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Abstract

We consider incomplete exponential sums in several variables of the form

S(f, n, m) = 1

2n

∑
x1∈{−1,1}

· · ·
∑

xn∈{−1,1}
x1 · · · xn e2�if (x)/p ,

where m > 1 is odd and f is a polynomial of degree d with coefficients in Z/mZ. We investigate
the conjecture, originating in a problem in computational complexity, that for each fixed d and
m the maximum norm of S(f, n, m) converges exponentially fast to 0 as n tends to infinity; we
also investigate the optimal bounds for these sums. Previous work has verified the conjecture
when m = 3 and d = 2. In the present paper we develop three separate techniques for studying
the problem in the case of quadratic f, each of which establishes a different special case.
We show that a bound of the required sort holds for almost all quadratic polynomials, the
conjecture holds for all quadratic polynomials with n�10 variables (and the conjectured bounds
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are sharp), and for arbitrarily many variables the conjecture is true for a class of quadratic
polynomials having a special form.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We study sums of the form

S(f, n, m) = 1

2n

∑
x1∈{−1,1}

· · ·
∑

xn∈{−1,1}
x1 · · · xn �f (x), (1.1)

where m > 1 is odd, � = e2�i/m, and f is a polynomial with coefficients in Z/mZ.
This is an incomplete exponential sum as each xi ranges only over {−1, 1}.

Let d be the degree of f. It has been conjectured (see [4,8]) that there exists a positive
cm,d < 1 such that

|S(f, n, m)| � cn
m,d . (1.2)

Exponential sums have a rich history, and estimates of their size have numerous ap-
plications, ranging from uniform distribution to solutions to Diophantine equations to
L-functions to the Circle Method, to name a few. Our problem originates in computer
science, where (1.1) arises in the study of the complexity of boolean circuits. Conjec-
ture (1.2) implies that a very special kind of n-input boolean circuit, containing “mod-m
gates”—that is, gates that determine whether the number of their input bits that are
on is divisible by m—requires exponentially many (in n) gates in order to simulate a
single mod-2 gate (i.e., in order to “compute parity”). Such questions concerning ex-
ponential lower bounds on the size of circuits that perform various computations, and,
in particular, the relation between the computing power of modular gates with different
moduli, are notoriously difficult, and progress in this area has been quite scant. See
Green [10] for a precise account of the connection between this problem and circuit
complexity.

It is known [1] that for each fixed n, d and m there exists a positive constant bd,m,n

such that

|S(f, n, m)| < bd,m,n (1.3)

and

lim
n→∞ bd,m,n = 0. (1.4)
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This theorem is proved using Ramsey-theoretic techniques, and the resulting sequences
converge very slowly to 0. In terms of computational complexity, this only tells us that
the minimum circuit size required to compute parity of n bits tends to infinity with n.
It is of far more interest, from the computational point of view, to show exponentially
fast growth in minimum circuit size. This is generally interpreted as showing that parity
circuits of the required kind cannot feasibly be built.

Conjecture (1.2) holds trivially for d = 1, since in this case S(f, n, m) is a product
of a complex number of norm 1 and n factors of the form �k − �−k . In the case
d = 2, (1.2) has been proved only in the case m = 3, and the optimal value of c3,2
determined (see [10]); however this proof appears to shed no light on what occurs
with other odd moduli. The conjecture has also been verified (see [8]) when f is a
symmetric polynomial in n variables, of poly-logarithmic degree (in n) and for any odd
modulus m.

A natural approach to proving (1.2) is to use Weil-type bounds for multiple ex-
ponential sums. While there have been many bounds published for incomplete and
complete exponential sums over many variables (see Notes to Chapter 5 of [11], as
well as [2,5–7,12–14]), none seems to apply to our situation so far. We quickly review
these approaches; the inapplicability of these techniques led us to the methods of this
paper.

Consider the bounds of incomplete exponential sums from [13,14] with m an odd
prime p. Though not directly applicable to our problem because of the factor x1 · · · xn,
it is enlightening to see what bounds estimates of this type can generate. Using fi-
nite Fourier transforms, these represent the incomplete sum as 2n

pn times a complete
sum plus an error term. The bounds for the error term are improved if we are
summing over consecutive xi (this can readily be done for our problem by send-
ing xi to xi+1

2 ; the factor x1 · · · xn is replaced with 2n terms, but each term is di-
vided by an additional factor of 2n). For example, Mordell [13] considers incomplete
sums

S′
n =

∑
0�x1<�1

· · ·
∑

0�xn<�n

ep(f (x)), ep(x) = e2�ix/p. (1.5)

Denote the complete sum by Sn. If t = (t1, . . . , tn) has r non-zero entries, sup-
pose there is a constant E

(r)
n (independent of t but depending on p and f) such that

∣∣∣∣∣∣
∑

x1 mod p

· · ·
∑

xn mod p

ep(f (x) + t1x1 + · · · + tnxn)

∣∣∣∣∣∣ � E(r)
n ; (1.6)

in general we expect E
(r)
n to be at least pn/2. Mordell proves that

S′
n = �1 · · · �n

pn
Sn + �(n)

n E(n)
n lognp + Rn, (1.7)



E. Dueñez et al. / Journal of Number Theory 116 (2006) 168–199 171

where |�(n)
n | < 1 and

Rn =
n−1∑
r=1

�r+1 · · · �n

pr−n
�(r)

n E(r)
n logrp, |�(r)

n | < 1. (1.8)

For p > 3, the bounds for E
(r)
n are too weak. The reason for the failure of these

methods is the paucity of points in the sub-variety we sum over; we would need to let
the number of xi we sum over grow with p.

It is possible to transform our incomplete exponential sum to a complete one in-
volving Legendre symbols by having the variables range over all of Z/mZ (this was
already observed by [10], however we show an alternate method here). For ease of
exposition we assume now that m is an odd prime congruent to −1 modulo 4. In this
case,

(−1
m

) = (−1)(m−1)/2 = −1 and we have

S(f, n, m) = 1

2n

∑
x1∈{−1,1}

· · ·
∑

xn∈{−1,1}
x1 · · · xnem (f (x))

= 1

2n

∑
x1∈{−1,1}

· · ·
∑

xn∈{−1,1}
x

(m−1)/2
1 · · · x(m−1)/2

n

× em

(
f (x

(m−1)/2
1 , . . . , x

(m−1)/2
n )

)
. (1.9)

The above weakly depends on xi ; all that matters is the value of
(
xi

m

)
, the Legendre

symbol. Thus we may extend all summations from xi ∈ {−1, 1} to xi ∈ Z/mZ (note
we may trivially include any xi = 0). Letting g(x) = f (x

(m−1)/2
1 , . . . , x

(m−1)/2
n ) we are

led to a new formulation of the problem. Namely, we must estimate

S(g, n, m) = 1

(m − 1)n

m−1∑
x1=0

· · ·
m−1∑
xn=0

(
x1

m

)
· · ·
(

xn

m

)
em (g(x)) . (1.10)

This is a mixed exponential sum, involving multiplicative (the Legendre symbol) and
additive (the exponential function) characters. When there are no Legendre symbols in
(1.10), one often obtains bounds of the form

(d − 1)nmn/2, (1.11)

where d is the degree of the highest homogeneous component, m is the modulus, and
n the number of variables (see [7]). The substitution (replacing f with g) increases the
degree d too much for the general Weil–Deligne type bounds to help, except when
m = 3 where the conjecture is already known. Note the degree of g is m − 1, so
the degree increases unless m = 3. For m = 3 this does lead to a new proof of the
conjecture for special f (see Appendix for details).



