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This paper presents a linear time algorithm for approximating, in the sense below, the
longest path length of a given directed acyclic graph (DAG), where each edge length is
given as a normally distributed random variable. Let F (x) be the distribution function of
the longest path length of the DAG. Our algorithm computes the mean and the variance
of a normal distribution whose distribution function F̃ (x) satisfies F̃ (x) � F (x) as long as
F (x) � a, given a constant a (1/2 � a < 1). In other words, it computes an upper bound
1 − F̃ (x) on the tail probability 1 − F (x), provided x � F −1(a). To evaluate the accuracy
of the approximation of F (x) by F̃ (x), we first conduct two experiments using a standard
benchmark set ITC’99 of logical circuits, since a typical application of the algorithm is the
delay analysis of logical circuits. We also perform a worst case analysis to derive an upper
bound on the difference F̃ −1(a) − F −1(a).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The longest path problem for stochastic DAGs

Many practical problems are formulated as optimization problems on directed acyclic graphs (DAGs) with edge weights
(lengths).1 Typically the edges represent tasks, each of whose length represents the time necessary to complete it. The DAG
represents the precedence relation among the tasks. Assuming that independent tasks can be executed simultaneously, the
problem of computing the makespan of a task schedule minimizing the completion time is then reducible to the longest
path problem for the DAG, which is solvable in linear time [10], although it is NP-complete for general directed graphs [5].

In cases where problems in real world are too complicated to know the lengths with certainty, we sometimes assign to
the edge lengths random variables following suitable distributions, and try to obtain some quantities, e.g., the average of
the longest path length, for this stochastic DAG.

PERT [11] and Critical Path Planning [9] are two classical approaches to the stochastic longest path problem. Critical
Path Planning simply transforms the stochastic problem into the deterministic problem by taking some constant values as
the lengths. PERT on the other hand tries to approximate the expected longest path length, whose accuracy is studied e.g.,
in [4].
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1 In this paper, we consider the longest path problem, where the length of an edge is given by the weight of the edge. We thus prefer term “length” to
“weight”, as long as the longest path problem is considered.
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Martin [12] presented an algorithm for symbolically computing the distribution of the longest path length, assuming
that the density functions of the random variables are polynomials. Two key ingredients of his algorithm are a series and a
parallel reductions. He symbolically computes the distribution of series edges or parallel edges and repeats to replace these
edges in a network with an equivalent single edge, until the network is reduced to a single edge. For a series-parallel graph,
he can successfully compute the distribution, although the distribution may be a piecewise polynomial function whose
number of pieces is huge. In order to apply this approach to a DAG, he unfolds the DAG to a tree in such a way that each
of distinct paths of the DAG from the source to the sink corresponds to an independent path in the tree. Since the number
of distinct paths can be as large as an exponential in the order of DAG, his algorithm is inefficient.

Another approach is to consider a discrete version of the problem. We ask each of the random variables to take a discrete
value and try to apply a combinatorial optimization technique. However, according to Ball et al. [1], treating arbitrary series
of convolutions or max operations is known to be #P -hard, and hence this approach seems to be applicable only to small
instances.

In spite of this difficult situation, there are many applications to which linear time algorithms are inevitably required, even
at the expense of accuracy, because their instances are huge. A typical of such applications is the delay analysis of logical
circuits, whose ultimate (and usually unreachable) goal is to compute the distribution of circuit delay. The uncertainty of
gate delay comes from manufacturing fluctuation, and a normal distribution is used to model it (see e.g., [2]). Given a
success rate a (slightly less than 1.0), their practical goal is hence to estimate a value d such that the probability that the
circuit delay is less than d is at least a. We of course want to take d as small as possible.

Difficulty in the calculation of the distribution of the delay mainly arises from parallel gates (which correspond to
parallel edges in a DAG); the distribution of the delay of a circuit consisting of two parallel gates is, in general, not a
normal distribution any more, even if the delay of each of the gates is independently normally distributed. To avoid this
difficulty, Berkelaar [2] proposed a method to approximate the distribution of the delay of two parallel gates by a normal
distribution with the same mean and variance as the delay of the two gates. Since his method tends to under-estimate the
mean + 3σ point of delay, Hashimoto and Onodera [7] proposed a method to adjust the mean and the variance in order
for the approximation to have the same mean + 3σ point as the delay. Tsukiyama [14] proposed a method to obtain the
approximate mean and variance of the delay using Clark’s method [3], taking into account the correlation among paths. We
however note that all of these methods cannot remove the risk of under-estimation.

1.2. Our contributions

Let F (x) be the distribution function of the longest path length of a DAG, where the length of each edge is given as a
random variable following a normal distribution. We assume that the edge lengths are mutually independent. In this paper,
we present an algorithm A-DAG that computes a normal distribution N(μ̃, σ̃ 2) whose distribution function F̃ (x) satisfies
that F̃ (x) � F (x) if F (x) � a, given a (1/2 � a < 1). In the context of circuit delay analysis, since F (x) is the probability that
the circuit delay is less than or equal to x, the solution x = d of equation F̃ (x) = a guarantees that the delay of a product is
less than or equal to d with the probability at least a, where d can be easily calculated by referring to the table of standard
normal distribution, since F̃ (x) is a normal distribution function.

We can restate our result as follows: The tail probability is the probability that a random variable deviates at least a
given amount from the expectation. Many studies have been done to obtain upper bounds on it. The Chernoff bound on
the sum of independent Poisson trials is an example (see, e.g., [13, Section 4.1]). In our setting, the Chernoff bound is an
upper bound on the tail probability of the length of (a longest path of) a path graph, although the distribution of the length
of each edge is Poisson. For any DAG and constant a (1/2 � a < 1), our algorithm computes a normal distribution function
F̃ (x) such that 1 − F̃ (x) is an upper bound on the tail probability 1 − F (x) as long as x � a.

Let Fi(x) (i = 1, . . . ,k) be the normal distribution function given by a pair of a mean μi and a variance σ 2
i . Then

our algorithm uses, as a primitive operator, a function Inv(F1, F2, . . . , Fk; y) that returns a (unique) real number x0 such
that F1(x0)F2(x0) . . . Fk(x0) = y holds for any given real number y (0 < y < 1). Inv(F1, F2, . . . , Fk; y) can be calculated
by adopting a numerical method like the Newton’s method or the binary search method referring to the table of the
standard normal distribution. Provided that Inv returns a correct value in O (k) time,2 the time complexity of our algorithm
is O (|V | + |E|), where G = (V , E) is the given DAG.

From the view of practice, a small upper bound on F −1(a) is looked for. Since the circuit delay analysis is a main
application, we conduct experiments to observe the accuracy measured by Err(G,a) = F̃ −1(a) − F −1(a) of F̃ −1(a) for the
large circuits in ITC’99 benchmark set. A-DAG shows sufficiently good performance except for a couple of instances. We
formally derive an upper bound on Err, too.

1.3. Road map

To explain the ideas behind our liner time algorithm A-DAG, we start with a well-known algorithm D-DAG for computing
the longest path length of a DAG G = (V , E), in which a constant non-negative value c ji is associated with each edge

2 This assumption essentially assumes that the Newton’s method or the binary search method terminates in a constant number of repetitions and
produces the correct root up to the required level of accuracy. See Appendix A for a formal justification.
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(v j, vi) ∈ E . D-DAG is based on the dynamic programming method, and computes, for each vertex vi ∈ V in a topologically
sorted order, the longest path length li from the source to vi .

Algorithm D-DAG(G)
Topologically sort V = {v1, v2, . . . , vn};
(Assume that vi < vi+1.)
l1 := 0;
for i = 2, . . . ,n do;
li := maxv j∈V i {l j + c ji}, where V i is the set of parent vertices of vi;
return ln .

A-DAG tries to maintain “an approximate distribution Ci of the longest path length” from the source to vertex vi ∈ V i ,
instead of “the definite longest path length li ” in D-DAG. For this, we re-define the operations plus and max in D-DAG
for normal distributions in such a way that Cn becomes an approximation of the distribution of ln . Since the sum of two
normally distributed random variables also obey a normal distribution, the mean and the variance of which are the sums
of the means and the variances of the two normal distributions, we can immediately replace operation plus with two pluss,
one for mean and the other for variance.

Technical details of A-DAG arise from how to implement max operation. To this end, we introduce three subclasses of
DAG called quasi-tree graphs (QTREE), racket graphs (RACKET) and parallel graphs (PARA), and transform the problem of
computing Ci for a DAG finally into the problem of approximating, by a normal distribution, the distribution of the longest
path length of a PARA, using first QTREE and then RACKET.

We however describe this transformation in the reverse direction. We explain 1) how to approximate the distribution
of the longest path length of a PARA by a normal distribution (Section 3.1), 2) how to transform a RACKET into a PARA
(Section 3.2), 3) how to transform a QTREE into a RACKET (Section 3.3), and finally 4) how to transform a DAG into a QTREE
(Section 4), in this order.

The paper is organized as follows: After preparing basic notions in Section 2, Section 3 introduces three subclasses PARA,
RACKET and QTREE, and describes the above transformations. Then we in Section 4 present our algorithm A-DAG. Section 5
is devoted to performance analysis of A-DAG. We first explain about experimental results using ITC’99 as instances, and then
formally bound error Err. Finally we conclude the paper by giving some open problems in Section 6.

2. Preliminaries

Consider a DAG G = (V , E) with a pair of a source and a sink. For each edge ei ∈ E of G , we associate a random variable
Xi that represents the length of ei , and assume that Xi ∼ N(μi, σ

2
i ), where N(μ,σ 2) is the normal distribution with mean

μ and variance σ 2. We assume that the random variables are mutually independent. The (probability) density function of
Xi is

f i(x) = 1

σi
√

2π
exp

(
−1

2

(
x − μi

σi

)2)
,

and its distribution function is

Fi(x) =
x∫

−∞
f i(t)dt.

