J. Symbolic Computation (1994) 18, 297-318

Tree Automata Help One To Solve Equational
Formulae In AC-Theories

D.LUGIEZ and J.L. MOYSSET
CRIN-INRIA, BP259 54506 Vandoeuvre-lés-Nancy, FRANCE

{Received 16th March 1993)

In this paper we consider particular equational formulae where equality = 4¢ is the
congruence induced by a set of associative-commutative axioms. The formulae we are
interested in have the form ¢ £40 1 A ...t # 4¢c in and are usually known as com-
plement problems. To solve a complement problem is to find an instance of ¢ which is
not an instance of any t; modulo associativity-commutativity. We give a decision proce-
dure based on tree automata which solves these formulae when all the {; s are linear.
We show that this solution also gives a decision of inductive reducibility modulo as-
sociativity and commutativity in the linear case and we give several extensions of this
approach. Then, we define a new class of tree automata, called conditional tree automata
which recognize sets of generalized terms, i.e terms written as multisets, and where the
application of a rule depends on the satisfiability of a formula of Presburger's arith-
metic, This class of tree automata allows one to solve non-linear complement problems
when all occurrences of a non-linear variable occur under the same node (in flattened
terms). This solution also provides a procedure to decide inductive reducibility modulo
associativity-commutativity in the same case.

Introduction

Many problems arising in Computer Science involve formulae built on the equality
predicate and syntactic objects, usually terms. But terms are merely denotations for
complex entities and a purely syntactical approach lacks any insight into the seman-
tics of these entities. To overcome this limitation, a classical solution is to add axioms
which model the semantic behaviour of the real objects. Amongst the most useful ax-
ioms one finds the commutativity axiom (C) f(z,y) = f(y,z), the associativity axiom
(A) flz, fly. 2)) = F(f(z,y),2), the idempotency axiom (I) f(x,z) = 2 and the unit
element axiom (1) f(z,e) = z. Many operators studied in Computer Science satisfy one
or more of these axioms, for example the parallel operator in parallelism is associative-
commutative {AC for short), the boolean connectives are associative-commutative and
idempotent (ACY for short), and many algebraic functions are associative-commutative
and have a unit element (AC1 for short). Therefore we are led to tackle the problem
of dealing with formulae on equality modulo a set of axioms. Decision procedures ex-
ist when no axiom is included (Malc’ev (1971), Colmerauer (1984), Lassez and Marriot
(1986), Maher (1988), Comon and Lescanne (1989}) but a decision procedure for these

0747-7171/94/040297 + 22 $08.00/0 © 1994 Academic Press Limited

298 D. Lugiez and 1. L. Moysset

formulae usually does not exist in the presence of axioms (indeed, the theory of 3 for-
mulae modulo AC is undecidable (Treinen (1992)). Actually, we are asking for too much:
in practice, the formulae that we must solve belong to very restricted classes. After the
well-known unification problem, the most interesting one is the complement problem, i.e
to solve t £g ty A ... At #g &, where E is the theory we are interested in. These for-
mulae occur in algebraic specifications and functional programming when dealing with
sufficient completeness issues, in logic programming and constraint lozic programming,
especially concerning constructive negation and in the paradigm of learning by examples
and counter-examples in the field of machine learning (see Lassez, Maher and Marriott
(1991) for example).

This paper describes a new approach to the AC-complement problem which relies on
tree automata, as proposed in Lugiez and Moysset (1993) . First, we show how tree
automata solve linear AC-complement problems and we give some extensions of this
result. Then we describe a new class of tree automata, called conditional tree automata
which deal with (some kind of) flattened trees and involve conditions which are formulas
of Presburger’s arithmetic. Using this new class, we can solve a non-linear case of the
AC-complement problem, more precisely when all the occurrences of a ron-linear variable
are under the same AC-symbol. Moreover our approach can be extended to the decision
of the inductive reducibility property modulo AC which is a key notion i mductionless
induction. This property is undecidable (Kapur, Narendran, Rosenkrantz and Zhang
(1991)} , but we are able to decide it in the aforementioned cases.

The paper is organized as follows: section 1 gives the preliminary notions required in
the following. Section 2 gives our first results for linear problems and these results are
extended in section 3. We introduce generalized and normalized terms in section 4 and
conditional tree automata are discussed in section 5. Finally, we give our most general
results on non-linear problems in section 6.