172 E. Dueñez et al. / Journal of Number Theory 116 (2006) 168–199

An alternate approach to (1.1) is to rewrite it as

1

mn

1

2n

∑
�1,...,�n mod m

∑
x1,...,xn∈{−1,1}

x1 · · · xn

[∏
i

em(�i (x
2
i − 1))

]

× em(f (x1, . . . , xn)). (1.12)

In the bracketed product, the sum over each �i is 0 unless x2
i − 1 ≡ 0 mod m; in other

words, we may extend the summation over each xi to be over all of Z/mZ. Note
it is relatively easy to explicitly incorporate summing over the sub-variety x2

i = 1.
Unfortunately, the number of variables of the new polynomial is now 2n, and the
degree is now 3. This will also be a poor substitution. Again ignoring the x1 · · · xn, the
bounds from (1.11) are of the form

1

mn · 2n
· (3 − 1)2nm2n/2 = 2n, (1.13)

which is too large; other similar bounds also just fail (see for example [2]).
In the present paper we investigate the sums S(f, n, m) from (1.1) in the case d = 2

and arbitrary odd m. In this setting the conjecture takes on a sharper form, since
we believe we know the optimal value of cm,2 and the quadratic polynomials f for
which the optimal bound is attained. While we have not settled the question, we have
developed three quite different techniques for studying the problem. Each of these
methods produces a proof of a different special case of the conjecture for quadratic
polynomials. We believe that at least one of these methods, or some combination of
them, can be pushed further to settle the general problem.

We first investigate the conjecture probabilistically by evaluating the higher-order
moments of |S(f, n, m)| as f ranges over the set of all quadratic polynomials in n
variables. As a result, we are able to show that if � < 1 is quite close to 1, then all
but an exponentially small (in n) proportion of the |S(f, n, m)| are bounded by �n.

We then give a detailed analysis of the structure of these sums for small n. As a
consequence, we are able to prove our conjectured upper bound holds whenever n�10
for any odd m. Further, we prove these bounds are sharp for n�10.

Finally, we interpret S(f, n, m) as a coefficient in the Fourier expansion of �f (x1,...,xn),
when this function is viewed as an element of L2({−1, 1}n). We are able, for a large
class of polynomials, to determine the Fourier expansion directly, and thus obtain the
conjectured bound.

2. Definitions and statement of main results

Let m be a fixed odd integer and let f (x) = f (x1, . . . , xn) ∈ Z[x1, x2, . . . , xn] be
a polynomial with integral coefficients of degree at most 2 in n variables. We are
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interested in finding sharp upper bounds to the norm of

S(f, n, m) = 1

2n

∑
x1∈{−1,1}

· · ·
∑

xn∈{−1,1}
x1 · · · xn �f (x), (2.1)

where � = e2�i/m is the principal mth root of unity. Letting em(z) = e2�iz/m, we
often write �f (x) = em(f (x)). When n and m are obvious from the context, we refer
to this sum as S(f ). These are incomplete exponential sums, as each xi is restricted
to lying in {−1, 1}; the easier case has each xi ∈ Z/mZ. It is important to note that
for our applications, the modulus m is fixed and our goal is to study the norm of the
S(f, n, m) as n and f vary. We shall refer to S(f, n, m) as the normalized sum, on
occasion referring to the unnormalized sum 2nS(f, n, m) as S̃(f, n, m). The philosophy
of square-root cancellation suggests that S̃(f, n, m) should typically be of size 2n/2.

Without loss of generality, we may assume there are no diagonal or constant terms
in f (x): as each xi ∈ {−1, 1}, x2

i is constant and hence does not affect |S(f )|. Thus
we restrict our attention to f (x) of the form

f (x) =
∑

1� i<j �n

aij xixj +
∑

1�k �n

bkxk. (2.2)

and we refer to this set of polynomials as Z2
m[x1, x2, . . . , xn], or Z2

m[n] for short.
For fixed n and m, let F ⊂ Z2

m[n] be an arbitrary family of polynomials. For r > 0,
we define the rth moment of F , denoted by Mr,F , by

Mr,F = 〈|S(f, n, m)|r 〉F = 1

|F |
∑
f ∈F

|S(f, n, m)|r . (2.3)

When F is obvious from the context, we write Mr for the rth moment.
We now define a few parameters that appear in our results:

• c := 
m+1
4 � ∈ Z. This value maximizes |�y − �−y |.

• q := ∣∣�c − �−c
∣∣ = 2 cos �

2m
.

• r := cos 3�
2m

denotes the second largest value of |�y − �−y |. A simple calculation
shows that this is attained when y = 
m+3

4 �.
• s := cos �

m
. This is the second largest value of |�y + �−y | (the largest value is 2,

when y = 0).

Associated with every polynomial f = ∑
i,j aij xixj +∑

i bixi ∈ Z2
m[n] (of degree

�2) is an undirected graph G = G(f ) with vertex set {1, . . . , n} and edge set {{i, j} :
aij �= 0}. Recall that a tree is a connected acyclic graph and a forest is a collection of
trees.
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Our main result towards proving the conjectured bounds in (1.2) is

Theorem 1.
(i) Let F (resp. G) denote the set of all quadratic polynomials (resp. homogeneous

quadratic polynomials) in Z2
m[n]. Then the second moments are

M2,F = 1

2n
, M2,G = 1 + (−1)n

2n
. (2.4)

Furthermore, for m > 3, the sixth moment satisfies

M6,F � 9n(n − 1) + (9n + 1)22−2n

4

1

23n
. (2.5)

(ii) For all odd m�3 and n�10,

|S(f, n, m)| �
(q

2

)
 n+1
2 �

. (2.6)

This bound is sharp, as there are polynomials where equality holds.
(iii) If f ∈ Z2

m[n] is such that G(f ) becomes a forest of trees on deletion of at most
(n − 2) log(2/q) edges from G(f ), then

|S(f, n, m)| �
(

q

2

)
 n+1
2 �

. (2.7)

Additionally, if G(f ) is itself a tree, then

|S(f, n, m)| �
(q

2

)n−1
. (2.8)

The moment bounds in Theorem 1(i) allows us to estimate the number of polynomials
with large norms. Specifically, we prove:

Corollary 2. Let f ∈ Z2
m[n] be chosen randomly and uniformly from Z2

m[n]. Then for
any � > 0,

1
2n − �2n

1 − �2n
� Prob

(|S(f, n, m)| � �n
)

� min

(
1

(2�2)n
,

9n(n + 1)/4

(2�2)3n

)
. (2.9)

Remark 3. A critical case occurs when � = 1√
2

. This occurs when we have square-root

cancellation. The second and sixth moment bounds, at � = 1√
2

, give no information:
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0�P(�)�1. In other words, we cannot obtain more than square-root cancellation on a
positive proportion of polynomials. This agrees nicely with the philosophy that square-
root cancellation is the best one can hope for in general.

The previous remark yields the following negative result:

Corollary 4. For any � < 1√
2

, at least an exponentially small (in n) proportion of the

f, independent of m, satisfy |S(f, n, m)|��n.

The bounds in Theorem 1 and ample experimental evidence for small values of n
lead us to make the following conjecture:

Conjecture 5. Let m�3 be odd and let n be a non-negative integer. Then

|S(f, n, m)| �
(q

2

)
 n+1
2 �

. (2.10)

Moreover, the upper bound is attained by all polynomials of the form

c(±x1x2 ± x3x4 ± · · · ± xn−1xn) (2.11)

when n is even, and by any polynomial of the form

c(±x1x2 ± x3x4 ± · · · ± xn−1xn ± xn+1) (2.12)

when n is odd, where the constant c = 
(m + 1)/4�.

Note that the special case of Conjecture 5 has already been verified for all n and
m = 3 [10]. Green’s proof for m = 3 makes use of special relations that hold between
the third roots of unity, and we have not been able to generalize these equations to
higher roots.

Organization of paper. We prove Theorem 1(i) in Section 3, Theorem 1(ii) in Sec-
tion 4 and finally in Section 5 we prove Theorem 1(iii). In Section 6 we discuss a
generalization of Conjecture 5 and future work.

