe that Z(Lip(X, E)) ⊆ Z̃(Lip(X, E)) if E is quasi sub-reflexive. Later we give examples of
Lipschitz spaces with centralizer equal to its pseudo-centralizer and also with centralizer strictly contained in its pseudo
centralizer.

Lemma 4. Suppose (X,d) is a compact metric space and E is a Banach space with trivial centralizer. Then the pseudo-centralizer of
Lip(X, E) is the set {Mh: h ∈ Lip(X)}, where by Mh we mean the operator defined by Mh F (x) = h(x)F (x) for all F ∈ Lip(X, E) and
x ∈ X.

Proof. First suppose that h ∈ Lip(X) and consider the operator Mh . Let F ∈ Lip(X, E) be given, and x, y ∈ X . Then,∥∥h(x)F (x) − h(y)F (y)
∥∥ �

∥∥h(x)F (x) − h(y)F (x)
∥∥ + ∥∥h(y)F (x) − h(y)F (y)

∥∥
�

∣∣h(x) − h(y)
∣∣∥∥F (x)

∥∥ + ∣∣h(y)
∣∣∥∥F (x) − F (y)

∥∥
�

[
L(h)‖F‖∞ + ‖h‖∞L(F )

]
d(x, y),

which shows that hF ∈ Lip(X, E). Furthermore,

(Mh)
∗(e∗ ◦ ψ̃x

)
(F ) = e∗(Mh F (x)

) = e∗(h(x)F (x)
)

= h(x)e∗(F (x)
) = h(x)

(
e∗ ◦ ψ̃x

)
(F ).

This shows that Mh has the desired multiplier property, and Mh would satisfy the adjoint property. Hence, Mh ∈
Z̃(Lip(X, E)).

On the other hand, let W ∈ Z̃(Lip(X, E)). For x ∈ X , define P (x) on E by

P (x)u = W G(x),

where G ∈ Lip(X, E) and G(x) = u. To see that this function is well defined, suppose H ∈ Lip(X, E) and H(x) = G(x) = u. Let
e∗ ∈ ext(E∗). Since W ∈ Z̃(Lip(X, E)), there exists a scalar aW (e∗, x) such that

W ∗(e∗ ◦ ψ̃x
) = aW

(
e∗, x

)(
e∗ ◦ ψ̃x

)
.

Therefore, we have

e∗(W G(x)
) = aW

(
e∗, x

)
e∗(G(x)

) = aW
(
e∗, x

)
e∗(H(x)

) = aW
(
e∗, x

)(
e∗ ◦ ψ̃x

)
(H)

= W ∗(e∗ ◦ ψ̃x
)
(H) = e∗(W H(x)

)
.
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Since this holds for every element of ext(E∗), we conclude that W G(x) = W H(x). Next we observe that∣∣aW
(
e∗, x

)∣∣ = ∥∥aW
(
e∗, x

)(
e∗ ◦ ψ̃x

)∥∥ = ∥∥W ∗(e∗ ◦ ψ̃x
)∥∥ �

∥∥W ∗∥∥ = ‖W ‖.
From this it is straightforward to show that ‖P (x)u‖ � ‖W ‖‖u‖ for all u ∈ E so that P (x) is a bounded linear operator on E
for each x ∈ X . For u ∈ E and F ∈ Lip(X, E) for which F (x) = u, we see that(

P (x)
)∗(

e∗)(u) = e∗(P (x)
)
(u) = e∗(W F (x)

) = W ∗(e∗ ◦ ψ̃x
)
(F )

= aW
(
e∗, x

)(
e∗ ◦ ψ̃x

)
(F )

= aW
(
e∗, x

)
e∗(u).

Thus P (x) is a multiplier and will have an adjoint obtained from the adjoint of W , so that P (x) ∈ Z(E). Since Z(E) is trivial,
there will be a scalar h(x) such that

P (x) = h(x)I

and we have

W F (x) = P (x)
(

F (x)
) = h(x)F (x).

This can be done for every x ∈ X , and so we have shown that W = Mh . Because W F = hF must be an element of Lip(X, E)

for each F ∈ Lip(X, E), given e in the unit sphere of E and x, y ∈ X , it follows that∣∣h(x) − h(y)
∣∣ = ∥∥h(x)e − h(y)e

∥∥ = ∥∥h(x)(1X ⊗ e)(x) − h(y)(1X ⊗ e)(y)
∥∥

= ∥∥W (1X ⊗ e)(x) − W (1X ⊗ e)(y)
∥∥

� L
(
W (1X ⊗ e)

)
d(x, y).