N(0,1) is called the standard normal distribution. Let Φ(x) and φ(x) be the distribution function and the density function
of N(0,1). Then we have

Fi(x) = Φ

(
x − μi

σi

)
.

Since each edge length is given as a random variable, the length of a longest path from the source to the sink is
also a random variable. Before starting the introduction of our approximation algorithm, we would like to explain how to
calculate in theory the distribution of the longest path length of a series-parallel graph, to give readers an intuition about
the difficulty of the problem.

Let e1 and e2 be two edges with edge lengths X1 and X2, respectively. We assume that X1 and X2 are mutually inde-
pendent. Suppose that two edges e1 and e2 are connected in series. The length X of the longest path is then X = X1 + X2
and its distribution function F (x) is

F (x) = P (X1 + X2 � x) =
∞∫

f1(x − t)F2(t)dt.
−∞
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If Xi ∼ N(μi, σ
2
i ) for i = 1,2, then X ∼ N(μ1 + μ2, σ

2
1 + σ 2

2 ), and we can easily calculate F (x).
Suppose that e1 and e2 are connected in parallel. The length X of a longest path is X = max{X1, X2}, whose distribution

function F (x) is given by

F (x) = P
(
max{X1, X2} � x

) = F1(x)F2(x).

Note that X is not normally distributed, even if both X1 and X2 follow normal distributions. Hence we cannot identify F (x)
in terms of a mean and a variance, unlike the case of series edges.

The distribution function of the longest path length of a series-parallel graph can be numerically calculated by repeatedly
calculating the above two formulae (after generalizing them to more than 2 random variable cases), but it is by no means
easy, since the longest path length of a sub-graph is not normally distributed. If the longest path length of parallel edges
were to be normally distributed, the calculation for series-parallel graphs would be quite simple. This motivates our Theorem
3, which approximates the distribution of the longest path length of parallel edges by an appropriate normal distribution.
However, as will be seen, Theorem 3 alone is not strong enough even for very simple series-parallel graphs. In the next
section, we give key ideas behind our algorithm by developing approximation algorithms for three restricted classes, the
parallel graphs, the racket graphs, and the quasi-tree graphs, of DAGs.

3. Key ideas

3.1. Parallel graphs

Let F (x) and F̃ (x) be functions and let x0 be a fixed value. If F (x) � F̃ (x) for any x � x0, we say that F̃ (x) approximates
F (x) with respect to x0. Our goal is to find a F̃ (x) that approximates F (x) with respect to F −1(a), for a given a (1/2 � a < 1).

We first consider a DAG G = (V , E) consisting only of two parallel edges, i.e., V = {u, v} and E = {e1, e2} where ei =
(u, v), i = 1,2. As in Section 2, let X1 and X2 be random variables assigned to e1 and e2, respectively, where Xi ∼ N(μi, σ

2
i )

for i = 1,2. We assume without loss of generality that σ1 � σ2. Let f i(x) and Fi(x) be the density and the distribution
functions of Xi (i = 1,2), respectively; then F (x) = F1(x)F2(x) is the distribution function of X = max{X1, X2}. Let f̃ (x) and
F̃ (x) respectively be the density function and the distribution function of N(μ̃, σ̃ 2).

Suppose that a real number x0 is given. For σ̃ = σ1 and μ̃ = x0 − σ1Φ
−1(F (x0)), F̃ (x) approximates F (x) with respect to

x0. We show this fact in the following by investigating H(x) = F (x) − F̃ (x).

Lemma 1. For any N(μ2, σ
2
2 ), σ1 that satisfies σ1 � σ2 and any real number x0 , there is a μ̃2 such that the distribution function

F̃2(x) of N(μ̃2, σ
2
1 ) approximates F2(x) with respect to x0 .

Proof. First observe that equation F2(x) − F̃2(x) = 0 has a unique root x0 if μ̃2 = x0 − σ1Φ
−1(F2(x0)). Then it is obvious to

show that F̃2(x) � F2(x) holds for x � x0, since σ2 � σ1 by assumption. �
Since F̃2(x) approximates F2(x) with respect to x0 by Lemma 1, F1(x) F̃2(x) approximates F1(x)F2(x) with respect to

x0. It is thus sufficient to show that F̃ (x) approximates F1(x)F2(x) with respect to x0, provided that σ2 = σ1 = σ . Let
μ̃ = x0 − σΦ−1(F (x0)) and σ̃ = σ .

Lemma 2. H(x0) = 0.

Proof. Since μ̃ = x0 − σΦ−1(F (x0)), F̃ (x0) = Φ((x0 − μ̃)/σ ), which implies that H(x0) = 0. �
Lemma 3. μ̃ > max{μ1,μ2}.

Proof. We assume μ1 � μ2 without loss of generality and show μ̃ > μ1. Since F2(x) < 1, F (x) < F1(x). Suppose μ̃ � μ1.
Since F1(x) and F̃ (x) are normal distribution functions sharing variance σ 2, F (x) < F1(x) � F̃ (x) holds, a contradiction by
Lemma 2. �

In the following, we concentrate on showing that equation H(x) = 0 has no roots greater than x0. Consider the derivative
h(x) of H(x) and let

h(x) = H ′(x) = f1(x)F2(x) + F1(x) f2(x) − f̃ (x).

Lemma 4. There exists a constant x+ such that h(x) < 0 holds for all x > x+ .

Proof. By definition,
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h(x) = f̃ (x)

(
f1(x)

f̃ (x)
F2(x)︸ ︷︷ ︸

A(x)

+ f2(x)

f̃ (x)
F1(x)︸ ︷︷ ︸

B(x)

−1

)
.

As for A(x), since σ̃ = σ1 = σ ,

A(x) = f1(x)

f̃ (x)
F2(x) = exp

(−(c1x − c2)
)

F2(x),

where c1 = (μ̃ − μ1)/σ
2 and c2 = (μ̃2 − μ1

2)/2σ 2. Since F2(x) < 1 and μ̃ > μ1 by Lemma 3, limx→+∞ A(x) = 0.
Since limx→+∞ B(x) = 0 holds by a similar argument, there exists a constant x+ such that A(x)+ B(x) < 1 for all x > x+ ,

which completes the proof, since f̃ (x) is positive. �
Corollary 1. There is a constant w+ such that H(x) > 0 holds for all x > w+ .

Proof. Observe that limx→+∞ H(x) = 0. Thus the corollary holds by Lemma 4. �
We now start counting the number of roots of equation h(x) = 0 by using the following technical lemma.

Lemma 5. Let g(x) and G(x) be the probabilistic density and the distribution functions of a normal distribution N(μ,σ 2). Then
K (x) = G(x)/g(x) is positive strictly monotonically increasing.

Proof. Clearly, K (x) is positive. Consider the derivative k(x) of K (x). Then

k(x) = K ′(x) = 1

g(x)

(
g(x) +

(
x − μ

σ 2

)
G(x)

)
︸ ︷︷ ︸

A(x)

.

Since

d

dx
A(x) = d

dx

(
g(x) +

(
x − μ

σ 2

)
G(x)

)
= 1

σ 2
G(x) > 0,

A(x) is monotonically increasing. Since

lim
x→−∞ xG(x) = lim

x→−∞
g(x)

x−2
= 0

by l’Hôpital’s rule, we have

lim
x→−∞

(
g(x) +

(
x − μ

σ 2

)
G(x)

)
= 0,

which implies that A(x) and hence k(x) are positive. Thus K (x) is strictly monotonically increasing. �
Next lemma is used to bound the number of extremal points of H(x).

Lemma 6. Equation h(x) = 0 has at most two roots.

Proof. Instead of h(x), we analyze L(x), where

L(x) = ln
(

f1(x)F2(x) + F1(x) f2(x)
) − ln f̃ (x).

Consider the derivative L′(x) of L(x) and equation L′(x) = 0, which leads to

2 − 1

σ 2
(μ̃ − μ2)

F1(x)

f1(x)
− 1

σ 2
(μ̃ − μ1)

F2(x)

f2(x)
= 0. (1)

Since F1(x)/ f1(x) and F2(x)/ f2(x) are positive monotonically increasing functions by Lemma 5 and μ̃ > max{μ1,μ2}
(otherwise F̃ (x) does not intersect with F1(x)F2(x)), the left-hand side of (1) is strictly monotonically decreasing, and
hence equation L′(x) = 0 has at most one root for x � x0. Thus L(x) = 0 has at most two roots, and so does the equation
h(x) = 0. �

We are ready to show the following theorem.
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Theorem 1. Let x0 be any real number. For σ̃ = σ1 and μ̃ = x0 − σ1Φ
−1(F (x0)), F̃ (x) approximates F (x) with respect to x0 .

Proof. Equation h(x) = 0 has at most two roots by Lemma 6. Since limx→−∞ H(x) = 0, H(x0) = 0, and limx→+∞ H(x) = 0,
if H(x) = 0 had a root greater than x0, equation h(x) = 0 would have at least three roots. Hence H(x) � 0 for all x � x0. �

Given a real number y (0 < y < 1), we introduce a function Inv(F1, F2, . . . , Fk; y) that returns a (unique) real number
x0 such that F1(x0)F2(x0) . . . Fk(x0) = y holds. We also use Inv to denote the inverse of a function and let Inv(F1; y) =
F −1

1 (y) = x0. In this paper, we assume that Inv(F1, F2, . . . , Fk; y) returns x0 in O (k) time. (See Appendix A for justification.)
Now we describe an algorithm 2-PARA that calculates F̃ (x) in terms of its mean μ̃ and variance σ̃ 2, given F1, F2 and a real
number a (0 < a < 1).