3. Bounds through moments

In this section, we prove Theorem 1(i) and Corollary 2 by computing the moments
of the exponential sums S(f, n, m). We can compute the second moment exactly, while
for the sixth moment we provide an upper bound. These calculations enable us to
provide estimates on the proportion of polynomials with large norm. Theorem 1(i)
follows immediately from Theorems 9, 11 and 12, while Corollary 2 follows from
Theorem 1(i) and Theorem 7.



176 E. Dueñez et al. / Journal of Number Theory 116 (2006) 168–199

3.1. Moment Bounds

Using moments, one can gain information about the maximum value of |S(f, n, m)|.
As r → ∞, the rth root of the rth moment converges to the largest value of |S(f, n, m)|.
Unfortunately, because of combinatorial complications, we cannot compute high enough
(in n) moments to obtain the desired bounds for individual S(f, n, m), as the order of
the moment needed tends to infinity with n. Thus, while the method of moments allows
us to conclude that “most” S(f, n, m) have the desired cancellation, to obtain these
estimates for all S(f, n, m) requires, at present, moments that are too combinatorially
difficult to calculate. We do observe that the low moments are growing at a rate which
is indicative of the conjectured bounds being true.

Definition 6. (P(�))

P(�) = Prob (|S(f, n, m)|��) . (3.1)

Theorem 7 (Bounds from moments). Assume Lr �Mr �Ur . Then

Lr − �r

1 − �r
� P(�) � Ur

�r
. (3.2)

Proof. As

0r · (1 − P(�)) + �r · P(�) � Ur, (3.3)

we obtain

P(�) � Ur

�r
. (3.4)

The above is just Chebychev’s Inequality, which allows us to measure the “bad” set of
f. The lower bound follows from

�r · (1 − P(�)) + 1 · P(�) � Lr. (3.5)

�

Good bounds can be found for any fixed moment (if one is willing to do enough
work); we provide details for the second moment (which is very straightforward) and
the sixth moment (which illustrates the type of complications that arise in studying the
higher moments).

We now bound the second and sixth moments. Recall em(x) = e2�ix/m. We constantly
use the following observation:
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Lemma 8. For any positive integer m,

∑
a mod m

em(ar) =
{

m if r ≡ 0 mod m,

0 otherwise.
(3.6)

Proof. If r ≡ 0 mod m, each term is 1 and the claim is clear. Otherwise the above is
a geometric series with ratio em(r), equal to em(0r)−em(mr)

1−em(r)
= 0. �

3.2. The second moment

3.2.1. All quadratic polynomials in Z2
m[n]

Theorem 9. Let F = Z2
m[n]. Then for any integer m�2,

M2 = 1

2n
. (3.7)

Proof. The second moment of |S(f, n, m)| is

M2 = 1

|F |
∑

aij mod m

∑
bk mod m

⎛
⎝ 1

2n

∑
x1∈{−1,1}

· · ·
∑

xn∈{−1,1}
x1 · · · xnem (f (x))

⎞
⎠

×
⎛
⎝ 1

2n

∑
y1∈{−1,1}

· · ·
∑

yn∈{−1,1}
y1 · · · ynem (−f (y))

⎞
⎠ . (3.8)

Interchanging summations, for a fixed 2n-tuple (x1, . . . , yn), we have terms such as

∑
aij mod m

∑
bk mod m

em (f (x) − f (y)) . (3.9)

This equals

∑
aij mod m

∑
bk mod m

em

⎛
⎝∑

i,j

aij (xixj − yiyj ) +
∑

k

bk(xk − yk)

⎞
⎠ . (3.10)

If xk �≡ yk mod m, then by Lemma 8 the sum over that bk is zero. Thus the only
non-zero contributions for a 2n-tuple are when each xk equals the corresponding yk .
There are 2n such tuples. Note that in this case, each sum over bk gives m. Further,
each sum over an aij also gives m, as xixj − yiyj ≡ 0 mod m.
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Thus for each of the 2n tuples where xk = yk , the sums over aij and bk give
mn(n+1)/2 = |F |, and xkyk = 1. Substituting yields

M2 = 1

|F | · 1

22n
· 2n · |F | = 1

2n
. (3.11)

�

Remark 10. Theorem 9 implies that on average there is square-root cancellation; using
the Cauchy–Schwartz inequality, we find

〈|S(f, n, m)|〉F � 1

2n/2 . (3.12)

3.2.2. Homogeneous quadratic polynomials in Z2
m[n]

While we are primarily interested in bounds for S(f, n, m) for non-homogeneous f,
we quickly investigate the homogeneous case.

Theorem 11. Let G be the family of all homogeneous quadratic polynomials in Z2
m[n].

Then

M2 = 1 + (−1)n

2n
. (3.13)

Proof. As this case is similar to the previous one, we just sketch the arguments below.
The main difference is we now only have sums over aij mod m; there are no bk sums.
Thus for each 2n-tuple (x1, . . . , yn), we have factors such as

m−1∑
aij =0

em

(
aij (xixj − yiyj )

)
. (3.14)

If xixj − yiyj ≡ 0 mod m then the aij -sum is m; otherwise, it is 0. As m is odd, if
xixj − yiyj ≡ 0 mod 1, then it equals zero.

There are two possibilities. First, each yi could equal xi . Then clearly all relevant
terms equal 0. For the second possibility, assume there exists an i such that xi = −yi .
Then for any j �= i, xixj −yiyj = 0 becomes xj +yj = 0. Therefore, if one yi = −xi ,
then all yi = −xi . We again find the aij -sum equals m.

Therefore, for each n-tuple (x1, . . . , xn) there are two y-tuples, (x1, . . . , xn) and
(−x1, . . . ,−xn). The exponential sums over aij give mn(n−1)/2 = |G|. We then multiply
by

x1 · · · xnx1 · · · xn + x1 · · · xn(−x1) · · · (−xn) = 1 + (−1)n, (3.15)
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and find that

M2 = 1

|G| · 1

22n
· 2n · (1 + (−1)n

) · |G| = 1 + (−1)n

2n
. (3.16)

�

Note if n is odd, the second moment is 0, which implies that S(f, n, m) = 0 for all f;
this is also seen by comparing the contributions from (x1, . . . , xn) and (−x1, . . . ,−xn).

3.3. The sixth moment

Theorem 12. Assume m > 3 is odd. The sixth moment for F = Z2
m[n] satisfies

M6 � 9n(n − 1) + (9n + 1)22−2n

4

1

23n
∼ 9n(n − 1)

4

1

23n
. (3.17)

Proof. We have six tuples in the calculation of the sixth moment, say X1 = (x1,1, . . . ,

x1,n) to X6 = (x6,1, . . . , x6,n). We have exponential factors such as

∑
aij mod m

em

(
aij (x1,ix1,j + x2,ix2,j + x3,ix3,j − x4,ix4,j − x5,ix5,j − x6,ix6,j )

)
(3.18)

and

∑
bk mod m

em

(
bk(x1,k + x2,k + x3,k − x4,k − x5,k − x6,k)

)
. (3.19)

The bk-sum is zero unless

x1,k + x2,k + x3,k − x4,k − x5,k − x6,k ≡ 0 mod m. (3.20)

Remark 13. If we were calculating the 2rth moment, we would have

x1,k + · · · + xr,k − xr+1,k − · · · − x2r,k ≡ 0 mod m. (3.21)

We want to conclude that x1,k + · · · − x2r,k = 0. As each term is congruent to 1 mod
2, the sum is always even. For the sixth moment, if the sum is congruent to zero mod
m then it is zero unless m = 3; this is clear for m > 6, and if m = 5 this follows
immediately. Thus some modifications are needed to use these techniques for m = 3;
as the main theorem can be proved for all n for m = 3, we do not explore such
extensions here and content ourselves with remarking that slight changes are needed
for small m and larger moments (for example, m = 5 and 2r = 12). In all arguments
below, we may replace congruent to 0 mod m with equals 0.
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Thus, in (3.20), if exactly m of the first three xh,k’s are +1, then exactly m of the
last three xh,k’s are +1. For each k, there are four structurally different ways to choose
the xh,k’s:

(1) None of the x1,k, x2,k, x3,k are 1; there is
(3

0

)(3
0

) = 1 way to do this.