This shows that h ∈ Lip(X), and the proof is complete. �
Lemma 5. Suppose E, D are quasi sub-reflexive Banach spaces, X, Y are compact metric spaces, and T is a surjective linear isometry
from Lip(X, E) to Lip(Y , D) which has property Q. If v∗ ∈ ext(D∗) and y ∈ Y , then T ∗(v∗ ◦ ψ̃y) = e∗ ◦ ψ̃x for some e∗ ∈ ext(E∗) and
x ∈ X.

Proof. Given v∗ and y as in the statement of the lemma, we know from Theorem 3 that v∗ ◦ ψ̃y is an extreme point for
Lip(Y , D)∗ and so is the image of an extreme point of the unit ball of M(Y , D)∗ which, by a theorem of Brosowski and
Deutsch (among others; see [4, pp. 33, 44]), must be of the form γ ∗ ◦ ψw , where γ ∗ is an extreme point of (D ⊕∞ K)∗ =
D∗ ⊕1 K, and w ∈ W . Since γ ∗ = (u∗,0) or (0, τ ), where u∗ ∈ ext(D∗) and τ is a scalar with |τ | = 1, we see from the
definition of ΦY ,D that

v∗ ◦ ψ̃y = Φ∗
Y ,D

((
v∗,0

) ◦ ψ(y,ξ)

)
, (2)

where ξ ∈ β(Ỹ × S(D∗)). (Note that the particular ξ has no importance here.) To justify this equation, we note that if
v∗ ◦ ψ̃y = Φ∗

Y ,D((0, τ ) ◦ ψ(z,ξ)), then we would have, for any G ∈ Lip(Y , D), that

v∗(G(y)
) = τ Gβ(ξ),

which would yield a contradiction for G = 1Y ⊗ u where v∗(u) �= 0. On the other hand, if v∗ ◦ ψ̃y = Φ∗
Y ,D((d∗,0) ◦ ψ(z,ξ)),

then we would obtain

v∗(G(y)
) = d∗(G(z)

)
, for all G ∈ Lip(Y , D), (3)

where d∗ ∈ ext(D∗) and (z, ξ) ∈ Y ×β(Ỹ × S(D)∗). If y �= z, we can choose G which has a value at y such that v∗(G(y)) �= 0,
while G(z) = 0, which gives a contradiction. Now, since y = z, we have from (3) that

v∗(G(y)
) = d∗(G(y)

)
,

which means that v∗ = d∗ . This justifies (2). Hence,

T ∗(v∗ ◦ ψ̃y
)
(F ) = (

v∗ ◦ ψ̃y
)
(T F )

= Φ∗
Y ,D

((
v∗,0

) ◦ ψ(y,ξ)

)
(T F )

= ((
v∗,0

) ◦ ψ(y,ξ)

)
(ΦY ,D T F )

= ((
v∗,0

) ◦ ψ(y,ξ)

)(
R(ΦX,E F )

)
= R∗((v∗,0

) ◦ ψ(y,ξ)

)
(ΦX,E F ),
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where R is the isometry from M(X, E) onto M(Y , D) defined by R = ΦY ,D T (ΦX,E )−1. Now R∗((v∗,0) ◦ ψ(y,ξ)) must be
an extreme point of M(X, E)∗ , and so is of the form (e∗,0) ◦ ψ(x,ζ ) or (0, τ ) ◦ ψ(x,ζ ) . If it is the latter, than we would have
from the calculation above that

v∗(T F (y)
) = [

(0, τ ) ◦ ψ(x,ζ )

]
(ΦX,E F ) = τ F β(ζ ),

for all F ∈ Lip(X, E). Choose u ∈ D such that v∗(u) �= 0, and, using the fact that T has property Q, let F be a constant
function such that T F (y) = u. Then by the equality above,

0 �= v∗(T F (y)
) = τ F β(ζ ) = 0,

since F is constant. Therefore, we must conclude that R∗((v∗,0) ◦ ψ(y,ξ)) = (e∗,0) ◦ ψ(x,ζ ) and using the calculation above
once again, for any G ∈ Lip(X, E), we have

T ∗(v∗ ◦ ψ̃y
)
(G) = ((

e∗,0
) ◦ ψ(x,ζ )

)
(ΦX,E G)

= (
e∗,0

)(
G(x), Gβ(ζ )

)
= e∗(G(x)

)
= (

e∗ ◦ ψ̃x
)
(G).

This shows that T ∗(v∗ ◦ ψ̃y) = e∗ ◦ ψ̃x and completes the proof. �
Theorem 6. Let X, Y be compact metric spaces, and let E, D be quasi sub-reflexive Banach spaces with trivial centralizers. Suppose
that T : Lip(X, E) → Lip(Y , D) is a surjective linear isometry so that both T and T −1 have property Q. Then there exists a Lipschitz
homeomorphism ϕ from Y onto X with L(ϕ) � max{1,diam(X)} and L(ϕ−1) � max{1,diam(Y )} and a Lipschitz map y → V (y)

from Y to the space of surjective linear isometries on E to D such that

T F (y) = V (y)F
(
ϕ(y)

)
for all F ∈ Lip(X, E), y ∈ Y .