Algorithm 2-PARA(F1, F2,a):
x0 := Inv(F1, F2;a);
σ̃ := max{σ1, σ2};
μ̃ := x0 − σ̃ Inv(Φ;a);
return (μ̃, σ̃ 2).

Theorem 2. Algorithm 2-PARA correctly computes F̃ (x) that approximates F (x) = F1(x)F2(x) with respect to F −1(a), in O (1) time.

Proof. Since x0 = F −1(a), it is sufficient to check that μ̃ and σ̃ satisfy the conditions of Theorem 1. Clearly σ̃ is correctly
chosen. Since Inv(Φ;a) = Φ−1(F (x0)), μ̃ is correctly chosen as well. The time complexity O (1) of 2-PARA is trivial by
assumption on Inv. �

We next generalize 2-PARA to propose an Algorithm A-PARA that can treat a general parallel graph G with k parallel
edges ei (1 � i � k), whose lengths are given by mutually independent random variables Xi (1 � i � k) that obey nor-
mal distributions N(μi, σ

2
i ) (1 � i � k). Let Fi(x) be the distribution function of N(μi, σ

2
i ). Then F (x) = Π1�i�k Fi(x) is

the distribution function of the longest path length of G . We now present Algorithm A-PARA, which calculates a normal
distribution N(μ̃, σ̃ 2) whose distribution function F̃ (x) approximates F (x) with respect to F −1(a).

Algorithm A-PARA(G,a):
x0 := Inv(F ;a);
σ̃ := max1�i�k{σi};
μ̃ := x0 − σ̃ Inv(Φ;a);
return (μ̃, σ̃ 2).

Theorem 3. For a given real number a (0 < a < 1), A-PARA returns a normal distribution function F̃ (x) that approximates F (x) with
respect to F −1(a). A-PARA runs in O (k) time.

Proof. We first show that the time complexity of A-PARA is O (k). Since F (x) = Π1�i�k Fi(x), x0 is calculated in O (k) time
by the assumption on Inv. The calculation of σ̃ needs O (k) time, and that of μ̃ needs O (1) time.

In order to show the theorem, we show a slightly stronger claim by induction on k: F̃ (x) approximates F (x) with respect
to F −1(a) and F̃ (x0) = F (x0) = a holds. When k = 1, μ̃ = μ and σ̃ = σ hold, and thus F̃ (x) = F (x). When k = 2, Theorem 2
guarantees the first part of the claim. To observe that F̃ (x0) = F (x0) = a, we calculate

F̃ (x0) = Φ

(
x0 − μ̃

σ̃

)

= Φ

(
x0 − (x0 − σ̃Φ−1(F (x0)))

σ̃

)
= F (x0).

We thus concentrate on the induction step.
Let G− be the parallel graph constructed from G by removing the k-th edge. Then the distribution function of the

longest path length of G− is given by H(x) = ∏
1�i�k−1 Fi(x). By induction hypothesis, for x0 = F −1(a), the output H̃(x) of

A-PARA(G−, H(x0)) approximates H(x) with respect to x0 (= H−1(H(x0))) and H̃(x0) = H(x0) holds, since 0 < H(x0) < 1.
Let K (x) be the output of 2-PARA(H̃, Fk, H̃(x0)Fk(x0)). Then K (x) is an approximation of F (x) = Π1�i�k Fi(x) = H(x)Fk(x)

with respect to F −1(a) since H̃(x0)Fk(x0) = H(x0)Fk(x0) = F (x0) = a and K (x) � H̃(x)Fk(x) � H(x)Fk(x) = F (x) for all x � x0.
For 2-PARA (or the case of k = 2), we know that K (x0) = H̃(x0)Fk(x0) = F (x0). Thus all what we need is to show F̃ (x) = K (x).

First, F̃ (x) and K (x) share variance σ̃ = max1�i�k{σi}. Since F̃ (x0) = F (x0) by the same argument as in case k = 2, we
have F̃ (x0) = K (x0). Thus F̃ (x) = K (x) holds. �
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Fig. 1. A racket graph and its transformation to a parallel graph.

3.2. Racket graphs

Since the longest path length of a parallel graph can be approximated by A-PARA, we proceed to a slightly more complex
class of DAGs, which will be referred to as racket graphs. A simple racket graph consists only of three vertices and three
edges (see Fig. 1 (left)). In the figure, Xi ’s and Z are mutually independent random variables associated with the edges. Let
Z ∼ N(μZ , σ 2

Z ). By Theorem 1, we calculate a normal distribution N(μ̃, σ̃ 2) that approximates max{X1, X2} with respect
to some given x0. Then we optimistically hope that N(μ̃ + μZ , σ̃ 2 + σ 2

Z ) would correctly approximate the distribution
of max{X1, X2} + Z with respect to x0, which is not always correct. For example, consider a case where X1 ∼ N(0,1),
X2 ∼ N(0,0) and Z ∼ N(0,1); A-PARA returns μ̃ = 0 and σ̃ = 1 in this example, if parameter a is greater than 1/2. Now
the distribution function of N(μ̃ + μZ , σ̃ 2 + σ 2

Z ) = N(0,2) is greater than the distribution function of max{X1, X2} + Z for
any x, which does not meet our definition of approximation. Theorem 3 alone is not sufficient to process even such a simple
DAG.

To avoid this problem, we consider a graph shown in Fig. 1 (right), which is obtained from Fig. 1 (left) by duplicat-
ing vertex v and the outgoing edge. Random variables X1, X2 and Z follow the same normal distributions as those in
Fig. 1 (left), and are assumed to be mutually independent. New random variable Z ′ follows the same distribution as Z , and
is assumed to be mutually independent with X1, X2 and Z .

Let Fa(x) (resp. Fb(x)) be the distribution function of the longest path length of graph in Fig. 1 (left) (resp. Fig. 1 (right)).
As Property 1 below claims in a general form, Fa(x) � Fb(x) holds for any x, since Z and Z ′ follow the same distribution.
Then F̃ (x) approximates Fa(x) if F̃ (x) approximates Fb(x) with respect to a given x0. A good news is that Theorem 3
guarantees that A-PARA can compute such F̃ (x), since the lengths of two paths of graph in Fig. 1 (right) follow normal
distributions N(μ1 + μZ , σ 2

1 + σ 2
Z ) and N(μ2 + μZ , σ 2

2 + σ 2
Z ), respectively.

Consider a generalization of the graph in Fig. 1 (left) such that there are k edges between S and v . Those graphs are
referred to as racket graphs. Let us call the parallel edges between S and v head and the edge between v and T shaft. As
explained in above, we make use of a transformation from a racket graph to a parallel graphs. We introduce it in a more
general form.

Let G = (V , E) be a DAG; Xe , a random variable associated with each edge e ∈ E; and N(μe, σ
2
e ), a normal distribution

that Xe follows. By P = Par(G), we denote the parallel graph with |Π | multiple edges, where Π is the set of paths π in G
that connect source S and sink T . For each of edges eπ , a random variable Yπ is associated with, which follows a normal
distribution N(μπ ,σ 2

π ), where μπ = ∑
e∈π μe and σ 2

π = ∑
e∈π σ 2

e . The following property seems to be well-known,3 but
we provide a proof for the convenience of readers.

Property 1. Let F (x) (resp. F P (x)) be the distribution function of the longest path length of G (resp. P = Par(G)). Then F P (x) � F (x)
for all x.

Proof. We only show the simplest case in which G is given in Fig. 1 (left). A general case can be shown by using a structural
induction, with this simplest case as the base case. P = Par(G) is hence the parallel graph in Fig. 1 (right). We show

P
(
max{X1 + Z , X2 + Z ′} > x

)
� P

(
max{X1 + Z , X2 + Z} > x

)
.

Let F X1 and F X2 be the distribution functions of X1 and X2, respectively. By definition, the left-hand side is

L =
∫ ∫

{(x1,x2)∈R2}
P
(
max{x1 + Z , x2 + Z ′} > x | X1 = x1, X2 = x2

)
dF X1 (x1)dF X2 (x2),

which is reducible to∫ ∫
{(x1,x2)∈R2}

P
(
max{x1 + Z , x2 + Z ′} > x

)
dF X1 (x1)dF X2 (x2),

since X1, X2, Z and Z ′ are mutually independent.
By the same reason, the right-hand side is

3 Although we deal with only normally distributed edge lengths, Property 1 holds for arbitrarily distributed edge lengths.
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R =
∫ ∫

{(x1,x2)∈R2}
P
(
max{x1 + Z , x2 + Z} > x

)
dF X1 (x1)dF X2 (x2).

Let E1 = {(x1, x2) ∈ R2: x1 > x2} and E2 = {(x1, x2) ∈ R2: x1 � x2}. Then L = L1 + L2 and R = R1 + R2, where

L1 =
∫ ∫

E1

P
(
max{x1 + Z , x2 + Z ′} > x

)
dF X1 (x1)dF X2 (x2),

L2 =
∫ ∫

E2

P
(
max{x1 + Z , x2 + Z ′} > x

)
dF X1 (x1)dF X2 (x2),

R1 =
∫ ∫

E1

P
(
max{x1 + Z , x2 + Z} > x

)
dF X1 (x1)dF X2 (x2),

and

R2 =
∫ ∫

E2

P
(
max{x1 + Z , x2 + Z} > x

)
dF X1 (x1)dF X2 (x2).

We have L1 � R1, since

R1 =
∫ ∫

E1

P (x1 + Z > x)dF X1 (x1)dF X2 (x2)

and P (x1 + Z > x) � P (max{x1 + Z , x2 + Z ′} > x). Then we have L2 � R2, since

R2 =
∫ ∫

E2

P (x2 + Z > x)dF X1 (x1)dF X2 (x2)

and P (x2 + Z > x) = P (x2 + Z ′ > x). �
Suppose that a racket graph R and a real number a (0 < a < 1) are given. We first construct a parallel graph P =

Par(R) and next compute a normal distribution function F̃ (x) that approximates F P (x) by Algorithm A-PARA. Then F̃ (x)
approximates F R(x) by Property 1. Let us call this algorithm A-RACKET.