(2) Exactly one of the x1,k, x2,k, x3,k are 1; there are
(3

1

)(3
1

) = 9 ways to do this.

(3) Exactly two of the x1,k, x2,k, x3,k are 1; there are
(3

2

)(3
2

) = 9 ways to do this.

(4) Exactly three of the x1,k, x2,k, x3,k are 1; there is
(3

3

)(3
3

) = 1 way to do this.

We call these conditions (1)–(4). For all (i, j), we have

x1,ix1,j + x2,ix2,j + x3,ix3,j − x4,ix4,j − x5,ix5,j − x6,ix6,j = 0, (3.22)

or else the aij -sum is zero. We now analyze the consequences of having one of the
above conditions hold.

For example, assume there is a k0 such that condition (1) holds (all six of the xh,k0

are −1). Then for all j �= k0, substituting into (3.22) and multiplying through by −1
yields

x1,j + x2,j + x3,j − x4,j − x5,j − x6,j = 0. (3.23)

This is exactly the condition from the bk-sums ((3.19) and (3.20)), and provides no new
information (i.e., this equation is already satisfied for all j). Thus, whenever condition
(1) is satisfied, no new information is obtained. In effect, whenever condition (1) holds,
it is as if we have a smaller degree for our polynomial. This is primarily because initially
there are 26 possibilities for a 6-tuple, and when condition (1) holds, there is only one
possibility.

Assume now condition (2) holds for some fixed index k0, namely exactly one of the
first three is +1, exactly one of the last three is +1. There are 9 different ways this
can occur; by symmetry we can relabel so that x1,k0 = x4,k0 = 1. Substituting into
(3.22) yields, for any j �= k0,

x1,j − x2,j − x3,j − x4,j + x5,j + x6,j = 0. (3.24)

However, from the bk-sum with k = j ((3.19) and (3.20)), we have

x1,j + x2,j + x3,j − x4,j − x5,j − x6,j = 0. (3.25)

Adding (3.24) and (3.25) and dividing by 2 (note here we use m is odd!) yields

x1,j = x4,j , (3.26)



E. Dueñez et al. / Journal of Number Theory 116 (2006) 168–199 181

while subtracting the two and dividing by 2 yields

x2,j + x3,j = x5,j + x6,j . (3.27)

There are two possibilities in (3.27): we could have each side is two equally signed
summands, or oppositely signed summands. We have already determined x1,j = x4,j ;
we now isolate the relations among the other x’s in this case.

Lemma 14. Assume condition (2) holds for some k0, and for definiteness assume
x1,k0 = x4,k0 . Then for all j �= k0 we have x1,j = x4,j , and exactly one of the
following must hold:

• If x2,j = x3,j , then x2,j = x3,j = x5,j = x6,j . There are two ways this can occur
(once the sign of x2,j is chosen, all other values are determined). We call this case
“equally signed terms”.

• If x2,j = −x3,j , then x5,j = −x6,j . The two possibilities are
(i) x2,j = −x3,j = x5,j = −x6,j ;

(ii) x2,j = −x3,j = −x5,j = x6,j .
There are two ways for each possibility to occur; again, once x2,j is chosen, the
rest are determined. We denote this case “oppositely signed terms”.

Note in all of the relations above, we always have x1,j · · · x6,j = +1; thus, the
contributions from these terms will not negatively reinforce. If there is some k0 so
that condition (2) holds, then for each j �= k0, there are 12 choices for the variables
(x1,j , . . . , x6,j ), and each choice leads to a contribution of |F |. The reason there are
12 choices is that there are two ways to satisfy x1,j = x4,j , and then 6 ways to satisfy
the other relations. There are n ways to choose an index k0 such that condition (2)
holds, and 9 ways to choose the indices for that k0. As there are 26n = 64n 6-tuples,
this leads to condition (2) terms contributing at most

9n · 12n−1

64n
= 9n

12

(
12

64

)n

= 3n

4

1

1.747163n
. (3.28)

For square-root cancellation, the sixth moment should be of size 1
23n ; thus, we have

not performed a sufficiently detailed analysis. We have not fully exploited the fact that
the x-quadratic in (3.18) must vanish for all i, j . We use the fact that the relations in
Lemma 14 must hold for all j, and substitute for different choices of i and j in (3.18).

There are two cases: for all j �= k0 we have equally signed terms, and for some
j0 �= k0 we have oppositely signed terms. The contribution from all terms being equally
signed is at most 9n·2n−1

26n ; this follows immediately from there being 2 choices for the
x-tuples for each j �= k0.

Assume for some j0 that we have oppositely signed terms; for definiteness, say
x2,j0 = −x3,j0 = x5,j0 = −x6,j0 (and of course x1,j0 = x4,j0 ). From (3.18) we
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have

x1,ix1,j0 + x2,ix2,j0 + x3,ix3,j0 − x4,ix4,j0 − x5,ix5,j0 − x6,ix6,j0 . (3.29)

We substitute in the values for the x’s at j0. Note that x1,i = x4,i , so x1,ix1,j0 −
x4,ix4,j0 = 0. We find

x2,j0 · (x2,i − x3,i − x5,i + x6,i ) = 0; (3.30)

however, the tuple (x2,i , x3,i , x5,i , x6,i ) must satisfy one of the relations in Lemma 14.
A priori, all of the six possibilities in Lemma 14 should be available to this tuple. If

we are in the case of an equally signed term, then (3.30) is satisfied. If, however, the
tuple is oppositely signed, then one of the two possibilities leads to a contradiction (i.e.,
an x-sum is non-zero, and hence an a-sum will vanish; this would not necessarily be
the case if m = 4). Namely, if the second case occurs and x2,i = −x3,i = −x5,i = x6,i ,
then the x-sum in (3.30) is non-zero. Thus this case cannot occur, and for indices
i �= k0, j0, there are only 2 · 4 possibilities for the tuples, and not 2 · 6 (there are
two possibilities from x1,i = x4,i ; then we saw of the six possibilities for the rest,
only four work). There are n(n − 1) ways (order matters) to choose two indices j0, k0
(and for k0, there are 9 ways to choose the matchings). For the index j0, there are 2
different structures of oppositely signed terms. Each structure is determined by x2,j0

(two choices); there are also two choices for x1,j0 . Thus for j0 there is a contribution
factor of 8. For the remaining n − 2 indices, each gives rise to 8 tuples. Each such
tuple has x1,1 · · · x6,n = 1, and the sum contributes |F |.

Recall we divide the average by 26n, the number of tuples. The contribution from
condition (2) holding for some index k0 and at least one index j0 is oppositely signed
terms is

� 9 · 8 · n(n − 1) · 8n−2

26n
= 9n(n − 1)

8

1

23n
; (3.31)

the total contribution from condition (2) holding at least once is therefore at most

9n(n − 1) + 9n22−2n

8

1

23n
. (3.32)

Note if condition (3) holds for some index k0, by changing each xi,k0 to −xi,k0 ,
then condition (2) holds. Thus the contribution from condition (3) holding is also at

most 9n(n−1)+9n22−2n

8
1

23n . Similarly, condition (4) holding is equivalent to condition (1)
holding by a change of variable. If condition (1) or (4) holds for each index i, assuming
such terms contribute fully, there are at most 2n such tuples, giving a contribution
bounded by 2n

26n . Adding these bounds completes the proof of Theorem 12. �
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Remark 15. The above analysis was greatly simplified by the presence of the linear
terms in the polynomial f (x). Without relations (3.19) and (3.20), the analysis would
be significantly more involved.