Proof. Let h ∈ Lip(X) and consider the operator T Mh T −1 defined on Lip(Y , D) to itself. Let v∗ ∈ ext(D∗), y ∈ Y , and
G ∈ Lip(Y , D) be given. Then G = T F for some F ∈ Lip(X, E). By Lemma 5 there are e∗ ∈ ext(E∗) and z ∈ X such that
T ∗(v∗ ◦ ψ̃y) = e∗ ◦ ψ̃z . We have(

T Mh T −1)∗(
v∗ ◦ ψ̃y

)
(G) = T ∗(v∗ ◦ ψ̃y

)
(Mh F )

= (
e∗ ◦ ψ̃z

)
(Mh F )

= e∗(h(z)F (z)
) = h(z)e∗(F (z)

)
= h(z)T ∗(v∗ ◦ ψ̃y

)
(F )

= h(z)
(

v∗ ◦ ψ̃y
)
(G).

It follows that T Mh T −1 is in the pseudo centralizer of Lip(Y , D) (T Mh T −1 serves as an adjoint). Hence, by Lemma 4, there

is an element h̃ ∈ Lip(Y ) such that

T Mh T −1 = Mh̃.

Therefore,

T Mh = Mh̃ T ,

from which we obtain

h(z)e∗(F (z)
) = (

e∗ ◦ ψ̃z
)
(Mh F )

= T ∗(v∗ ◦ ψ̃y
)
(Mh F )

= (
M∗

h T ∗)(v∗ ◦ ψ̃y
)
(F )

= (
T ∗M∗

h̃

)(
v∗ ◦ ψ̃y

)
(F )

= v∗(Mh̃ T F (y)
)

= h̃(y)v∗(T F (y)
)

= h̃(y)T ∗(v∗ ◦ ψ̃y
)
(F )

= h̃(y)e∗(F (z)
)
.



F. Botelho et al. / J. Math. Anal. Appl. 381 (2011) 821–832 827
Since we may choose F so that e∗(F (z)) �= 0, we must conclude that h(z) = h̃(y). Suppose for v∗, w∗ ∈ ext(D∗) it is true
that

T ∗(v∗ ◦ ψ̃y
) = e∗ ◦ ψ̃x and T ∗(w∗ ◦ ψ̃y

) = u∗ ◦ ψ̃z. (4)

From our earlier calculations, we must have

h(x) = h̃(y) = h(z).

Since the Lipschitz functions on X are numerous enough to separate points, we conclude that x = z. Hence, we may define
the function ϕ on Y by ϕ(y) = x if T ∗(v∗ ◦ ψ̃y) = e∗ ◦ ψ̃x . This function is well defined since (4) implies x = z. Next, we
define, for each y ∈ Y , an operator V (y) on E to D by

V (y)u = T F (y) where F ∈ Lip(X, E) has the property that F
(
ϕ(y)

) = u.

To see that V (y) is well defined, suppose that x = ϕ(y) and F (x) = H(x) for F , H ∈ Lip(X, E). For any extreme point
v∗ ∈ ext(D∗), and T ∗(v∗ ◦ ψ̃y) = e∗ ◦ ψ̃x , it follows that

v∗(T F (y)
) = e∗(F (x)

) = e∗(H(x)
) = v∗(T H(y)

)
.

Therefore, since this holds for any extreme point v∗ ∈ ext(D∗), we must have T F (y) = T H(y).
To show that V (y) is an isometry, let e ∈ E be given and suppose F ∈ Lip(X, E) is such that F (ϕ(y)) = e, ‖F‖ =

‖F (ϕ(y))‖ = ‖e‖. Let e∗ ∈ ext(E∗) be such that e∗(e) = ‖e‖. Since T −1 is an isometry with the same properties as T ,
there exists v∗ ∈ S(D∗) such that T ∗(v∗ ◦ ψ̃y) = e∗ ◦ ψ̃ϕ(y) . Hence,

‖e‖ = e∗(F
(
ϕ(y)

)) = (
e∗ ◦ ψ̃ϕ(y)

)
(F )

= T ∗(v∗ ◦ ψ̃y
)
(F )

= ∣∣v∗(T F (y)
)∣∣

�
∥∥T F (y)

∥∥ � ‖T F‖ = ‖F‖
= ‖e‖.