1. Definitions and notations

We need some definitions and notations, let us start with terms. Missing definitions
can be found in Dershowitz and Jouannaud (1988).

1.1. TERMS

Terms denoted by s,¢, ... are constructed from a finite set of function symbols £ and
a denumerable set of variables X denoted by z,y, z ... Each function symbol has a fixed
arity and constants are function symbols of arity 0. From now on we suppose that
contains af least one constant such that Tk, the set of ground terms i.e. without variablés
is not empty. The set of terms is denoted by Tx(X). A variable of ¢ is linear if it occurs
at most once in t otherwise it is non-linear, and a term is linear if it contains only
linear variables. A position is a sequence of integers, the empty sequence is denoted by
¢, and a non-empty sequence is written as p.i with 1 an integer and 1 a sequence. The
subterm of a term s at position p, denoted by s,, is defined by s = s and s ; = s; if
sp = fls1,...,85)and 1 <i < m.

An equation (i.e. an axtorn) is a pair of terms written s = t. A finite set of equa-
tions F defines an equational theory and induces a congruence relation on terms denoted
by =g. The class of a term ¢ is the set of terms equal to ¢t modulo E. We are mainly

Tree Automata Help One to Solve Equational Formulae In AC-Theories 299

interested in the following equations: commutativity (C) f(z,y) = f(y,z), associativ-
ity (A) fl=z, fly,2)) = f(f(z,9),z), idempotency (I} f{x,2) = # and unit element (1)
f(z,e) = z. More precisely, we are interested in the =4¢ congruence (resp. =4¢71,...)
obtained when £ = F UG where the functions of G are free and the functions of F are
commutative and associative (resp. commutative and associative and idempotent...).

Substitutions, denoted by &,8,p. .., are the morphisms on terms and the application
of o to ¢ Is denoted by to, A term s is an F-instance of a term ¢ iff s =g to for some
substitution . It is a ground E-instance if s is ground. When E is the empty theory, we
say instances and ground instances, dropping the F prefix.

A term rewrite system R is a finite set of rewrite rules [— r which defines a rewrite
relation =g on terms. The system is left-linear if for each rule ! = r of R, the left-hand
side [is linear. A term ¢ is reducible by R modulo E iff there are some term ¢, some
position p in ', some substitution & and somerule{ —+ r € Rs.t. t' =g ¢ and ti’p =16,

To solve the E-complement problem t Zg t1 A .. . At #g t, with TNy = 0 and
Ny =0if g = Var(t;) and £ = Var(t), is to find a ground instance of ¢ which is
not an E-instance of any ;. In other words, it amounts to deciding the validity of the
formula 32Vy1 .. .40 1t #£E t1 A ... At #E 1, in the algebra of ground terms. In this
paper, we are mainly concerned with the AC-complement problem and related issues.

The cardinality of a set S is denoted by |S| and S; W S» denotes the disjoint union of
S1 and Ss.

1.2. REGULAR LANGUAGES AND TREE AUTOMATA

Regular sets of {rees and tree automata are similar to regular sets of words and finite
automata. We recall some definitions and results, and we refer the reader to Gécseg and
Steinby (1984) for details.

DEFINITION 1. Given a signature ¥, a bottom-up tree automaton A is a triple (@, QFinat, R)
where () is a finite set of states, Qrina C @ is a set of final states, and R is a set of
transition rules of the form f{g1,...qn) = @n41 with arity(f) = n and ¢; € Q.
The transition relation — is the smallest relation on Tx(X) x Q s.t.:
=g . b —gn fl@r,- o qn) P i1 ER
f(t1, .. .,tn) — gn41
The language accepted by A is the set of ground terms t such that t — ¢ for some
¢ € Qrinal-

A set of ground terms is a regular tree language iff it 1s accepted by a tree automaton.
An automaton is completely specified if for each ground term ¢, there is some ¢ s.t. t — ¢.
The state g is said to be accessible. The automaton is deterministic if for each t, the state
g is unique. Regular languages are closed under the boolean operations and it is decidable
if the language accepted by a tree automaton is empty or not. Regular languages can
also be characterized as least fixed-point solution of systems of equations:

Ly = Zieh ha‘l(L}ls-~-:L§p)

L,= Eiel." hP(LY, ..., L)
where the b are symbols of & and the sum means set union.