Algorithm A-RACKET(R,a):
P := Par(R);
Call A-PARA(P ,a), which returns (μ̃, σ̃ 2);
return (μ̃, σ̃ 2).

Theorem 4. Let R and F R(x) be a racket graph and the distribution function of the longest path length of R, respectively. For any given
real number a (0 < a < 1), A-RACKET returns a normal distribution function F̃ (x) that approximates F R(x) with respect to F −1

R (a).
A-RACKET runs in O (m) time, where m is the size (i.e., the number of edges) of R.

Proof. By Theorem 3, F̃ (x) approximates F P (x) with respect to F −1
P (a), where F P (x) is the distribution function of the

longest path length of P (= Par(R)). For all x such that F P (x) � a, F̃ (x) � F P (x) � F R(x) by Property 1, which implies that
F̃ (x) � F R(x) for all x such that F R(x) � a.

As for the time complexity, we can construct P in O (m) time, and A-PARA(P ,a) requires O (m) time. �
Note that, by Property 1, the distribution function F (x) of the longest path length of a DAG G can be approximated by

applying A-PARA to Par(G). However the time complexity O (k) of A-PARA in this case is as large as �(2n) in the worst
case, where n is the order of G , since k is the number of paths in G (and hence the number of edges of Par(G)). Our
Algorithm A-DAG proposed in Section 4 implements this idea in linear time using a dynamic programming technique.

3.3. Quasi-tree graphs

We discuss quasi-tree graphs in this subsection. Fig. 2 illustrates a quasi-tree graph. A quasi-tree graph consists of an
in-tree with the root (hence sink) T and the source S , from which there is an edge to each of the leaves of the in-tree. Let
V = {v1, v2, . . . , vn} be the vertex set of a quasi-tree graph G = (V , E), where v1 = S and vn = T . A vertex vi (resp. v j ) is
called a parent (resp. a child) of vertex v j (resp. vi ) if there is an edge (vi, v j) in E . We denote the set of all parents of a
vertex vi by V i .
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Fig. 2. A quasi-tree graph.

Fig. 3. Transformation of a general quasi-tree graph.

For a vertex vi (	= S), let Gi be the subgraph of G induced by the set of paths in G connecting S and T through vi ,
and we denote by Yi the length of a longest path of Gi . Let FYi be the distribution function of Yi . Since Gn = G , we are
approximating FYn . By W ij we denote the longest path length between vi and v j in G . The path πi from vi to T in Gi is
unique. We denote the length of πi by Zi . Then Zi follows a normal distribution N(μZi , σ

2
Zi

); i.e., μZi = ∑
e∈πi

μe and σ 2
Zi

=∑
e∈πi

σ 2
e , where Xe ∼ N(μe, σ

2
e ). By definition, we have Yi = W1i + Zi . Algorithm A-QTREE computes for each i a normal

distribution Di = N(μ̃i, σ̃
2
i ) that approximates FYi . To compute Di , we use normal distribution C j = N(μ̃ j − μZ j , σ̃

2
j − σ 2

Z j
)

= N(ν j, τ
2
j ) for v j ∈ V i .

We explain how to calculate Ci and Di . First topologically sort V = {v1, v2, . . . , vn} and assume without loss of generality
that v1 = S , vn = T and vi < vi+1 for all 1 � i � n − 1. Hence j < i if v j ∈ V i . We calculate Ci and Di in the increasing
order of i. For the base case, we define C1 = N(0,0), i.e., ν1 = τ 2

1 = 0. (Note that the definition of C1 is just for initializing
ν1 = τ 2

1 = 0.)
Let vi (i � 2) be a vertex. We assume that C j have already calculated for all j < i. The key of the algorithm is a

transformation from Gi to a racket graph Ri (Fig. 3). As the head of Ri , we put |V i | parallel edges a j (v j ∈ V i) between S
and v . Let e j = (v j, vi) and assume that its length obeys N(μe j , σ

2
e j

). We assign to each edge a j a random variable U j that

follows a normal distribution N(ν j + μe j , τ
2
j + σ 2

e j
), and to the shaft a random variable Zi that follows N(μZi , σ

2
Zi

).

A-QTREE then calculates a normal distribution Di = N(μ̃i, σ̃
2
i ), that approximates the distribution of the longest path

length of Ri by executing A-RACKET, and put Ci = N(μ̃i −μZi , σ̃
2
i −σ 2

Zi
). We give a description of A-QTREE in the following.

Algorithm A-QTREE(G,a):
Topologically sort V = {v1, v2, . . . , vn};
(Assume that v1 = S, vn = T and vi < vi+1.)
Compute μZi and σ 2

Zi
for all vi ∈ V ;

C1 := (0,0);
for i = 2,3, . . . ,n do

Construct Ri;
Call A-RACKET(Ri,a), which returns (μ̃, σ̃ 2);
Ci := (μ̃ − μZi , σ̃

2 − σ 2
Zi

);
return Cn = (μ̃, σ̃ 2).

Note that in A-QTREE we adopt a convention that μZn = σ 2
Zn

= 0, since πn is an empty path of length 0. That is,
Dn = Cn .
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Theorem 5. Let G and F (x) be a quasi-tree graph and the distribution function of its longest path length, respectively. For any given
real number a (0 < a < 1), A-QTREE returns a normal distribution function F̃ (x) that approximates F (x) with respect to F −1(a) in
O (n) time, where n and m are respectively the order and the size of G.

Proof. Let F̃ Yi (x) be the distribution function of Di = N(μ̃i, σ̃
2
i ), where Di is the output of A-RACKET(Ri,a) in A-QTREE.

( F̃ Yi (x) approximates the distribution function FYi (x) the longest path length Yi of Gi ). By Theorem 4, F̃ Yi (x) approximates
the distribution function of the longest path length of Ri . In the following, by induction on i, we show that F̃ Yi (x) also
approximates FYi (x), which is the distribution function of the longest path length of Gi .

Consider v2 as the base case (since v1 = S). Since G is a quasi-tree, v2 is a child of S and |V 2| = 1. Let e = (v1, v2).
Then A-RACKET returns N(μe + μZ2 , σ

2
e + σ 2

Z2
) as D2, which is clearly the distribution that Y2 follows.

Then we go on the induction step. By induction hypothesis, F̃ Y j (x) approximates FY j (x) with respect to F −1
Y j

(a) for

each v j ∈ V i (since v j ∈ V i implies j < i). Since G j is a subgraph of Gi , FY j (x) � FYi (x) for any j, which implies that

F −1
Y j

(a) � F −1
Yi

(a). That is, F̃ Y j (x) approximates FY j (x) with respect to F −1
Yi

(a). By Property 1, FYi (x) �
∏

v j∈V i
FY j (x). By the

definition of A-RACKET, we have FYi (x) �
∏

v j∈V i
F̃Y j (x) � F̃ Yi (x) for all x � F −1

Yi
(a), since

∏
v j∈V i

F̃Y j (x) is the distribution
function of Par(Ri).

As for the time complexity, topological sort of V and calculations of μZi and σ 2
Zi

for all vi ∈ V require O (m + n)

time. Construction of Ri and A-RACKET(Ri,a) requires O (|V i |) time. Hence the whole computation time of A-QTREE is
O (m + n). �

4. The algorithm

4.1. Algorithm A-DAG

This subsection introduces our algorithm A-DAG. We would like to explain the idea behind A-DAG first of all. For any
DAG G , F (x) can be approximated by applying A-PARA to Par(G). The time complexity O (k) of A-PARA(Par(G),a) however
can be as large as �(2n), where n is the order of G , since k is the number of paths in G , as pointed out in Section 3.
Let N(μ̃Par, σ̃

2
Par) be the output of A-PARA(Par(G),a). A-DAG approximates N(μ̃Par, σ̃

2
Par) in linear time using a dynamic

programming technique. We denote the normal distribution that the length of edge eπ follows by N(μπ ,σ 2
π ), for any edge

eπ in Par(G). Let σ 2
max = maxπ σ 2

π . Then σ̃ 2
Par = σ 2

max by the definition of A-PARA, and we can easily calculate σ 2
max by

applying a linear time longest path algorithm to a DAG (with deterministic edge lengths). What A-DAG essentially needs to
do is to estimate an upper bound μ̃ on μ̃Par. Then the distribution function of N(μ̃,σ 2

max) approximates that of N(μ̃Par, σ̃
2
Par)

and hence F (x).
A-QTREE realizes the same idea, and indeed the descriptions of A-QTREE and A-DAG are identical. A-DAG first topolog-

ically sorts V = {v1, v2, . . . , vn} like A-QTREE. We assume without loss of generality that v1 = S , vn = T and vi < vi+1 for
any 1 � i � n − 1. As before, we denote the subgraph of G induced by the set of paths connecting v1 (= S) and vn (= T )

through vi by Gi , and let Yi denote the longest path length of Gi . Like A-QTREE, A-DAG calculates a normal distribution Di

that approximates the distribution function of Yi in the increasing order of i.
For any two vertices vi and v j in G such that vi is reachable from v j , we denote the subgraph of G induced by the

set of paths in G connecting v j and vi by G ji . We have seen that A-QTREE approximates the distribution function of
Yi = W1i + W in for each vi ∈ V when G is a quasi-tree. (We used symbol Zi instead of W in in the last subsection.) Recall
that in A-QTREE, we calculate a normal distribution Ci for all i. The essence of the correctness proof of A-Q-TREE is to
show that Ci = N(μ̃i − μZi , σ̃

2
i − σ 2

Zi
) gives a normal distribution function that can be used as an approximation of the

distribution function of W1i , although it is of course not the case in general. A-QTREE is not directly applicable for our
purpose here however, since first, Gin is not a quasi-tree and second, W in is not the length of a path, when G is a DAG.
Nevertheless, we pursue this idea optimistically believing that the above claim on Ci holds even for a DAG, if we choose an
appropriate path πi in Gin . A-DAG chooses, as πi , a path that has the maximum variance among the paths in Gin . We shall
then show that this choice makes the claim true.