Therefore,

‖e‖ = ∥∥T F (y)
∥∥ = ∥∥V (y)F

(
ϕ(y)

)∥∥ = ∥∥V (y)e
∥∥,

which shows that V (y) is an isometry. It must also be surjective, for if u ∈ D is given, by the surjectivity of T , there is some
F ∈ Lip(X, E) such that T F = 1Y ⊗ u. Hence

u = T F (y) = V (y)F
(
ϕ(y)

)
,

so that u is in the range of V (y).
To see that the map y → V (y) is a Lipschitz map, let u ∈ S(E) be given, and let F = 1X ⊗ u. Since T F ∈ Lip(Y , D), we

have, for y1, y2 ∈ Y ,∥∥V (y1)(u) − V (y2)(u)
∥∥ = ∥∥T F (y1) − T F (y2)

∥∥ � L(T F )d(y1, y2) � d(y1, y2).

Since this holds for all u ∈ S(E), we conclude that ‖V (y1) − V (y2)‖ � d(y1, y2).
Finally, let us show that ϕ is a Lipschitz map. We follow an argument given in [7]. Let u ∈ S(E) and consider the

function Fx = fx ⊗ u, where fx(z) = d(z, x). It is easy to see that ‖Fx‖∞ � diam(X), and L(Fx) � 1, so that ‖Fx‖ � k =
max{1,diam(X)}. Since T is an isometry, ‖T Fϕ(y)‖ � k for all y ∈ Y , so that L(T Fϕ(y)) � k for each y ∈ Y . Let y, z ∈ Y be
given, so that we have∥∥T Fϕ(y)(y) − T Fϕ(y)(z)

∥∥ � kd(y, z). (5)

Now,

T Fϕ(y)(y) = V (y)(Fϕ(y)

(
ϕ(y)

) = V (y)
[
d
(
ϕ(y),ϕ(y)

)
u
] = 0,

while

T Fϕ(y)(z) = V (z)Fϕ(y)

(
ϕ(z)

) = V (z)
[
d
(
ϕ(y),ϕ(z)

)
u
] = d

(
ϕ(y),ϕ(z)

)
V (z)u.

From (5) and the above two lines, we have

d
(
ϕ(y),ϕ(z)

)∥∥V (z)u
∥∥ � kd(y, z),

and since V (z) is an isometry, d(ϕ(y),ϕ(z)) � kd(y, z). Hence, ϕ is Lipschitz with L(ϕ) � max{1,diam(X)}. Applying the
same argument to the inverse, we get ϕ−1 exists and is Lipschitz with L(ϕ−1) � max{1,diam(Y )}. �
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It is easy to see that if T is a weighted composition operator in the form T F (y) = V (y)F (ϕ(y)), where V (y) is a
surjective operator from E to D for each y, and ϕ is a function from Y to X , then T has property Q. For, given y ∈ Y , u ∈ D ,
let e ∈ E be such that V (y)e = u. Then T (1X ⊗e)(y) = V (y)e = u. Let us say that a bounded linear operator T from Lip(X, E)

to Lip(Y , D) has the constant function property, CFP, if for each u ∈ D , there exists e(u) ∈ E such that T (1X ⊗ e(u)) = 1Y ⊗ u.
We observe that if T has CFP, then it has property Q, and that if T is a weighted composition operator as above with the
CFP, where V (y) is assumed to be injective for each y, then the map y → V (y) is constant. In this last case, if T is an
isometry and if diam(X) � 2, we can show that ϕ is an isometry. We record these observations in the following corollary.

Corollary 7. Suppose that T is a surjective linear isometry from Lip(X, E) onto Lip(Y , D), where X, Y are compact metric spaces and
E, D are quasi sub-reflexive and have trivial centralizers.

(i) The isometry T can be written as a weighted composition operator as in Theorem 6 if and only if both T and T −1 have property Q.
(ii) The isometry T can be written as a weighted composition operator in the form T F (y) = V (y)F (ϕ(y)) where V (y) = V is

constant if and only if both T and T −1 have CFP.
(iii) If T is as in item (ii) above, and diam(X) � 2, then ϕ is an isometry.

Proof. The proof of both (i) and (ii) is immediate. Let us prove (iii). Suppose y0, y1 ∈ Y are such that

d
(
ϕ(y0),ϕ(y1)

)
> d(y0, y1).

Define F on X by F (x) = (1 − d(x,ϕ(y0))e, where e is a fixed element of S(E). It is straightforward to show that F ∈
Lip(X, E) with L(F ) � 1. Since diam(X) � 2, we see that∥∥F (x)

∥∥ = ∣∣1 − d
(
x,ϕ(y0)

)∣∣ � 1,

and since ‖F (ϕ(y0))‖ = 1, we have ‖F‖∞ = 1. Thus, ‖F‖L = 1, and so ‖T F‖L = 1 as well. However,

‖T F (y0) − T F (y1)‖
d(y0, y1)

= ‖V F (ϕ(y0)) − V F (ϕ(y1))‖
d(y0, y1)

= ‖F (ϕ(y0)) − F (ϕ(y1))‖
d(y0, y1)

= d(ϕ(y0),ϕ(y1))

d(y0, y1)

> 1.