4. Bounds for n�10 variables

In this section, we prove upper bounds on the norm of S̃(f ) = S̃(f, n, m) for n�10
and arbitrary odd modulus m�3. We shall sometimes call S̃(f ) “the exponential sum
for polynomials of n variables”. When no ambiguity results, we write S̃ instead of
S̃(f ) (particularly for n = 3 and n = 5).

Theorem 16. Let f , n, q, S be as defined in Section 2, and suppose n�10. Then

|S| = 2−n|S̃| �
(q

2

)
 n+1
2 �

. (4.1)

Proof. It follows from Lemma 3.5 of Green [10] (which easily generalizes to arbitrary
odd moduli) that it is sufficient to prove this for odd n less than 10. We will first
dispose of some easy cases when the number of variables is 1 or 2, and also when the
graph G has no vertex of degree 2 or more. We then consider in detail what happens
when n = 3, 5, 7, and 9.

The idea is that unless the polynomial f has a special form, we will be able to prove
very small upper bounds on |S(f )|, which we use in turn to prove bounds on the
normalized sum for polynomials in larger numbers of variables.

A key ingredient in the proof is the fact that cos(k�) is a polynomial of degree k
in cos �; these are the classic Chebyshev polynomials. We will use these in a slightly
altered form: 2 cos(k�) = Qk(2 cos �), where the polynomials Qk are given by the
recurrence

Q0(x) = 2,

Q1(x) = x,

Qk+1(x) = xQk(x) − Qk−1(x). (4.2)

We will often also need to prove that for some univariate polynomial g, g(q) > 0. This
will always follow from the fact that g is positive on the half-open interval [√3, 2).
Whenever this is the case, the claim can easily be verified by elementary calculus, but
we will omit this verification in the argument below, and simply assert g(q) > 0.

Case 1: n = 1. In this case

f (x) = ax

S̃ = �a − �−a, (4.3)
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so

|S̃| � q (4.4)

and

|S| � q

2
, (4.5)

as required, with equality if and only if a = ±c.
It is interesting to see what happens if a is not ±c. In this case, we actually find

|S| �
(q

2

)9
. (4.6)

To see this, we note that |S̃| is bounded above by r = Q2(q) = q3 − 3q. The claim
follows from the fact that

q9 − 256q3 + 256 · 3q � 0. (4.7)

Case 2: n = 2. While the theorem for two variables follows from the one-variable
result, we need more detailed information for later arguments. For two variables,

f (x, y) = Axy + Bx + Cy

S̃ = �A(�B+C + �−(B+C)) − �−A(�B−C + �−(B−C)). (4.8)

If B = C = 0 then we get the maximum value q when A = ±c, giving the theorem
for n = 2. Otherwise we find, as argued above, |S̃|�r < q9/28. This gives a bound of
q9/210 for |S|. Since 1

2 �
( q

2

)4, we get a bound of
( q

2

)13 for |S|.
If either B + C or B − C is nonzero, then we get a bound on |S̃| of

2 + max
�∈Zm\{0}

|�� + �−�| = 2 + s = 2 + Q2(q) = q2. (4.9)

This bound is attained only if A = 0 and B = ±C = ±c, that is, with the linear
polynomial ±cx ± cy. Any other linear polynomial gives a bound of

s + 2 cos
2�

m
= (q2 − 2) + (q4 − 4q2 + 2) = q4 − 3q2 �

(q

2

)10
. (4.10)
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For a nonlinear polynomial we get a bound of 2�A+s�−A, attained when B = −C = c.
This has its largest absolute value when A = 2c, in which case we find

|S̃|2 = (2�2c + s�−2c)(2�−2c + s�2c)

= 4 + 2s(�4c + �−4c) + s2

= 4 + 2s(s2 − 2) + s2

= 4 + 2s3 − 4s + s2

= 2q6 − 11q4 + 16q2. (4.11)

We verify that for x ∈ [√3, 2),

x5/8 −
√

2x6 − 11x4 + 16x2 � 0. (4.12)

This makes the normalized sum smaller than
( q

2

)5.
To summarize: For n = 2 we achieve the maximal value of

( q
2

)
for the magnitude

of the normalized sum when f (x, y) = ±cxy. We achieve the largest sub-maximal
value of

( q
2

)2 when f (x, y) = ±cxy ± cxy. In all other cases the magnitude of the

normalized sum is less than
( q

2

)5.

Case 3: G has no vertex of degree greater than 1. Let n be any odd number of
variables. If G has no vertex of degree at least 2, then f decomposes as a sum of
polynomials of degree 1 and 2 over disjoint sets of variables, and the normalized sum
S for f is the product of the normalized sums for each of these polynomials. The largest
magnitude for this sum occurs when the graph consists of (n−1)/2 edges and a single
isolated vertex, and when each of the associated linear and quadratic polynomials has
the largest possible normalized sum. This implies

f (x1, . . . , xn) = ±cx1x2 ± · · · ± cxn−2xn−1 ± cxn (4.13)

(up to a permutation of the variables), giving a normalized sum whose magnitude is( q
2

) n+1
2 , as required by the theorem. In any other instance, the foregoing analysis shows

the normalized sum to be bounded above by
( q

2

) n+3
2 , which is attained when the graph

consists of three isolated vertices and n − 3 edges.

Case 4: n = 3. In this case we write

S̃ = ��(��(�� − �−�) − �−�(�� − �−�))

− �−�(��′
(��′ − �−�′

) − �−�′
(��′ − �−�′

)), (4.14)
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where

� = a12,

� = a1 + a2,

�′ = a1 − a2,

� = a13 + a23 + a3,

�′ = a13 − a23 + a3,

� = a13 + a23 − a3,

�′ = a13 − a23 − a3. (4.15)

We may assume with no loss of generality that a3 �= 0. (If all the linear coefficients
were zero then f would be homogeneous and S = 0. Otherwise we can renumber the
variables to assure that a3 is non-zero.)

Suppose first that all four of the subexpressions �� − �−� occurring in the above
equation for S have the maximum possible magnitude; that is, � = ±c. If � = �, we
conclude (using the fact that it is possible to divide by 2 in Zm as m is odd) that
a3 = 0, contrary to assumption. So � = −�. Likewise we conclude �′ = −�′. This
implies a13 +a23 = a13 −a23 = 0, so a13 = a23 = 0. Thus G has no vertex of degree 2
or more. By the results of the last section we get a bound of

( q
2

)2 for the normalized
sum, with this largest value occurring only when f is

±cx1x2 ± cx3. (4.16)

Suppose that 3 of the 4 subexpressions in question are maximal. This implies (up to
some sign changes and renumbering of variables):

a13 = c, a23 = −c, a3 = c, (4.17)

so that

� = c, � = −c, �′ = −c, �′ = −3c. (4.18)

So now

S̃ = i((q��(�� + �−�) + �−�(q��′ + r�−�′
)). (4.19)

If � = � = �′ = 0, then we get |S̃| = 3q + r = q3. So the normalized sum is bounded
by q3/8, which is attained when f has the form

±(cx1x3 ± cx2x3 ± cx3). (4.20)
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If � and �′ are both zero and � is nonzero, we get

S = 2qi�� + (q + r)i�−�. (4.21)

Thus

|S̃|2 = (2q�� + (q + r)�−�)(2q�−� + (q + r)��)

= 4q2 + (q + r)2 + 2q(q + r)(�2� + �−2�)

= 4q2 + (q3 − 2q)2 + 2q(q3 − 2q)(�2� + �−2�). (4.22)

This is maximized when 2� = 1 in Zm, which gives

4q2 + (q3 − 2q)2 + 2q(q3 − 2q)(q4 − 4q2 + 2). (4.23)

We can bound the square root of this expression on [√3, 2) and find the normalized
sum is less than (q/2)6. If � and �′ are not both zero, then we get the maximal value
when � = 0 and � = �′ = 2c. The result is

S̃ = i(2q�2c + (q + r)�−2c), (4.24)

again giving the bound (q/2)6 for the normalized sum.
We now consider the case when no more than 2 of the subexpressions (��−�−�) are

maximal. In this case (remembering a3 �= 0) there are no solutions for the system of four
equations in which two of the � are ±c and the other two are ±3c (which would give a
bound of 2(q + r)). Instead, we cannot get any value larger than 2q + r +|�5c −�−5c|.
This will happen with a13 = 2c, a23 = −2c, a3 = c. We find

|�5c − �−5c| = 2 cos

(
5�

2m

)
= Q5(q) = q5 − 5q3 + 5q, (4.25)

so that |S̃| is bounded above by

2q + (q3 − 3q) + (q5 − 5q3 + 5q) = q5 − 4q3 + 4q. (4.26)

This implies that the normalized sum’s magnitude is less than (q/2)9.
We summarize what happens in the 3-variable case. We are assuming a3 �= 0. We

get the maximum magnitude for the normalized sum of (q/2)2 when f is ±cx1x2 ±cx3.
We get the second largest value of (q/2)3 only if f is either linear or has the form
±(cx1x3 ± cx2x3 ± cx3). In all other cases the bound is at most (q/2)4.