We denote the length of πi by Zi , and let N(μZi , σ
2
Zi

) be its distribution. That is, σZi � σπ for any path π in Gin , where

N(μπ ,σ 2
π ) is the distribution of the length of π . The description of A-DAG is exactly the same as A-QTREE, except for the

difference of the definition of πi . πi is defined to be a path with the maximum variance in Gin in A-DAG, while in A-QTREE
it is the unique path connecting vi and T . Then Cn (= Dn) is the approximation which we are looking for; that is, the
distribution function of Cn approximates that of the longest path length of G with respect to F −1(a). Now we are ready to
present our algorithm, which however is exactly the same as A-QTREE, since the computations of μZi and σ 2

Zi
are implicit

in this description.
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Algorithm A-DAG(G,a):
Topologically sort V = {v1, v2, . . . , vn};
(Assume that v1 = S, vn = T and vi < vi+1.)
Compute μZi and σ 2

Zi
for all vi ∈ V ;

C1 := (0,0);
for i = 2,3, . . . ,n do

Construct Ri;
Call A-RACKET(Ri,a), which returns (μ̃, σ̃ 2);
Ci := (μ̃ − μZi , σ̃

2 − σ 2
Zi

);
return Cn = (μ̃, σ̃ 2).

Note that in A-DAG we adopt a convention that μZn = σ 2
Zn

= 0, since πn for vn is an empty path. That is, Dn = Cn =
N(μ̃ − μZn , σ̃

2 − σ 2
Zn

).

4.2. Correctness of A-DAG

Algorithm A-DAG sorts V = {v1, v2, . . . , vn} topologically and assumes that v1 = S , vn = T , and vi < vi+1 for all 1 � i �
n − 1. We show that the distribution function F̃ (x) of Cn approximates the distribution function F (x) of the longest path
length of G with respect to F −1(a) (1/2 � a < 1).

First of all, let us confirm that σ̃ 2 = σ 2
max, where σ 2

max is the maximum variance appeared as a variance of a normal
distribution attached to an edge in Par(G). We show this fact in a more general form. For a vertex vi , let πi be the path
connecting vi and T that A-DAG chooses. Consider a graph Bi that is G1i with a tail πi . More formally, Bi is the subgraph
of G induced by all paths π connecting S and T that share πi as a suffix, i.e., π can be rewritten as π ′πi , where π ′ is
a path connecting S and vi . Let Pi = Par(Bi), and by σ 2

maxi
we denote the maximum variance appeared as a variance of a

normal distribution attached to an edge in Pi . Let Di = N(μ̃i, σ̃
2
i ) = N(νi +μZi , τ

2
i +σ 2

Zi
) be the output of A-RACKET(Ri,a),

where Ci = N(νi, τ
2
i ) and Zi ∼ N(μZi , σ

2
Zi

). Considering the consistency, let us define D1 = N(μZ1 , σ
2
Z1

). We denote the set
of all parents of vi by V i as before.

Lemma 7. σ̃ 2
i = σ 2

maxi
.

Proof. The proof is by induction on i. The base case is trivial, since P1 is a path π1 and σ̃ 2
1 = σ 2

Z1
.

Consider the induction step. By definition σ 2
maxi

= maxv j∈V i {σ 2
max j

−σ 2
Z j

+σ 2
Z ji

}, where σ 2
Z ji

is the variance of the normal

distribution that the length of path (v j, vi)πi follows. By induction hypothesis, we have σ̃ 2
j = σ 2

max j
since j < i. That is,

τ 2
j = σ 2

max j
− σ 2

Z j
. By the definition of Ri , the variance of the normal distribution assigned to the j-th edge a j of the head

is τ 2
j +σ 2

e ji
, where e ji = (v j, vi), and since σ 2

Zi
is assigned as the variance of its shaft, σ̃ 2

i = maxv j∈V i {τ 2
j +σ 2

Z ji
} = σ 2

maxi
, by

the definitions of Par and A-PARA. �
By Property 1, the distribution function of the longest path length of Pi is smaller than or equal to that of Bi . Let Fi(x)

be the distribution function of the longest path length of Pi , and F̃ i(x) the distribution function of Di . Since Bn = G , it is
sufficient to show that F̃ i(x) approximates Fi(x) for all 1 � i � n with respect to F −1

i (a) for any 1/2 � a < 1. We show this
by an induction on i.

First consider the base case where i = 1. Since B1 is actually a path π1, B1 = P1 and hence clearly D1 is the exact
normal distribution that the length of π1 obeys.

Let us proceed to the induction step. By induction hypothesis, F̃ j(x) approximates F j(x) for all 1 � j � i − 1 with
respect to F −1

j (a). For each of v j ∈ V i , let P ji be the subgraph of Pi induced by the set of paths through v j . Observe that
P ji = Par(B ji), where B ji is the graph constructed from B j by replacing π j with (v j, vi)πi .

As in the proof of Lemma 7, let Z ji denote the length of path (v j, vi)πi and assume that Z ji ∼ N(μZ ji , σ
2
Z ji

). By the

construction of Ri in A-DAG, Par(Ri) is a parallel graph with |V i | edges, where the length U j of edge corresponding to v j

obeys N(ν j + μZ ji , τ
2
j + σ 2

Z ji
), where C j = N(ν j, τ

2
j ). Let Ai(x) be the distribution function of the longest path length of

Par(Ri). Then by Theorem 3 F̃ i(x) approximates Ai(x) with respect to A−1
i (a).

Let F ji(x) be the distribution function of the longest path length of P ji , and let F̃ ji(x) be the distribution function that
U j follows. Consider the following Claim C.

Claim C. F̃ ji(x) approximates F ji(x) with respect to F −1
ji (a).

Suppose that Claim C is correct. Since Fi(x) = ∏
1� j�|V i | F ji(x), we have Fi(x) � F ji(x) for all x, which implies that

F −1(a) � F −1(a). Thus F̃ ji(x) approximates F ji(x) with respect to F −1(a). By Claim C, with respect to F −1(a), we have
i ji i i
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Fi(x) �
∏

1� j�|V i | F̃ ji(x) = Ai(x). Hence F̃ i(x), which is an approximation of Ai(x), approximates Fi(x) with respect to

F −1
i (a), which concludes the correctness of A-DAG. The rest of this subsection is devoted to proving Claim C.

Let N(λ ji,ρ
2
ji) be the output of A-PARA(P ji,a) and let J ji(x) be its distribution function. Since J ji(x) approximates F ji(x)

with respect to F −1
ji (a), the proof completes if J ji(x) � F̃ ji(x) for all x. In the following, we show 1) λ ji � ν j + μZ ji and 2)

ρ2
ji = τ 2

j + σ 2
Z ji

, which are sufficient to conclude J ji(x) � F̃ ji(x).

Since ρ2
ji = τ 2

j + σ 2
Z ji

holds by Lemma 7, we concentrate on the proof of λ ji � ν j + μZ ji . We would like to emphasize

that the mean ν j of P j is not determined only from G1 j ; it also depends on the distribution of Z j , i.e., μZ j and σ 2
Z j

,

unlike the case of the variance. To investigate the effect of the distribution of Z j on the mean, by ν(μ,σ 2) let us de-
note the mean when the distribution of Z j is N(μ,σ 2). More formally, let P (μ,σ 2) be the graph constructed from P j

by assigning normal distribution N(μ,σ 2) (instead of N(μZ j , σ
2
Z j

)) to path π j as the distribution of the length of π j , and

let N(λ(μ,σ 2),ρ2(μ,σ 2)) be the output of A-PARA(P (μ,σ 2),a). Then ν(μ,σ 2) is defined to be λ(μ,σ 2) − μ. By defini-
tion, P (μZ j , σ

2
Z j

) = P j , P (μZ ji , σ
2
Z ji

) = P ji , ν(μZ j , σ
2
Z j

) = ν j , and ν(μZ ji , σ
2
Z ji

) = λ ji − μZ ji . Now our goal is thus to derive

ν(μZ j , σ
2
Z j

) � ν(μZ ji , σ
2
Z ji

).

To this end, we show that 1) function ν is a constant function with respect to μ, i.e., ν(μ,σ 2) = ν(0, σ 2), and that
2) ν is monotonically increasing with respect to σ 2. It is obvious to observe that these two properties are sufficient for our
purpose since σ 2

Z j
� σ 2

Z ji
. The following three lemmas show these facts.

We define some symbols concerning P (μ,σ 2). The length of the �-th edge e� of P (μ,σ 2) is denoted by U� and assume

that U� ∼ N(ξ� +μ,χ2
� +σ 2). Let max be an � that maximizes χ2

� . Let L(μ,σ 2)

� (x) (resp. H�(x)) be the distribution function of

N(ξ� + μ,χ2
� + σ 2) (resp. N(ξ�,χ

2
� )). By definition H�(x) = L(0,0)

� (x). In the following, we may omit (μ,σ 2) from L(μ,σ 2)

� (x)
if it is clear from the context. Finally, let J (μ,σ 2)(x) be the distribution function of the longest path length in graph P (μ,σ 2).

Lemma 8. For any μ and σ 2 , ν(μ,σ 2) = ν(0, σ 2).

Proof. By definition

J (μ,σ 2)(x) =
∏
�

L(μ,σ 2)

� (x) =
∏
�

Φ

(
x − (ξ� + μ)√

χ2
� + σ 2

)
.