This contradicts the fact that L(T F ) � 1, and we conclude that d(ϕ(y0),ϕ(y1)) � d(y0, y1). The opposite inequality is
obtained by considering ϕ−1, and we conclude that ϕ is an isometry. �
3. The non-strictly convex case using connectedness

The need to assume the property Q in the proof of Lemma 5 and hence also for Theorem 6 is less than satisfying since
it is an assumption made on the isometry itself. This condition can be removed by adding some conditions to the metric
spaces X, Y and the Banach spaces E, D .

Let us introduce some notation here that will be useful. Extreme points of the unit ball of the dual of M(X, E) of the
form (e∗,0) ◦ ψw , where e∗ ∈ ext(E∗), w ∈ W , will be said to be extreme points of type I, and the set of all such will be
denoted by ExtI (M(X, E)∗). Similarly, the set ExtII(M(X, E)∗) will be the set of all extreme points of type II on M(X, E)∗ ,
that is, those of the form (0, τ ) ◦ ψw where |τ | = 1, and w ∈ W . Thus the action of an extreme point of type I on ΦX,E F is
given by[(

e∗,0
) ◦ ψ(x,ξ)

]
(ΦX,E F ) = e∗(F (x)

) = (
e∗ ◦ ψ̃x

)
(F ),

while for an extreme point of type II the action is given by[
(0, τ ) ◦ ψ(x,ξ)

]
(ΦX,E F ) = τ F β(ξ).

For convenience later, we will let ExtI (Lip(X, E)∗) denote the extreme points of the dual unit ball of Lip(X, E) of the form
e∗ ◦ ψ̃x , for x ∈ X , e∗ ∈ ext(E∗) and ExtII(Lip(X, E)∗) will be the extreme points of the form τ ψ̃ξ , for ξ ∈ β( X̃ × S(E∗)), where
by ψ̃ξ we will mean the function defined on Lip(X, E) by

ψ̃ξ (F ) = F β(ξ). (6)

Note that we have, in general,

ExtI
(

M(X, E)∗
) ⊂ �I

(
M(X, E)∗

) ⊂ ΓI
(

M(X, E)∗
)
,

where
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�I = {(
e∗,0

) ◦ ψw : e∗ ∈ ext
(

E∗), w ∈ W
}
,

ΓI = {(
e∗,0

) ◦ ψw : e∗ ∈ S
(

E∗), w ∈ W
}
.

Recall that in the proof of Lemma 5 we actually showed that Φ∗
X,E maps the set ExtI (M(X, E)∗) onto the set of extreme

points of the unit ball of Lip(X, E)∗ of the form e∗ ◦ ψ̃x , where e∗ ∈ ext(E∗) and x ∈ X , that is ExtI (Lip(X, E)∗). Furthermore,
we showed that R∗ maps ExtI (M(Y , D)∗) onto ExtI (M(X, E)∗), where R is the isometry from M(X, E) to M(Y , D) given
by R = ΦY ,D T (ΦX,E)−1, corresponding to the isometry T : Lip(X, E) → Lip(Y , D), and where T had property Q. Of course,
the extreme points of type II will be mapped to each other in the same way. We would like to obtain this result about R
without assuming property Q for T . Observe also that by Theorem 3, we have, under the hypotheses of that theorem, that

ExtI
(

M(X, E)∗
) = �I

(
M(X, E)∗

)
.

The same equality occurs also for Y , D , of course. If we assume that E∗ and D∗ are strictly convex, then

ExtI
(

M(X, E)∗
) = ΓI

(
M(X, E)∗

)
,

and this holds for Y , D as well.
The following simple lemma will be useful.

Lemma 8. If E is a Banach space and E �= R, then S(E∗) is pathwise connected.

Proof. Let e∗ and v∗ be two distinct functionals in S(E∗). Let w∗ ∈ S(E∗) be such that 0 is not on the line segment from
e∗ to w∗ , nor on the segment from w∗ to v∗ . Let ϕ(t) denote the function describing the path from e∗ to v∗ consisting
of the two line segments from e∗ to w∗ followed by w∗ to v∗ . Since ‖ϕ(t)‖ �= 0 for all t , then ϕ(t)

‖ϕ(t)‖ defines a path in
S(E∗) connecting e∗ with v∗ . Note that this holds for any topology on S(E∗) that is equal to or weaker than the norm
topology. �

We are going to assume now that our metric spaces X, Y are compact and connected, and that the Banach spaces E, D
are both quasi sub-reflexive and have strictly convex dual spaces. By James’ theorem, mentioned earlier, these conditions on
E, D imply they must be reflexive and smooth. Hence we will now assume that.