For future reference, it is worth thinking explicitly about the case where a3 = 0 and
a13, a23 are both non-zero. We get � = � and �′ = �′. Furthermore, we cannot have
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� = ±� without making one of a12 or a13 zero. The largest norm possible occurs when
� = c and �′ = 3c, in which case

S̃ = ��(�� − �−�)qi + �−�(��′ − �−�′
)ri, (4.27)

so

|S̃| � q2 + qr = q2 + q4 − 3q2 = q4 − 2q2, (4.28)

which gives a normalized sum whose magnitude is no more than (q/2)6.

The “General Case”. “General” here means 5, 7, or 9. Note again that if G has no
vertex of degree two or higher then by Case 3 we have all the information we need
(in particular, we obtain the stated bound on the normalized sum, valid for arbitrary
n). Accordingly, suppose G has a vertex of degree 2 or more. We may assume without
loss of generality that this is vertex n, and that an−1,n and an−2,n are both non-zero.

We write f ++, f −+, etc. for the four (n−2)-variable polynomials formed by setting
x1 and x2 to ±1 and then setting the constant term of the resulting polynomial to zero.
For example, if

f (x1, x2, x3, x4, x5)

= a12x1x2 + a23x2x3 + a34x3x4 + a1x1 + a3x3 + a4x4 + a5x5, (4.29)

then

f −+(x3, x4, x5) = a34x3x4 + (a3 + a23)x3 + a4x4 + a5x5. (4.30)

We denote by S++, S−+, etc., the unnormalized sums of the f ±±, and by G±± the
graph (it’s the same for all four polynomials) of the f ±±. We now have

S = �a12(�a1+a2S++ + �−(a1+a2)S−−) − �−a12(�a1−a2S+− − �−(a1−a2)S−+). (4.31)

Note that each of the f ±± has a vertex of degree at least 2 in the associated graph.
We want to show that the largest possible normalized sum for polynomials in

x3, . . . , xn with an−1,n and an−2,n both non-zero, occurs only when the polynomial
has the form

±cx3x4 ± cx5x6 ± · · · ± cxn−1,nxn−2,n ± cxn (4.32)

(up to a permutation of {3, 4, . . . , n−3}). In this case the magnitude of the unnormalized
sum for n − 2 variables is 2(n−5)/2q(n+1)/2. This would imply that the normalized sum
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for polynomials in n variables is bounded above by

2−n · 4 · 2(n−5)/2q(n+1)/2 =
(q

2

) n+1
2

, (4.33)

as required by the theorem. Observe that in our study of three-variable polynomials
we have already established this claim in the case n = 5. We proceed to show it for
n = 7 and n = 9. We really want to show by induction that this claim holds for all
odd n. Let us suppose then that this property of polynomials in n − 2 variables holds,
and see how close we can come to completing the inductive proof.

How many of the S±± can give the optimal magnitude of 2(n−5)/2q(n+1)/2 for poly-
nomials in n − 2 variables with a vertex of degree 2? Suppose first that all four of
these sums are optimal. Then by induction each of the f ±± is

±cx3x4 ± cx5x6 ± · · · ± cxn−1,nxn−2,n ± cxn. (4.34)

We thus have for 3� i < n,

ai ± a1i ± a2i = 0, (4.35)

which implies

a1i = a2i = 0. (4.36)

We also have

an ± a1n ± a2n = ±c. (4.37)

If three of the four values an ± a1n ± a2n = ±c are equal, we find a1n = a2n = 0
(so that all four of the values are equal), and thus G is disconnected, with {1, 2} as a
separate component. In this case |S| cannot exceed the product of the magnitudes of
the sums associated with the components, namely

2(n−5)/2q(n+1)/2 · 2q = 2(n−3)/2q(n+3)/2. (4.38)

Observe that this arises precisely when f has the form

±cx1x2 ± cx3x4 ± cx5x6 ± · · · ± cxn−1,nxn−2,n ± cxn. (4.39)

This gives a bound on the normalized sum of (q/2)
n+3

2 . To complete the induction we
will have to show that every other possible form for f gives a strictly smaller value.
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We may thus suppose that two of the four values

an ± a1n ± a2n = ±c (4.40)

are c and two are −c. We can assume without loss of generality that

an + a1n + a2n = c. (4.41)

If we also have

an − a1n − a2n = c, (4.42)

then an = c and a1n + a2n = 0. This would imply that both ±(a1n − a2n) equal −c,
which is impossible. Thus

an − a1n − a2n = −c, (4.43)

which implies an = 0 and a1n + a2n = c. This implies a13 − a23 = ±c, and thus either
a13 = 0 or a23 = 0. The result is that

S̃ = S++ [�a12(�a1+a2 − �−(a1+a2)) ± �−a12(�a1−a2 − �−(a1−a2))
]
. (4.44)

The largest possible magnitude for the bracketed expression is q2, giving a bound of

q2 · 2(n−5)/2q(n+1)/2 for |S̃|, and thus of (q/2)
n+5

2 for |S|.
We now suppose that exactly three of the S±± have magnitude 2(n−5)/2q(n+1)/2. Note

that whenever at least one of the S±± has this form, the graph G±± is disconnected,
with a component consisting of the vertices {n − 2, n − 1, n}. Thus each S±± is the
product of the sum S±±

3 associated with some three-variable polynomial f ±±
3 and the

sum associated with an (n − 5)-variable polynomial. By the inductive hypothesis, the

sum for an (n − 5)-variable polynomial has magnitude bounded above by (q/2)
(n−5)

2 .
We can suppose without loss of generality that the three optimal sums are S++,

S+−, and S−+. We again find

a1,n−1 = a2,n−1 = a1,n−2 = a2,n−2 = 0. (4.45)

We also have

an + a1n + a2n = ± c,

an + a1n − a2n = ± c,

an − a1n + a2n = ± c. (4.46)
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If all three right-hand sides above are equal, we again get a1n = a2n = 0, which will
put us back in the previous case. If the first two right-hand sides are equal, and the
third is opposite, we find an = a2n = 0, which again puts us back in the previous case.
We may thus suppose that the first right-hand side is c, so that the second is −c. We
then obtain

an = −c, a1n = a2n = c. (4.47)

Thus |S++
3 | = |S+−

3 | = |S−+
3 | = q3, and, as we found in the section on 3 variables,

|S−−
3 | is the magnitude of the sum for the 3-variable polynomial cx1x3 − cx2x3 −3cx3.

We find, reasoning as in the section on three variables, that this is

q + 2r + q5 − 5q3 + 5q = q5 − 3q3. (4.48)

Thus the sum of the |S±±
3 | is no more than q5, so that

2−n|S| � (q/2)5 · (q/2)
(n−5)

2 = (q/2)
n+5

2 . (4.49)

In the case where one or two of the S±±
3 have the value q3, the same reasoning applies

and leads to a bound (not the best possible!) of (q/2)
n+5

2 for the normalized sum.
We are thus left with the case where none of the S±±

3 attain the maximal value
q3. In this instance we can no longer suppose that {n − 2, n − 1, n} forms a separate
component of G±±, so we will have to be content to argue for specific values of n.