Thus J (μ,σ 2)(x) = J (0,σ 2)(x − μ), and hence J−1
(μ,σ 2)

(a) = J−1
(0,σ 2)

(a) + μ. By the definition of A-PARA

ν
(
μ,σ 2) + μ = J−1

(μ,σ 2)
(a) −

√
χ2

max + σ 2Φ−1(a),

and hence

ν
(
μ,σ 2) + μ = J−1

(0,σ 2)
(a) + μ −

√
χ2

max + σ 2Φ−1(a) = ν
(
0, σ 2) + μ. �

Lemma 9. For 1/2 � a < 1, ν(0, σ 2) � ν(0,0).

Proof. Assume with/out loss of generality that σ 2 > 0. Consider a function

K
(
χ2

� ,σ 2) = (
L(0,σ 2)
�

)−1
(a) − H−1

� (a) = (√
χ2

� + σ 2 − χ�

)
Φ−1(a)

for any �. It is easy to see that K (χ2
� ,σ 2) is monotonically decreasing with respect to χ2

� , since Φ−1(a) � 0 for 1/2 � a < 1.
Hence for all �

K
(
χ2

max, σ
2) � K

(
χ2

� ,σ 2).
Observe next that equation L(0,σ 2)

� (x + K (χ2
� ,σ 2)) = H�(x) has a root x0 = H−1

� (a). Since two normal distribution func-

tions with different variances intersect each other at a single point, x0 is the unique one. Hence for all x > H−1
� (a),

L(0,σ 2)
�

(
x + K

(
χ2

� ,σ 2)) < H�(x),

since the variance of L(0,σ 2)
(x) is greater than that of H�(x). We thus have for all x > max� H−1(a),
� �
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J (0,σ 2)

(
x + K

(
χ2

max, σ
2)) =

∏
�

L(0,σ 2)
�

(
x + K

(
χ2

max, σ
2))

�
∏
�

L(0,σ 2)
�

(
x + K

(
χ2

� ,σ 2))
<

∏
�

H�(x) = J (0,0)(x).

Since J (0,0)(x) � H�(x) for all x and �, J−1
(0,0)(a) � max� H−1

� (a). By putting x = J−1
(0,0)(a),

J (0,σ 2)

(
J−1
(0,0)(a) + K

(
χ2

max, σ
2)) < J (0,0)

(
J−1
(0,0)(a)

) = a,

which implies that

J−1
(0,0)(a) + K

(
χ2

max, σ
2) < J−1

(0,σ 2)
(a),

since function J−1
(0,σ 2)

(x) is strictly monotonically increasing. Since K (χ2
max, σ

2) = (L(0,σ 2)
max )−1(a) − H−1

max(a), we have

J−1
(0,0)

(a) − H−1
max(a) < J−1

(0,σ 2)
(a) − (L(0,σ 2)

max )−1(a). By the definitions of L(0,σ 2)
max (x) and Hmax(x), for any σ 2 > 0,

ν(0,0) = J−1
(0,0)(a) − (

H−1
max(a) − ξmax

)
< J−1

(0,σ 2)
(a) − ((

L(0,σ 2)
max

)−1
(a) − ξmax

) = ν
(
0, σ 2). �

Lemma 10. For any 1/2 � a < 1, ν(0, σ 2) is monotonically increasing with respect to σ 2 .

Proof. We show that ν(0, σ 2
a ) > ν(0, σ 2

b ) holds if σa > σ 2
b � 0. Consider P (μ,σ 2). Recall that U� ∼ N(ξ� + μ,χ2

� + σ 2).
We modify P (μ,σ 2) and construct a new graph P ′(μ,σ 2) by changing the distribution that U� follows to N(ξ� + μ, (χ2

� +
σ 2

b )+σ 2), and let us write the mean of the output of A-PARA(P ′(μ,σ 2)) as ν ′(μ,σ 2)+μ. By definition, P ′(0,0) = P (0, σ 2
b )

and P ′(0, σ 2
a − σ 2

b ) = P (0, σ 2
a ). By Lemma 9, ν(0, σ 2

b ) = ν ′(0,0) < ν ′(0, σ 2
a − σ 2

b ) = ν(0, σ 2
a ). �

Since the difference between A-DAG and A-QTREE from the view of the time complexity is that in A-DAG the calculation
of N(μZi , σ

2
Zi

) becomes necessary. We now describe the way how to calculate μZi and σ 2
Zi

. Let Gσ be a graph (with edge
lengths) having the same vertex and the edge sets as G . The graph Gσ however is not a stochastic network but a network
with deterministic edge lengths: Recall that N(μe, σ

2
e ) is the normal distribution that the edge length of e follows in G .

The edge length of e in Gσ is σ 2
e . Then there is an algorithm to calculates for each vertex vi the longest path length σ 2

Zi
connecting vi and T that runs in O (n + m) time [10]. By modifying the algorithm slightly one can calculate μZi as well in
the same time complexity. Thus the overall time complexity of A-DAG is O (n + m). Now let us summarize as a theorem.

Theorem 6. Let G and F (x) be a DAG and the distribution function of the longest path length of G, respectively. For any given real
number a such that 1/2 � a < 1, A-DAG returns a normal distribution function F̃ (x) that approximates the distribution function F (x)
with respect to F −1(a) in O (n + m) time, where n and m are respectively the order and the size of G.

5. Performance analysis

This section studies the performance of A-DAG. We first demonstrate, for some values of a, the performance of A-DAG
by using as instances logical circuits registered in a standard benchmark set ITC’99. The performance measures are the
execution time and the error Err(G,a) = F̃ −1(a) − F −1(a). In order to evaluate F −1(a), we used Monte Carlo simulations.
We next perform a worst case analysis to derive an upper bound on Err.

5.1. Performance of A-DAG for ITC’99 benchmark set

Since we expect that A-DAG is typically used in circuit delay analysis, we conducted experiments by using, as instances,
logical circuits registered in a standard benchmark set ITC’99 (see its home page [8] for details).

An n-input m-output gate is modeled by a directed edge e, whose length follows a normal distribution (see Fig. 4). In
this experiment, for the ease of understanding, we assume that all gates follow the same delay distribution. We further
neglect the wire delay, but it is easy to develop a DAG representation such that the wire delay is taken into account.

In order to estimate Err, we needed F −1(a). We conducted Monte Carlo simulation to this end. We repeated the sim-
ulation 10 000 times for each of the instances to obtain the circuit delay and drew F (x). We then estimated F −1(a) by
interpolation. Although the accuracy of the result depends on the number of repetitions, we assumed that correct F −1(a) is
obtained by the simulations. Finally we used 3.4 GHz processor.

Table 1 summarizes the results for a = 0.99, which is a value frequently used in applications. The columns correspond
to, from left to right, the circuit name, the circuit size (i.e., the number of gates), the circuit height (i.e., the maximum
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Fig. 4. Model of a gate.

Table 1
Performance of A-DAG for benchmark set ITC’99 (1/2).

Name # of
gates

Height
h

Monte Carlo A-DAG

F −1(a) CPU time (sec) F̃ −1(a) Err (% ) CPU time (sec)

b09 140 9 11.25 2.50 11.61 3.20 0.02
b09_opt 130 9 11.23 2.52 11.62 3.46 0.02
b10 172 12 13.84 2.83 13.88 0.31 0.02
b10_opt 146 12 13.77 3.06 13.89 0.87 0.02
b11 726 34 36.82 11.75 37.14 0.85 0.07
b11_opt 504 37 40.07 8.66 40.53 1.15 0.06
b12 944 19 21.49 18.61 21.89 1.85 0.12
b12_opt 874 19 21.52 15.74 21.81 1.31 0.11
b13 289 20 22.03 4.94 22.09 0.29 0.03
b13_opt 244 11 12.72 4.44 12.80 0.63 0.03
b14 9767 60 64.34 372.38 65.88 2.39 0.98
b14_opt 5347 41 44.73 210.86 45.90 2.61 0.65
b15 8367 63 67.43 322.50 69.16 2.55 0.96
b15_opt 7022 45 48.51 284.24 51.78 6.74 0.88
b17 30777 92 97.14 1172.01 100.87 3.84 3.34
b17_opt 22757 44 48.98 939.89 52.37 6.92 2.90
b18 111241 164 170.75 4226.41 185.77 8.80 11.72
b18_opt 69913 90 100.47 2850.47 116.23 15.68 8.96
b19 224624 168 175.52 8469.62 191.87 9.32 23.29
b20 19682 67 72.55 727.68 75.52 4.09 1.96
b20_opt 11957 73 77.03 480.73 78.05 1.33 1.41
b21 20027 68 72.77 743.31 75.32 3.50 1.98
b21_opt 12134 73 77.12 492.18 78.05 1.21 1.45
b22 29162 68 72.54 1083.96 74.81 3.13 2.92
b22_opt 17329 78 82.61 711.37 84.27 2.00 2.03

Table 2
Performance of A-DAG for several values of a.

a Monte Carlo A-DAG Err (%)

0.99 64.34 65.88 2.39
0.90 63.03 66.09 4.85
0.80 62.53 66.56 6.45
0.70 62.15 67.06 7.89
0.60 61.85 67.59 9.28
0.50 61.57 68.17 10.72

number of gates in a path from the source to the sink), F −1(a) of the circuit, the total execution time for the 10 000 times
Monte Carlo simulations, an approximation F̃ −1(a) of F −1(a) (calculated from the output of A-DAG), the relative error Err
(%) defined by 100 × ( F̃ −1(a)− F −1(a))/F −1(a), and the execution time of A-DAG. We assumed that the edge lengths follow
a normal distribution N(1.0,0.04).