300 D. Lugiez and J. L. Moysset

1.3. FLATTENED TERMS

From now we suppose that £ = F i G. The elements f of F are binary AC-function
symbols and the elements g of G are free function symbols. A term f(t;,12) has sort
f and a term x or g(t1,...,ts) have sort nac. To make easier the reasoning involving
AC-axioms, one usually introduces the notion of flattened terms:

DEeFINITION 2. A flattened term is either a term f{ty, f(ta2,..., f{tm=1,tm)})) where the
ti’s are flattened terms not of sort f, or g(si1,...,8,) where the s;’s are flatiened terms,
or kr.

The notation f(|t1,... 1)) denotes the flattened term f(t1, f(t2,...,%m)) and f(Jt])
denotes t if ¢ is a flattened term not of sort f. Given some f and a flattened term ¢, there
exists a unique representation ¢ = f(|¢1, .. .,¢s|). The operation Lis is d=fined on flattened
terms by: f(|s1,...,sm|) Uy f(lt1,.. ., tal) = f(s1,. .., 8m,%1,.. ., tn]}. By definition Li;
is associative and returns a flattened term.

Example Let F = {f} and G = {0, g}, then g(0) U, £(0,4(0})) = f{4(0), F(0,9(0)})
Terms and flattened terms are strongly related:
PrRoPOSITION 1. For each term s there exists a flattened termt s.t. s =a¢ t
Proof Let R be the rewrite system defined by f(f(z,y),2) = f(x, f(iy,z)) forall f € F.
It is terminating and confiuent. Let Flat(s) be the unique result of rewriting s with R,
then Flat(s) is a flattened term. (]
The permutative congruence =p is the smallest congruence on terms s.t.
FO- oty oty) = F(l-- oty iy ..). Tt s related to =4¢ congruence in the
following way:
PROPOSITION 2. Let s5,t be terms, then s =4¢ t iff Flai(s) =p Flat(t).
Proof By structural induction on s and . []
In the following, we write [t]ac = {5 | s =ac t} and [t]p = {s | s :=p t}. Given a set
of terms L, we introduce the sets:
Gr(L) = {s | s = tf for some t € L and some ground substitution ¢}
AC(LYy={s|s=actforsometec L}
PROPOSITION 3. Let 5,1 be two terms s.b. s —ac i then AC(Gr{s}) == AC{(Gr(t}).
Proof By structural induction on s and ¢. []

PROPOSITION 4. Let t be a linear term s.t. Flat(t) =p f(Jt1,.. . \tn,T1,...,2m]|) with
t: € X, then s € AC(Gr(t)) iff s = f(s51,52) with

o 51 € AC(Gr(f([ta, - tias Zins -2 2501)))

Tree Automata Help One to Solve Equational Formulae In AC-Theories 301

e 359 € AC(G’I‘(fﬂi,:!, . .,'6,‘;",’.!’,3*;, . .,fcj:")))
where {t1,.. ., ty} = {t,'“...,t,-,‘}lﬂ{t,-;,...,t,-ir} and {z1,...,2m} = {25,,..., 2}V
{Iji"' .,zjrn’}

Proof According to the previous propositions,
s € AC(Gr(t)) iff
8 ZTAC f(ttl, o .,tn,.’ﬂl, ‘e .,.’Eml)ﬂ iff
5 =AcC Flat(tlfi) L|f . .Uf Ffat(tnﬁ) L]Jr Flﬂ.t(.’l?lg) e l_|f Flat(a:mﬁ) iff
Flat(s) = r1 Uy ...Ug rp where Flat(z:8) = u} Uy ... Us uf* iff
{ri,...,rp} = {t16,.. ., ta0,ul, .. ulp
s = f(s1,s2) with Flat{s1) =1 Uf .. .Uy rx and Flat(ss) = reqy Uy ... Up rp iff
s = f(s1,52) with s1 € AC(Gr{f(fti,,- - i Ty z;))
s € AC(GT(f(It,'l, ceey t,-;",.’l,‘j;, . ‘11:_1',',”))
{tl,...,tﬂ} = {t,-l,...,t,'k} Lﬂ{tirl,...,t,'if}
{1, 2w} = {25, - -, 25} U{Ij:,...,zj:r}
since ¢ is linear (hence a variable z; does not occur in any t}s). []

2. A tree automata solution for linear complement problems

In this section, we relate regular languages and the set of ground AC-instances of a
linear term.