Lemma 9. Let X, Y be compact and pathwise connected metric spaces, and assume that E, D are smooth, reflexive Banach spaces and
let T be a surjective linear isometry from Lip(X, E) to Lip(Y , D). If v∗ ∈ ext(D∗) and y ∈ Y , then T ∗(v∗ ◦ ψ̃y) = e∗ ◦ ψ̃x for some
e∗ ∈ ext(E∗) and x ∈ X.

Proof. We are going to show that for the isometry R introduced in the proof of Lemma 5, R∗ maps extreme points of type I
of M(Y , D)∗ (type II) onto extreme points of type I of M(X, E)∗ (type II, respectively). First we note that since B(E∗) is
compact in the w∗-topology and X is compact, then ExtI (M(X, E)) = ΓI (M(X, E)∗) is compact and easily shown to be
disjoint from the w∗-closure of ExtII(M(X, E)∗). Therefore, they form a separation of the extreme points of the unit ball of
M(X, E)∗ . Let us assume that E and D are not equal to R. Since S(D∗) and Y are both pathwise connected, it follows that
ExtI (M(Y , D)∗) = ΓI (M(Y , D)∗) is itself pathwise connected (in the w∗-topology). Its image under the isometry R∗ must
also be pathwise connected, and is therefore mapped entirely inside Γ1(M(X, E)∗) or ExtII(M(X, E)∗). If the latter were
the case, then for every v∗ ∈ S(D∗), y ∈ Y , there would be a scalar τ with |τ | = 1, and ξ ∈ β( X̃ × S(E∗)) such that for every
F ∈ Lip(X, E), we have

v∗(T F (y)
) = τ F β(ξ).

It is clearly impossible for this to happen, for we could choose a constant function F and y ∈ Y , v∗ ∈ S(D∗) such that

0 �= v∗(T F (y)
) = τ F β(ξ) = 0.

We conclude that R∗(ΓI ) ⊂ ΓI , and the desired result follows as in the last part of the proof of Lemma 5. Finally, we observe
that if E = D = R, then the above argument still works. Although ExtI (M(Y , D∗) is not connected, it is the union of two
disjoint connected sets, and each must map entirely into ExtI (M(X, E)∗) or ExtII(M(X, E)∗). �
Theorem 10. Let X, Y be compact and pathwise connected metric spaces, and assume that E, D are smooth, reflexive Banach spaces
and let T be a surjective linear isometry from Lip(X, E) to Lip(Y , D). Then there exists a Lipschitz homeomorphism ϕ from Y onto
X with L(ϕ) � max{1,diam(X)} and L(ϕ−1) � max{1,diam(Y )} and a Lipschitz map y → V (y) from Y to the space of surjective
linear isometries on E to D such that

T F (y) = V (y)F
(
ϕ(y)

)
for all F ∈ Lip(X, E), y ∈ Y . (7)

Proof. The proof that T has the form given by (7) is, by using Lemma 9 instead of Lemma 5, exactly the same as the proof
of Theorem 6. �
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4. Pointed metric spaces

Let us recall here that the notation introduced earlier, in (6), implies that, for (a,b, v∗) ∈ X̃ × S(E∗),

ψ̃(a,b,v∗)(F ) = F β
(
a,b, v∗) = F̃

(
a,b, v∗) = v∗

[
F (b) − F (a)

d(a,b)

]
,

where F ∈ Lip(X, E) and we have written ((a,b), v∗) = (a,b, v∗) for convenience.

Definition 11. A metric space X is said to be a pointed metric space if there exists x0 ∈ X such that d(x0, x) = 1 for all
x �= x0. The point x0 will be called the special point.

Pointed metric spaces have been discussed in [11], where they were called centered spaces, and in [16]. We observe that
a pointed metric space must have diameter no more than 2, and any compact metric space with diameter less than or equal
to 2 can be made into a pointed compact metric space by adding one point.

We need a lemma due to de Leeuw [10] which has been used by a number of authors through the years. We state it
without proof.

Lemma 12 (de Leeuw). Let Z be a compact Hausdorff space, and let A be a closed subspace of C(Z). If z ∈ Z , then a sufficient condition
for ψz ∈ ext(A∗) is that there exists a function f ∈ B(A) such that

(i) f (z) = 1,
(ii) | f (y)| = 1 if and only if there exists a λ = ±1 such that

g(y) = λg(z) for all g ∈ A.

In this case it is said that f peaks at z relative to A.

Let Z = β( X̃ × S(E∗)), and let A(X, E) denote the subspace of C(Z) consisting of all those functions F β defined on Z ,
where F ∈ Lip(X, E). As before, ψξ will denote the evaluation functional on C(Z). In this section, we are going to consider
real Banach spaces and real-valued functions.