From the table, we make the following observations. First, A-DAG shows a good performance on average. The execution
time is extremely small and A-DAG finishes in a few seconds for all except for circuits b18, b18_opt, and b19. The relative
error is less than 5% for all except for circuits b15_opt, b17_opt, b18, b18_opt, and b19. From the execution times for b18
and b19, we can expect that the execution time of A-DAG is linear in the size, as Theorem 6 states. We can also observe
that the relative error increases as the size increases. Since A-DAG approximates the longest path length for the whole DAG
by repeatedly taking upper bounds on approximations for sub-DAGs, one can expect that the larger the circuit height, the
larger the relative error would be, and indeed this guess will be formally shown to be correct, as long as the worst case
analysis is concerned, in the next subsection. Fortunately however, this expected correlation is not apparent from the table;
circuits b17, b20, b20_opt, b21, b21_opt, b22, b22_opt have heights larger than 60 but have relative errors less than b15_opt
and b17_opt, whose heights are smaller than 50.
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Table 3
Performance of A-DAG for several variances.

Name 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

b09 F −1(a) 10.59 11.25 11.74 12.16 12.54 12.91 13.25 13.54
F̃ −1(a) 10.85 11.61 12.20 12.70 13.14 13.54 13.90 14.25
Err(%) 2.44 3.20 3.90 4.39 4.76 4.82 4.95 5.20

b09_opt F −1(a) 10.57 11.23 11.70 12.19 12.56 12.97 13.29 13.45
F̃ −1(a) 10.85 11.62 12.21 12.71 13.15 13.55 13.91 14.26
Err(%) 2.62 3.46 4.32 4.26 4.70 4.45 4.73 6.03

b18 F −1(a) 168.59 170.75 172.56 174.05 175.65 177.05 178.51 179.88
F̃ −1(a) 175.92 185.77 194.44 202.23 209.36 215.96 222.14 227.97
Err(%) 4.35 8.80 12.68 16.19 19.19 21.98 24.44 26.74

b18_opt F −1(a) 97.14 100.47 103.22 105.53 107.66 109.65 111.52 113.48
F̃ −1(a) 106.74 116.23 124.05 130.88 137.01 142.62 147.83 152.71
Err(%) 9.87 15.68 20.18 24.02 27.26 30.07 32.56 34.57

b19 F −1(a) 173.10 175.52 177.28 179.09 180.59 182.31 183.61 185.53
F̃ −1(a) 181.36 191.87 201.02 209.21 216.68 223.60 230.08 236.19
Err(%) 4.77 9.32 13.39 16.82 19.98 22.65 25.31 27.31

The performance of A-DAG would depend on the value of a. Table 2 shows F −1(a) and F̃ −1(a) of circuit b_14 for several
values of a, assuming that the edge lengths follow N(1.0,0.04). Since F −1(a) decreases as a decreases, A-DAG is suggested
to use for a large a.

Table 3 shows the relation between the variance of edge lengths and the performance of A-DAG. The leftmost column
corresponds to the circuit name, and rest columns to the estimated values of the functions on the right side of the circuit
name assuming that all edge lengths follow N(1.0, σ 2), where σ 2 is the value on the top of each column. The edge length
variance varies from 0.02 to 0.16. The relative error increases as the variance increase.

Since we used Monte Carlo simulation to draw F (x), one might consider that Monte Carlo simulation would be superior
to A-DAG. Although we agree that Monte Carlo simulation is a powerful technique, A-DAG has several advantages that
Monte Carlo simulation does not have. Firstly, A-DAG approximates F (x) by a normal distribution function F̃ (x) in terms of
its mean and variance; it is easy to apply the result to further formal analysis. Secondly, we formally guarantee that F̃ (x) is
an approximation of F (x) with respect to a. Thirdly, A-DAG is very fast. Table 1 shows that A-DAG is more than 300 times
faster than Monte Carlo simulation. However, it could be argued that Monte Carlo simulation could be speeded up simply
by reducing the number of repetitions. This may seriously sacrifice the accuracy, though.

5.2. An upper bound on Err

Let N(μ̃, σ̃ 2) and F̃ (x) be the output of A-DAG (for G and a) and its distribution function, respectively. We derive an
upper bound on Err(G,a) = F̃ −1(a) − F −1(a). Let us start with estimates of the standard normal distribution function.

Lemma 11. Φ−1(a1/d) = Θ(
√

ln d).

Proof. By Mills’ ratio (see e.g. [6, p. 98]), we have(
1

x
− 1

x3

)
φ(x) < 1 − Φ(x) <

1

x
φ(x), for x > 0.

It is then easy to see that there exists ε > 0 such that

1 − e(− 1
2 +ε)x2

< 1 − φ(x)

x
< Φ(x) < 1 −

(
1

x
− 1

x3

)
φ(x) < 1 − e(− 1

2 −ε)x2

for x sufficiently large. The positive solution of the equation 1 − e(− 1
2 ±ε)x2 = a1/d is x =

√
− ln(1−a1/d)

1/2±ε . On the other hand, we

have 1 − a1/d ∼ − ln a
d , since limd→∞(1 + ln a

d )d = a. Hence Φ−1(a1/d) = Θ(
√

ln d). �
We next construct a path A connecting S and T starting from T backward. Initially, A is an empty path. Suppose that

a path A between vi and T has been constructed. Let W̃1 j be a random variable that follows C j . As in Section 4.2, the
length of a path (v j, vi)πi is denoted by Z ji . Put Ỹ ji = W̃1 j + Z ji . Then Ỹ ji follows a normal distribution N(μỸ ji

, σ 2
Ỹ ji

).

Now choose an edge (v j, vi) that maximizes the mean μỸ ji
and extend A to (v j, vi)A.4 Repeating this procedure finishes

4 We maximize the mean μỸ , not the variance σ 2
˜ .
ji Y ji
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at S and outputs a path A connecting S and T . Let N(μA, σ 2
A) be the distribution of the length of A and let F A(x) be its

distribution function. Obviously, F −1(a) � F −1
A (a), since F (x) � F A(x) (because A is a single path connecting S and T ).

Each edge eπ in Par(G) corresponds to a path π in G , the length of eπ follows a normal distribution N(μπ ,σ 2
π ).

Let N(μmax, σ
2
max) be the distribution of the maximum variance path. Hence σ 2

max = maxπ σ 2
π , but μmax 	= maxπ μπ in

general. Let μ∗ = μA + (σA − σmax)Φ
−1(a), and we denote the distribution function of N(μ∗, σ 2

max) by H(x). Obviously
H−1(a) = F −1

A (a) holds. By definition,

Err(G,a) = F̃ −1(a) − F −1(a)

� F̃ −1(a) − F −1
A (a)

= F̃ −1(a) − H−1(a).

Since σ̃ 2 = σ 2
max by Lemma 7, Err(G,a) � F̃ −1(a) − H−1(a) = μ̃ − μ∗ . The following theorem is obtained by estimating

μ̃ − μ∗ .

Theorem 7. Let h and d be the height and the maximum in-degree of G, respectively.

Err(G,a) = O
(
hσmax

√
ln d

)
.

Proof. A very rough idea behind the proof is the following: We first derive an upper bound δi on the contribution of the
iteration of A-DAG for vertex vi to Err(G,a), and then derive an upper bound on Err(G,a) by calculating

∑
vi∈A δi .

We use the symbols defined in the paragraphs after Lemma 11. Recall that Di is a normal distribution that A-
RACKET(Ri,a) returns in A-DAG and the distribution function of Di is denoted by F̃ i(x). Let H ji(x) be the distribution
function of N(μỸ ji

, σ 2
Ỹ ji

). Then

H ji(x) � Φ

(
x − μmaxi

σmax

)
,

where μmaxi = maxv j∈V i {μỸ ji
}. Hence for x � μmaxi ,

F̃ i(x) �
{
Φ

(
x − μmaxi

σmax

)}di

�
{
Φ

(
x − μmaxi

σmax

)}d

,

which implies that

F̃ −1
i (a) � μmaxi + σmaxΦ

−1(a1/d),
where di = |V i| and d = max1�i�n di is the maximum in-degree of G . By g we denote a j that satisfies μmaxi = μỸ ji

. We

thus have

F̃ −1
i (a) − H−1

gi (a) �
(
μỸ gi

+ σmaxΦ
−1(a(1/d)

)) − (
μỸ gi

+ σỸ gi
Φ−1(a)

)
= σmaxΦ

−1(a(1/d)
) − σỸ gi

Φ−1(a).

Define δi by

δi = σmaxΦ
−1(a(1/d)

) − σỸ gi
Φ−1(a).

Since σ̃i = maxv j∈V i {σỸ ji
} by Lemma 7 and two normal distribution functions intersect at a single point, F̃ i(x) � H gi(x −

δi) for all x < F̃ −1
i (a). Since 1/2 � a < 1, F̃ i(x0) � H gi(x0 − δi), where x0 = F̃ −1

i (1/2) is the mean of Di . Hence the mean
of F̃ i(x) is not larger than the mean of H gi(x − δi). Since νi and μπi are the mean of Ci and the mean of the distribution
of the length of πi , we have νi + μπi � νg + μgi + μπi + δi or νi � νg + μgi + δi , where μgi is the mean of the normal
distribution that edge (v g , vi) follows. By the definition of path A, when A has been constructed between T and vi , the
procedure always extends A to v g . Thus we have

νn � ν1 + μA +
∑
vi∈A

δi .

Let us estimate μ̃ − μ∗ . By definition, ν1 = 0 and νn = μ̃. By using μ∗ = μA + (σA − σmax)Φ
−1(a), we have

μ̃ − μ∗ = (σmax − σA)Φ−1(a) +
∑

δi .
vi∈A
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Since δi � σmaxΦ
−1(a(1/d)) by definition, we finally have

μ̃ − μ∗ � σmaxΦ
−1(a) +

∑
vi∈A

δi

� σmaxΦ
−1(a) + hσmaxΦ

−1(a(1/d)
)
,

since |A| � h. Since Φ−1(a) � Φ−1(a
1
d ), by Lemma 11, we conclude

μ̃ − μ∗ = O
(
hσmax

√
ln d

)
. �

If the variances σ 2
e for edges e are bounded from above by a constant, then σmax = O (

√
h). Thus we have the following

corollary.