For n = 5, the analysis of the 3-variable case shows that each |S±±| is bounded
above by q6/8, which by the triangle inequality gives the bound q6/2 for |S̃|. This, in
combination with the calculations above, shows that if f is a polynomial in 5 variables
such that G has a vertex of degree at least 2, and f is not of the special form

±cx1x2 + ±cx3x4 ± cx5x6 ± · · · ± cxn−1,nxn−2,n ± cxn, (4.50)

then |S|�q5. This allows us to extend our “induction” to seven variables: If f is a
polynomial on 7 variables for which G has a vertex of degree at least 2, either G has
the special form above, or |S| is bounded above by 4q5. Applying the argument one
more time shows that for polynomials in 9 variables, in all cases we get a bound on
|S| of 16q5, which gives a bound on the |S| of (q/2)5, as required. �

Remark 17. Where do things fall apart? Observe that the induction fails precisely
when none of the S±±

3 are maximal (for polynomials whose graphs have a vertex of
degree at least 2). We made use of the fact that if one of the S±±

3 is maximal in this
sense, then G±± has a component with three vertices, and this condition is sufficient
for the induction to carry through. Ironically, the principal obstruction to completing
the proof occurs for polynomials whose sums we expect to have values that are very
far from the conjectured upper bound.
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5. Fourier bounds

In this section, we use Fourier analytic methods to provide bounds for S(f ), where f
is a polynomial in Z2

m[n] whose graph G(f ) is (almost) acyclic (the precise definition
is given below). We first need to establish some notation.

5.1. Notation

Let � = {1, −1} and define L2 = L2(�n) = {g | g : �n → C}. Let [n] denote the
set {1, 2, . . . , n}. The set of functions 	S ∈ L2 for S ⊆ [n] where

	S(x1, x2, . . . , xn) =
∏
i∈S

xi (5.1)

form an orthogonal Fourier basis for L2 where the inner product of functions f and g
is defined as follows:

〈f, g〉 =
∑
y∈�n

f (y)g(y), (5.2)

where z is the complex conjugate of z ∈ C.
Thus any function g ∈ L2 can be written as

g =
∑

S⊂[n]
cS(g)	S (5.3)

which we call the Fourier expansion of g, where cS(g) is a particular Fourier coefficient
in the expansion.

Since the {	S |S ⊂ [n]} is an orthogonal basis, we can express cS as follows:

cS = 〈g, 	S〉 =
∑

y∈{1,−1}n
g(y)	S(y) =

∑
yi∈{1,−1}n

(∏
i∈S

yi

)
g(y1, y2, . . . , yn). (5.4)

This implies that the exponential sum S(f ) under consideration is the Fourier coefficient
cS(g) when S = {1, 2, . . . , n} and g = �f (x1,x2,...,xn) ∈ L2. We let ĉS(f ) = cS(�f ),
which we sometimes denote as ĉS when f is obvious from the context. Our goal then
is to prove that ĉ[n](f ) is exponentially small for every polynomial f ∈ Z2

m.
It is possible, in some cases, to give an explicit computation of the Fourier expansion,

which we now show. Let f (x1, x2, . . . , xn) = ∑
i �=j aij xixj +∑

i aixi be a quadratic
polynomial of n variables where aij , ai ∈ Zm. Observe that

�aij xixj = 1

2
(�aij − �−aij ) xixj + 1

2
(�aij + �−aij ) (5.5)



E. Dueñez et al. / Journal of Number Theory 116 (2006) 168–199 193

and

�aixi = 1

2
(�ai − �−ai ) xi + 1

2
(�ai + �−ai ) (5.6)

since xi, xj ∈ {1, −1}. We set 
(x) = (�x − �−x)/2 and �(x) = (�x + �−x)/2. Thus
we are interested in the coefficient of x1x2 . . . xn when we expand and simplify

∏
i �=j

(
(aij ) xixj + �(aij ))
∏
i

(
(ai)xi + �(ai)), (5.7)

using the relations x2
i = 1 for all 1� i�n.

5.2. Bounds on Fourier coefficients for a special class of polynomials

Recall that for a polynomial f (x1, x2, . . . , xn) we can associate the weighted undi-
rected graph G = G(f ) = (V , E) with vertices V = {1, 2, . . . , n} and edge set E =
{{i, j}| aij �= 0}, where edge {i, j} has weight aij (when aij �= 0). We now show that
when G(f ) is a tree, every Fourier coefficient is small.

Lemma 18. If G(f ) is a tree with n vertices where n�2, then |ĉS(f )|� (
cos

( �
2m

))n−1

for all S ⊆ [n].

Proof. The bound holds when n = 2 (see proof of Theorem 1 (ii)).
Now let f (x1, . . . , xn) be such that G(f ) is a tree with n vertices where n >

2. Let {i, j} be an edge in G(f ) with weight aij such that j is a leaf. Set f =
f ′ + aij xixj + ajxj where f ′ is independent of xj .

Since

�f = �f ′
(


(aij )

2
xixj + �(aij )

2

)(

(aj )

2
xj + �(aj )

2

)
, (5.8)

the coefficient ĉS(f ) can be written in terms of the Fourier coefficients ĉ(f ′). Then
for any S ⊆ ([n] \ {j}),

ĉS(f ) = �(aij )

2

�(aj )

2
ĉS(f ′) + 
(aij )

2


(aj )

2
ĉS${i}(f ′) (5.9)

where $ refers to the symmetric difference of two sets: $B = (A \ B) ∪ (B \ A).
Similarly for any subset S ⊆ [n] such that j ∈ S,

ĉS(f ) = �(aij )

2


(aj )

2
ĉS${j}(f ′) + 
(aij )

2

�(aj )

2
ĉS${i}(f ′). (5.10)
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Assume (via induction on n) that |ĉS(f ′)| � (cos
( �

2m
)
)n−2. Then

|ĉS(f )| � 1

4

(
cos

( �

2m

))n−2 (∣∣�(aij )�(aj )
∣∣+ |
(aij )
(aj )|

)
(5.11)

when j ∈ S and

|ĉS(f )| � 1

4

(
cos

( �

2m

))n−2 (|�(aij )
(aj )| + |
(aij )�(aj )|
)

(5.12)

when j /∈ S.
We first consider the case when j /∈ S (the other case is handled similarly). If aij =

aj , then

|ĉS(f )| � 1

4
(|ĉS${i}(f ′)| + |ĉS${j}(f ′)|)

� 1

2

(
cos

( �

2m

))n−2
�

(
cos

( �

2m

))n−1
. (5.13)

If aij �= aj ,

∣∣�(aij )�(aj )
∣∣+ |
(aij )
(aj )| = 4(| sin(�)|| sin(�)| + | cos(�)|| cos(�)|), (5.14)

where � = 2�aij /m and � = 2�aj /m are both multiples of 2�/m.
Observe that we may reflect �aij and �aj to the first quadrant since this operation

does not change the absolute value of either the sine or cosine of their arguments.
After this transformation, � and � are integral multiples of �/2m and are both < �/2.
This implies that

| sin(�)|| sin(�)| + | cos(�)|| cos(�)| = cos(� − �). (5.15)

Since � − � is an integral multiple of �/2m and � �= � (since aij �= aj )

|ĉS(f )| �
∣∣∣cos

( �

2m

)∣∣∣n−2 ∣∣∣cos
( �a

2m

)∣∣∣ (5.16)

for some a �= 0, when j /∈ S, from which we can conclude that |ĉS(f )|� (cos(�/2m))n−1

since | cos(a�/2m)|� cos(�/2m) for all a �= 0. Similarly, when j ∈ S,

|ĉS(f )| �
(

cos
( �

2m

))n−1
. (5.17)

�
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Remark 19. Observe that Lemma 18 implies our desired bound on the exponential
sum: If G(f ) is a tree with n vertices, |ĉ[n]|�(cos( �

2m
))n−1. If G(f ) is a forest of

disjoint trees T1 ∪ T2 · · · ∪ Tk , then ĉS = ∏k
i=1 ĉSi

where Si is restricted to vertices in
Ti and S = ∪Si . This implies the bound holds for a forest of trees.

