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If P is a cyclic projective plane of order n, we give number theoretic conditions 
on n2 + n + 1 so that the binary code of P is contained in a binary cyclic code C 
whose extension is self-dual. When this containment occurs C does not contain any 
ovals of P. As a corollary to these conditions we obtain that the extended binary 
code of a cyclic projective plane of order 2” is contained in a binary, extended cyclic 
self-dual code if and only ifs is odd. (1” 1986 Academic Press, Inc. 

We assume a familiarity with concepts in the areas of error-correcting 
codes and projective planes which can be found in [2, 6, 73. As is 
customary the binary code of a projective plane P is the binary code 
generated by an incidence matrix A of P. If P is a cyclic plane we can, and 
do, choose A so that C is a cyclic code. In [2] various relations are given 
between self-orthogonal codes and designs. We continue this study with 
results about cyclic projective planes and their binary codes. 

The next theorem is in [3, S], We prove it here since it is interesting that 
it has a coding proof. 

THEOREM 1. The only cyclic projective plane P of order n = 2 (mod 4) is 
the projective plane of order 2. 

Proof The binary, cyclic code C of P has length n2 + n + 1 and C’, the 
extended code of C, is self-dual [2, Theorem 11.71. Hence the all one vec- 
tor, h, is in C, C has dimension (n + 1)/2 and the generating idempotent e 
of C must have odd weight. Let .? denote the image of e under the coor- 
dinate permutation i + -i (mod n2 + n + 1). Then C’ has idempotent 1 + 2 

c41 and dimension (n - 1)/2. Hence C=C? I (h) so that 
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e=(l+F)+h+h(l+F)=l+F+h. AS h= l+e+F, the weight of e is 
(n2 + n)/2. 

Now C has minimum weight n + 1 and the lines of P are the only vectors 
of weight n + 1 in C [2, Theorem 11.81. Any binary, cyclic code is invariant 
under the coordinate permutation i + 2i (mod n* + n + 1) [6, Theorem 6.21 
so this permutation clearly sends the lines in P onto themselves. As it has a 
fixed point, P has an invariant line e of weight n + 1. Considered as a 
polynomial e is an idempotent, and as e and its cyclic shifts generate C, e is 
the generating idempotent of C. Hence n + 1 = (n’ + n)/2 so that n = 2. 

THEOREM 2. Let C be the cyclic code of a cyclic projective plane P of 
order n and let C be its extended code. Let N = n* + n + 1. Then C is con- 
tained in a binary, extended cyclic, self-dual code if and only if either n = 2 or 
n = 0 (mod 4) and N is a product of primes p where each p is either 
= -1 (mod 8) or - 1 (mod 8) where the order of 2 (mod p) is odd. - 

Proof: If n is odd, it is well-known that C has dimension n* + n which is 
too large for C to be self-dual. Hence n is even and by Theorem 1 if 
n z 2 (mod 4), n =2. If a cyclic projective plane P of even order 
n E 0 (mod 4) exists, then C is self-orthogonal and extended cyclic. Hence C 
will be contained in an extended cyclic, self-dual code, if such exists, of 
length N+ 1. By [S, Theorem 61, they do exist whenever the conditions in 
this theorem on N hold. 

The following corollary answers questions raised in [4]. 

COROLLARY. The binary extended code C of a cyclic projective plane P 
of order 2” is contained in a binary, extended cyclic, self-dual code tf and only 
ifs is odd, 

Proof If s is even, N = 2” + 2” + 1 = 0 (mod 3). By the Theorem, 3 can- 
not divide N so s must be odd. As (23S - 1) = (2” - 1) N, 23” = 1 (mod N). 
Hence, if s is odd, the order of 2 (mod N) is odd. Thus the order of 2 mod 
each factor of N is odd and Theorem 2 applies. 

Note that the binary extended code C of a cyclic projective plane P of 
order 2” is contained in a binary extended quadratic residue code only 
when s= 1 [l]. 

THEOREM 3. Let C be a binary, cyclic code which contains the code of a 
cyclic projective plane of order n. Suppose also that the extended code C of C 
is self-dual. Then C does not contain any ovals of the plane unless n = 2. 

Proof As C is self-dual and extended cyclic, it is a duadic code [S, 
Theorem 5-J. Hence all even weights in C are ~0 (mod 4) [by Theorem 2 
in [S], parts 1 and 41. As either n z 0 (mod 4) or n = 2 by Theorem 2, an 
oval, which has weight n + 2, cannot be in C unless n = 2. 
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