Lemma 13. Assume that X is a compact, pointed metric space, with x0 as the special point. If x ∈ X, with x �= x0 , and v∗ ∈ S(E∗), with
v∗ norm attaining, where E is a real Banach space, then ψ(x0,x,v∗) ∈ ext(A(X, E)∗).

Proof. The idea here is to show that (x0, x, v∗) is a peak point for a function in A(X, E). Choose v ∈ S(E) such that
v∗(v) = 1. We now set

F (z) =
{

1
2 v if z = x0,

− 1
2 v + d(z,x)

2(1+diam(X))
v if z �= x0.

The function F is Lipschitz. First, we observe that

F β
(
x0, x, v∗) = 1.

If (x1, x2, w∗) is a point in X̃ × S(E∗), different from (x0, x, v∗), then F β(x1, x2, w∗) = w∗( F (x1)−F (x2)
d(x1,x2)

) satisfies one of the
following possibilities:

∣∣∣∣w∗
(

F (x1) − F (x2)

d(x1, x2)

)∣∣∣∣ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∣∣1 − d(x2,x)
2(1+diam(X))

∣∣|w∗(v)| < 1, x2 �= x or w∗ �= −v∗,
or∣∣1 − d(x1,x)

2(1+diam(X))

∣∣|w∗(v)| < 1, x1 �= x or w∗ �= −v∗,
or
|d(x1,x)−d(x2,x)|

2(1+diam(X))
|w∗(v)|
d(x1,x2)

� 1
2 otherwise.

This is sufficient to conclude that |F β(ξ)| < 1, for every ξ ∈ Z except when ξ = (x0, x,±v∗) or ξ = (x, x0,±v∗). Since

Gβ
(
x0, x,−v∗) = −Gβ

(
x0, x, v∗),

and

Gβ
(
x, x0,±v∗) = ∓Gβ

(
x0, x1, v∗),

for all G ∈ Lip(X, E), Lemma 12 implies that ψ(x0,x,v∗) is an extreme point of the unit ball of A(X, E)∗ . �
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Note that if E is reflexive, then the above holds for any v∗ ∈ S(E∗), or for any v∗ ∈ ext(E∗) if E is QSR.
We recall that candidates for extreme points of type II for M(X, E)∗ are of the form (0, τ ) ◦ψ(x,ξ) , where τ = ±1, x ∈ X ,

and ξ ∈ Z = β( X̃ × S(E∗)). Observe that[
(0, τ ) ◦ ψ(x,ξ)

]
(ΦX,E F ) = τ F β(ξ) = τψξ

(
F β

) = τ ψ̃ξ (F )

for all F ∈ Lip(X, E).

Theorem 14. Suppose X is a compact, pointed metric space with special point x0 and E is a real Banach space. Then ψ̃ξ ∈
ExtII(Lip(X, E)∗) for ξ = (x0, x, v∗), where x �= x0 , and v∗ is norm attaining.

Proof. Let x, v∗ be as given in the statement of the theorem. Suppose

ψ̃(x0,x,v∗) = 1

2
δ∗

0 + 1

2
δ∗

1, (8)

where δ∗
0 , δ∗

1 are elements in the unit ball of Lip(X, E)∗ . As we have seen before, the action of δ∗
0 on Lip(X, E) is given by

an integral with respect to a regular Borel measure μ∗ on W with values in E∗ ⊕1 R, so that

δ∗
0(F ) =

∫
W

(ΦX,E F )dμ∗ =
∫
X

F du∗
0 +

∫
Z

F β dσ ∗
0 ,

where μ∗
0 is a measure on X with values in E∗ and σ ∗

0 is a real-valued measure on Z = β( X̃ × S(E∗)). Furthermore,
|μ∗

0|(X) + |σ ∗
0 |(Z) = 1, where we are using the total variation of the measures. The breakup of the integral into two pieces

as above is straightforward to show, and is especially clear if one uses the alternate form of W as a disjoint union of X
and Z . Of course, δ∗

1 has a similar makeup.
If we consider the Lipschitz function F defined in the previous lemma, we recall that ‖F‖∞ < L(F ) = 1. We have

1 = L(F ) = ψ̃(x0,x,v∗) F

= 1

2
δ∗

0(F ) + 1

2
δ∗

1(F )

= 1

2

[ ∫
X

F dμ∗
0 +

∫
X

F dμ∗
1

]
+ 1

2

[ ∫
Z

F βdσ ∗
0 +

∫
Z

F β dσ ∗
1

]
.