Proof of Theorem 1(iii). Suppose G(f ) is a tree and we now add a term aij xixj to f
(equivalently, add an edge of weight aij to G(f ) between i and j), where we assume
that there was no such term in f before (if there was, this operation just modifies the
weight). Set f ′ = f + aij xixj . Then, for any S ⊆ [n],

ĉS(f ′) = 
(aij )ĈS${xi ,xj } + �(aij )ĉS(f ). (5.18)

This implies that

|ĉS(f ′)| � (max
S

|ĉS(f )|) (|
(aij ) + |�(aij )|)

= max
S

|ĉS(f )| (| sin(�)| + | cos(�)|), (5.19)

where � = 2�aij /m (where � �= 0, �/2). Since the maximum value of | sin(�)|+| cos(�)|
is

√
2, we have

max
S

∣∣ĉS(f ′)
∣∣ �

√
2 max

S

∣∣ĉS(f )
∣∣ . (5.20)

Clearly the same bound holds if we add a linear term aixi that did not exist before.
So if k such new edges are added to G(f ),

∣∣ĉS(f ′)
∣∣ � 2k/2 max

S

∣∣ĉS(f )
∣∣ � 2k/2

(
cos

( �

2m

))n−1
. (5.21)

Therefore when k�(n − 2) log( 1
cos(�/(2m))

), we have

∣∣ĉS(f ′)
∣∣ � (cos(�/2m))n/2 (5.22)

thus obtaining the conjectured bound.
Thus if there exist a set of at most (n − 2) log(1/ cos(�/2m)) edges from G(f )

whose deletion makes G(f ) a forest of trees, then

∣∣ĉS(f )
∣∣ � (cos(�/2m))n/2 (5.23)

(recall that q = 2 cos(�/(2m)) in the statement of Theorem 1 (iii)). �
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Remark 20. It is worth noting two important limitations of the above proof:

(1) The proof relies on a global bound for all Fourier coefficients, whereas the only
coefficient of interest is ĉ{1,...,n}(f ).

(2) The norm of a particular Fourier coefficient might increase or decrease as we add
additional edges. Since we do not have the means to analyze the behavior, we have
assumed that the coefficients may increase in norm by a factor of

√
2 (it is unlikely

that this blowup will occur on every edge addition and for every coefficient). A
closer analysis of this aspect might lead to a better estimate on the number of
additional edges allowed.

6. Recent progress and future work

We believe that Conjecture 5 provides a tight bound that is exponentially decreasing;
while we have verified this for n�10 and quadratic f, the general case is still open.

It is possible that there is more to say about sub-maximal values of |S(f, n, m)|.
Implicit in many of the arguments in Section 4 is a bound on the second largest value
of |S(f, n, m)|. In particular, we make the following (stronger) conjecture:

Conjecture 21 (Stronger form of Conjecture 5). Let m�3 be odd and let n be a non-
negative integer. Then for quadratic f,

|S(f, n, m)| �
(q

2

)
 n+1
2 �

, (6.1)

and moreover, if |S(f, n, m)| <
( q

2

)
 n+1
2 �, then

|S(f, n, m)| �
(q

2

)
 n+1
2 �+1

. (6.2)

Remark 22. This stronger form has also been verified for m = 3 by [9] and born out
by experimental evidence for small n, m.

Lastly, we note that the problem of bounding S(f, n, m) for polynomials f of degree
2 is only a first step. The goal is to prove exponentially small upper bounds for all f
of degree O((log n)c) where n is the number of variables. The moment analysis can
readily be carried out for such polynomials. We again obtain square-root cancellation
on average when n�deg(f ) + 1, and if � < 1 is quite close to 1 then all but an
exponentially small (in n) proportion of the |S(f, n, m)| are bounded by �n.

Since the submission of this paper the fundamental problem of proving an exponen-
tially decreasing upper bound for |S(f, n, m)| with f a polynomial of fixed degree d
and any n and m has been solved by Bourgain [3], though the bounds obtained are
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larger than what we feel is the true story (and for quadratic f with m odd and n�10,
larger than the bounds which we show are sharp).
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Appendix. Bounds when m = 3 and d = 2

When m = 3 and d = 2, we may write (1.1) (see also (1.10) as

S(f, n, 3) = 1

2n

1∑
x1=−1

· · ·
1∑

xn=−1

(
x1 · · · xn

p2

)
e3 (g(x)) . (A.1)

The presence of the Legendre symbol, coming from the factor x1 · · · xn, complicates
the arguments, giving us a mixed (additive and multiplicative characters) complete
exponential sum. We can remove the Legendre factor by using the following identity:
for y ∈ {−1, 0, 1},

(
y

p2

)
= e3(y) − e3(−y)

i
√

3
=

⎧⎨
⎩

1 if y = 1,

0 if y = 0,

−1 if y = −1;
(A.2)

thus we may replace the Legendre symbol with a product of exponentials. While this
identity can be used for any modulus (and we could use it directly on x1 · · · xn without
passing through Legendre symbols), it is useful only when m = 3.

It would be natural to replace
(
x1···xn

p2

)
with e3(x1···xn)−e3(−x1···xn)

i
√

3
; unfortunately, this

would replace S(f, n, 3) with two exponential sums S′(f1, n, 3) and S′(f2, n, 3), with
fi of degree n (note these sums are not mixed, composed solely of additive characters).
As Deligne’s and others’ bounds are of the form (deg fi − 1)n3n/2, this increases the
degree too much to be useful. A better approach is to let � be any permutation of
{1, . . . , n} (for simplicity we consider n even) and to write

(
x1 · · · xn

p2

)
=

n/2∏
j=1

e(x�(2j)x�(2j−1)) − e(−x�(2j)x�(2j−1))

i
√

3
. (A.3)

Expanding the product gives 2n/2 degree 2 exponential terms, as well as a fac-

tor of
(

1
i
√

3

)n/2
. Substituting this into (A.1) yields 2n/2 complete exponential sums
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S′(fi,�, n, 3), where each fi,� is of degree 2. If for each fi we have the homo-
geneous part of highest degree is non-singular modulo 3, then by Deligne’s bound
|S′(fi,�, n, 3)|� 3n/2

2n (recall we are dividing by 2n and not 3n, as initially each xi ∈
{−1, 1}). Therefore for n even,

|S(f, n, 3)| � 1√
3
n/2

2n/2∑
j=1

|S′(fi,�, n, 3)| � 2n/2

√
3
n/2 · 3n/2

2n
=

(√
3

2

)n/2

. (A.4)

We have shown

Theorem 23. Let f be a quadratic polynomial such that there is some permutation
� of {1, . . . , n} for which the homogeneous part of highest degree of each fi,� is
non-singular modulo 3. Then if n is even, Conjecture 5 is true for this f and m = 3.

To handle odd n, as we must keep all the factors of degree 2 the last factor is
e3(x�(n))−e3(−x�(n))

i
√

3
. A similar argument yields Conjecture 5 for odd n, but with a slightly

weaker bound, namely
(√

3
2

)
n/2�
.

To complete the investigation of m = 3 and d = 2 we must analyze which f satisfy
the conditions of Theorem 23. For n even, there are (n− 1)!! choices for � which lead
to different exponential products (the number of ways to pair n objects where order
does not matter); all we need is one valid choice. As the conjecture is already known
in this case, we content ourselves with the above observation.
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