Corollary 2. Provided that the variances σ 2
e for edges e are bounded from above by a constant,

Err(G,a) = O
(√

h3 ln d
)
.

Example 1. Consider a DAG G with height h in Fig. 5. The in-degree of every vertex except S is d; there are d parallel
edges between two consecutive vertices. Let ei j be the j-th outgoing edge of vi . The length of edge ei j , represented by a
random variable Xij , follows a normal distribution N(μ,σ 2). Following the execution of A-DAG for G , we can observe that
Di = N(hμ + (i − 1)α,hσ 2) for any 1 � i � h + 1, where α = σ(

√
hΦ−1(a(1/d)) − Φ−1(a)). For this example, by the central

limit theorem, an asymptotically exact distribution of the longest path length is N(hμ∗,hσ 2∗ ), where μ∗ and σ 2∗ are the
mean and the variance of max1� j�d{Xij}. Thus F −1(a) = O (h) and hence Err(G,a) = F̃ −1(a) − F −1(a) = hμ + (h − 1)α +√

hσΦ−1(a) − O (h) = �(
√

h3 ln d) by Lemma 11.

Example 2. We next show an example of k × k square grid (Fig. 6). In this square grid, it is convenient to write v(i, j) to
refer to the vertex in the ith row from the top and in the j-th column from the left; hence v(1,1) is the source and v(k,k)

is the terminal. Similarly, instead of Ci and Di for vi , we have the notation of C(i, j) and D(i, j) for vertex v(i, j). If i � 2
(resp. j � 2), each vertex v(i, j) has an edge (v(i − 1, j), v(i, j)) (resp. (v(i, j − 1), v(i, j))). The edge lengths are given as
mutually independent random variables that obey the same distribution N(μ,σ 2).

For each vertex v(i,1) ∈ V or v(1, i), A-DAG computes N(iμ, iσ 2) for C(i,1) or C(1, i). As for the other vertices, a path
from v(i, j) to the terminal is chosen as π(i, j); since all paths have the same distribution, any single path is sufficient. For
a vertex v(i, j), A-DAG creates a racket graph that ends up with a parallel graph with two edges with length distributions
D(i − 1, j) and D(i, j − 1). Then D(i, j) is computed from D(i − 1, j) and D(i, j − 1) by calling A-PARA with a given
parameter a.

One may wonder if there is any point to compute C(i, j) in this example. Actually, we do not have to compute C(i, j) if
all paths between v(i, j) and the terminal have the same mean and variance. C(i, j) is computed to deal with paths with
various means and variances.

After computing D(k,k) = N(μ̃, σ̃ 2), we have the approximate distribution function F̃ (x) = Φ((x − μ̃)/σ̃ ). Since the
height h of the graph is given as h = 2k = O (

√
n), the error F̃ −1(a) − F −1(a) is O (n3/4) by Corollary 2.

Fig. 5. A candidate for the worst case instance of A-DAG.

Fig. 6. An example of 6 × 6 square grid with acyclic orientation.
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Fig. 7. An example of 6 vertex complete graph with acyclic orientation.

Example 3. Let G = (V , E) be a complete graph with acyclic orientation (Fig. 7). That is, E = {(vi, v j) | 1 � i < j � n}. The
edge lengths are mutually independent random variables and each of them obeys N(μ,σ ).

In this example, πi is always chosen as a path that passes all vertices with subscription numbers larger than i. Hence
the distribution of the length of πi is N((n − i + 1)μ, (n − i + 1)σ 2).

As for computation of Ci , A-DAG creates a racket graph Ri with its shaft πi and its head, a parallel graph of i − 1 edges.
Let (v j, vi)( j < i) be one of the head edges of Ri . The length distribution of (v j, vi) is given as N(ν j + μ,ρ2

j + σ 2), where
ν j and ρ j are the mean and the variance of C j . Then A-DAG calls A-RACKET for Ri , which creates a parallel graph Par(Ri)

of i − 1 edges and the j-th edge of Par(Ri) has its length that obeys N(ν j − (n − j)μ,ρ2
j − (n − j)σ 2).

Since both of the height and the maximum in-degree are given as n − 1, the error F̃ −1(a) − F −1(a) is O (
√

n3 log n) by
Corollary 2.

6. Concluding remarks

Many applications need linear time algorithms as they need process huge instances. Motivated by this, this paper has
presented a linear time algorithm for approximating, in the sense below, the length of a longest path of a given DAG, where
the length of each edge is given as a random variable following a normal distribution. Let F (x) be the distribution function
of the length of a longest path of the DAG. Our algorithm computes a normal distribution function F̃ (x) that satisfies
F̃ (x) � F (x) as long as F (x) � a, given a constant a (1/2 � a < 1). In other words, it computes an upper bound 1 − F̃ (x) on
the tail probability 1 − F (x), provided x � F̃ −1(a).

Next we have demonstrated the performance of A-DAG by using as instances a standard benchmark set ITC’99 of logical
circuits, and observed that A-DAG exhibits sufficiently good performance. We have also conducted a worst case analysis
to bound the error F̃ −1(a) − F −1(a); assuming that the variance of an edge length is bounded by a constant, we showed
that the error is O (

√
h3 ln d), where h and d are the height and the maximum in-degree of G . This worst case result is

by no means a welcomed one, but there are some good news. Firstly, the experimental results using ITC’99 do show the
correlation between the height and the error. Secondly, as long as the circuits in ITC’99 are concerned, the height h is
around n1/4, where n is the number of gates when n is large. Thus the error can be bounded from above by n1/2 practically.

We used Monte Carlo simulations to draw F (x). Since A-DAG does not obtain the correct value F −1(a), one might argue
that Monte Carlo simulation would be superior to A-DAG. As argued earlier, we would like to emphasize two points. Firstly,
A-DAG returns a normal distribution in terms of its mean and variance, which is more useful for further investigation than
just knowing F −1(a). Secondly, we need to repeat Monte Carlo simulation many times to calculate F (x) accurately. If we
impose the same linear time constraint on Monte Carlo simulation, we can repeat it only a constant number of times, and
hence we cannot guarantee the accuracy.

Before closing, let us list some open problems. An open question is to design an algorithm for the case 0 < a < 1/2.
As readers might have noticed, all algorithms shown before A-DAG correctly work for any 0 < a < 1. Thus there is a good
chance to extend A-DAG to handle the case 0 < a < 1/2.

From standpoints of applications, obvious requests are other linear time algorithms to solve other important stochastic
problems possibly under more realistic models. In the paper we mentioned that our model for a gate can be extended to
treat wire delay. However, in reality assuming that the distribution of delay follows a normal distribution may be too strong,
because the normal distribution gives some probability of negative values which might not be appropriate, for example, in
the context of calculating delays in logical circuits. Other important problems include the flow, the minimum cut, the
minimum spanning tree problems.

Recent works on approximation algorithms usually provide approximation ratio guarantees with the time and/or the
space complexity as parameters. Although we can construct a linear time algorithm by appropriately tune the parameters,
those algorithms may not be able to fully use ideas that are applicable particularly to linear time algorithms. It may be
interesting to consider a bound on approximation ratio assuming a linear time approximation algorithm.
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Appendix A. Approximation of Inv(F1, F2, . . . , Fk; y)

For i = 1,2, . . . ,k, let Fi(x) be a normal distribution function with mean μi and variance σ 2
i . In this paper,

Inv(F1, F2, . . . , Fk; y) is assumed to return the correct value of x0 in O (k) time, where x0 is a (unique) real number such
that F1(x0)F2(x0) . . . Fk(x0) = y holds. We justify this assumption.

When k = 1, we can calculate Inv(F1; y) = F −1
1 (y) = x0 by referring to the table of the standard normal distribution Φ ,

since x0 = F −1
1 (y) = μ1 + σ1Φ

−1(y). When k � 2, we may apply e.g., the Newton’s method or the binary search method
referring to the table of the standard normal distribution, to calculate x0. Our assumption essentially assumes that the
Newton’s method or the binary search method terminates in a constant number of repetitions and produces the correct
root up to the required level of accuracy. We have used this method in the experiments in Section 5.1 and confirmed that
its performance is good. We hence suggest to use it in real applications. However, its time complexity has not been formally
discussed. For the completeness, in the following, we describe another method that approximates x0 in O (k) time with the
level of accuracy required by our algorithm A-DAG.

Let μmax = max1�i�k μi and σmax = max1�i�k σi . We can have that μmax = μ1 without loss of generality. Let F M(x)
be the distribution function of a normal distribution N(μmax, σ

2
max). It is easy to see that F M(x) � Fi(x) for any 1 � i �

k and μmax � x, which implies that Inv(F1, F2, . . . , Fk; y) < F −1
M (y(1/k)) if 1/2 � y(1/k) < 1. We use F −1

M (y(1/k)) as the
approximation of Inv(F1, F2, . . . , Fk; y), which takes O (k) time to compute. Note that we do not have to consider the
case 0 < y(1/k) < 1/2.

Let us bound the error. Since F1(x) �
∏

1�i�k Fi(x) for all x, we have F −1
1 (y) � Inv(F1, F2, . . . , Fk; y) for all 0 < y < 1.

Since Φ−1(y(1/k)) = Θ(
√

log k) by Lemma 11, F −1
M (y(1/k)) − F −1

1 (y) = O (σ
√

log k). The fact that O (σ
√

log k)-error does not
affect the analysis of A-DAG is easy to see, and its proof is left to readers.
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