If |μ∗
0|(X) > 0 or |μ∗

1|(X) > 0, then

1 = L(F ) � 1

2

[‖F‖∞
∣∣μ∗

0

∣∣(X) + ‖F‖∞
∣∣μ∗

1

∣∣(X) + L(F )
∣∣σ ∗

0

∣∣(Z) + L(F )
∣∣σ ∗

1

∣∣(Z)
]

<
1

2

[∣∣μ∗
0

∣∣(X) + ∣∣μ∗
1

∣∣(X) + ∣∣σ ∗
0

∣∣(Z) + ∣∣σ ∗
1

∣∣(Z)
] = 1.

This contradiction means that μ∗
0(X) = μ∗

1(X) = 0, so that the actions of δ∗
0 and δ∗

1 reduce to functionals on the space we
called A(X, E). Hence, Eq. (8) is really a statement to which Lemma 13 applies. It follows that δ∗

0 = δ∗
1 = ψ̃(x0,x,v∗) , and the

theorem is proved. �
We note in passing, that a result of the above proof is that for all y ∈ X , x �= x0, and v∗ norm attaining, we have

(0, τ ) ◦ ψ(y,(x0,x,v∗)) ∈ ExtII(M(X, E)∗).

Theorem 15. Let X, Y be pointed, compact metric spaces and suppose that E, D are quasi sub-reflexive Banach spaces with trivial
centralizers. If T is a surjective linear isometry from Lip(X, E) to Lip(Y , D) such that

T ∗[ExtI
(
Lip(Y , D)∗

)] = ExtI
(
Lip(X, E)∗

)
,

then T and T −1 have the constant function property and there exists a surjective isometry V : E → D and an isometry ϕ : Y → X
such that

T F (y) = V F
(
ϕ(y)

)
,

for every F ∈ Lip(X, E) and y ∈ Y .

Proof. Since T ∗ maps extreme points of type I to extreme points of type I, it must do the same for extreme points of
type II. Suppose y0 is the special point in Y , y ∈ Y , and v∗ ∈ ext(D∗). By Theorem 14, ψ̃(y0,y,v∗) is an extreme point of
type II for Lip(Y , D)∗ , so that there exist ξ ∈ β( X̃ × S(E∗)) and τ = ±1 such that

T ∗[ψ̃(y ,y,v∗)](F ) = τ ψ̃ξ (F ).
0
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If F is a constant function, then we obtain

v∗[T F (y) − T F (y0)
] = τ F β(ξ) = 0.

Since this holds for all v∗ ∈ ext(D∗), we conclude that T F (y)−T F (y0) = 0, which implies that T F (y) = T F (y0) for all y ∈ Y ,
and T F is constant. The same argument applies to T −1, and so both T and T −1 have CFP. It follows from Corollary 7, part
(ii) that T is a composition operator given by T F (y) = V F (ϕ(y)), with ϕ a Lipschitz homeomorphism, and V (y) = V for all
y ∈ Y . The fact that ϕ is an isometry follows from Corollary 7, part (iii), since a pointed metric space has diam(X) � 2. �
Remark 16.

(i) We notice that if X is a compact, pointed metric space with special point x0, and E has trivial centralizer, the pseudo-
centralizer Z̃(Lip(X, E)) contains strictly the centralizer of Lip(X, E). Lemma 4 states that Z̃(Lip(X, E)) = {Mh: h ∈
Lip(X)}. Therefore, an extreme point of the type ψ̃(x0,x,v∗) must be an eigenvector of the adjoint of a multiplier opera-
tor Mh , for Mh to be in the centralizer. This implies that

M∗
h(ψ̃(x0,x,v∗)) = a(x0,x,v∗)ψ̃(x0,x,v∗).

For every F ∈ Lip(X, E) we have

v∗(h(x)F (x) − h(x0)F (x0)
) = a(x0,x,v∗)v∗(F (x) − F (x0)

)
.

For F the constant function equal to v , where v∗(v) �= 0, we have h(x) = h(x0) for all x ∈ X and h is a constant function.
Therefore the centralizer of the real space Lip(X, E) is trivial. In particular, it follows that the centralizer of real Lip(X)

is trivial for any compact pointed metric space X .
(ii) On the other hand, if we take X to be a two point space {x, y} with d(x, y) > 2, and E a Banach space with trivial

centralizer, then Lip(X, E)∗ has no extreme points of type II, so the centralizer and pseudo-centralizer are the same.
(iii) Following in the spirit of an example given in [11, p. 68], let X be a compact, pointed metric space with special point

x0. Let E be a Banach space, and define T : Lip(X, E) → Lip(X, E) by T F (x0) = F (x0), and T F (x) = F (x0)− F (x) if x �= x0.
It can be shown that T is an isometry, although it is not a weighted composition operator. Of course, T does not satisfy
CFP, nor property Q, nor even property P.
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