Example Let t = f{0,z) where FF = {f} and G = {0,9}. Let L.} = AC{Gr(1)),
let Lygy = AC(Gr{0}), let Lizy = AC(Gr(z)). These languages are the least fixed-point
solutions of the system of equations:

Loy = {0}
Lz} = Lgoy + 9(Lixy) + f(Lyz}, Lia})
Loy = J{Lqoy, Lyz)) + fl L4z}, Lioy) + f(Lqoz)s Lizy) + F L4z, Lqo,z})

therefore Lo}, Lis} and Lo} are regular tree languages, and an automaton recogniz-
ing Ligx} is A = ({¢s,90,92}, {a.}, R) with R consisting of: 0 — go, (the rule of an
automaton recognizing Lyo}), 0 = ¢z, 9(¢=) = ¢z, f(¢2,9z) = ¢z (the rules of an au-
tomaton recognizing the instances of z) and f(¢o,¢z) = ¢r, fl4z.20) = ¢r, flgz, q1) —
qr, fgr,9) = 9L

An algebraic solution of the next proposition exists but we give a less elegant combi-
natorial proof since we are interested in the constructive aspects of the problem.

PROPOSITION 5. For each linear term t, AC(Gr(t)) is reqular.
Proof We show that the set of ground AC-instances of ¢ satisfies a least fixed-point
equation defining regular languages. At the same time, we sketch the construction of an

automaton accepting this language. The proof is by structural induction on ¢.

e i & X: the proof is obviocus.
o t =g(ty,...,1,) : then

302 D. Lugiez and J. I.. Moysset

AC(Gr(t)) = g(AC(Gr(t1)), ..., AC(Gr(tn)))

where the AC(Gr(t;)) are regular by induction hypothesis, therefore AC(Gr(t)) is
regular. An automaton accepting L is A = (F,Q,Qr, R) where @ = U;Qi U {qr},
Qr ={gr}, R=UiRiU{g(q1,...,qn) = gr where ¢ € Q% }.

et = f(...) and Flat(t) = f(|t1,...,tn]). For simplicity, we write Ly, i} =
AC(Gr(f(lt:,, - .-, ti]))). According to proposition 3, one has :

Lin ny =2 (1...n} f(Ly, L)
p)

o
1efn

where each Ly for I # {1,...,n} is regular by induction hypothesis. Therefore
AC(Gr(t)) = Lq1,..n} is regular.

Moreover, if A; = (F, @, Q%, Ry) is an automaton recognizing Ly for I # {1,...,n},
an automaton accepting L is A = (F,Q, Qr, R) where:

- Q@=U1QrU{gr}

- Qr = {gr}

- R=UrRrU{flgi,q;) = qF for all g EQ{;‘,QJ' EQ%SI. TuJ={1...n},ie
InJ=t; EX}

In each case, the automaton accepting AC(Gr(t)) satisfies ¢t — ¢. Moreover s =4¢ 1
implies s — q. []

THEOREM L. The linear complement problem t #4¢c 11 A ... At £ac tn is decidable.

Proof Lett #4c tiA.. At #Fac tn be a complement problem s.t the 1;'s are linear (but
t may be non-linear). Let L be the union of the ground AC-instances of the ¢;’s, then L
is a regular language since the t;’s are linear. Let L¢ be the complement of L and Ag be
an automaton recognizing L. If there is a ground instance 18 of ¢ which is a solution of
the complement problem, then this instance is accepted by Ag. For each variable z; of ¢,
x;f is some ground term and z;8 — ¢; for some accessible state g; of A¢;. Therefore there
is a solution of the complement problem iff there is some assignment of accessible states
to the variables of t s.t. t{z; ¢ ¢1,...,Zn ¢ ¢gu} — ¢ where g is a final state of A¢
and where t{z; < ¢1,..., %, « g5} denotes ¢ where each occurrence of z; is replaced by
gi. If there is no such assignment, then there is no solution to the complement probiem.
Since there is a finite number of possible assignments, the complement problem modulo
AC is decidable. D

3. Extensions

3.1. To INDUCTIVE REDUCIBILITY MODULO AC

A key property in inductionless induction is that of inductive reducibility: given a set
FE of equations and a set R of rewrite rules, a term ¢ is inductively reducible modulo E
iff each ground instance s of ¢ is reducible by R modulo E. In the AC case, this property
is undecidable but our proof of complement problems can be easily extended to decide

Tree Automata Help One to Solve Equational Formulae In AC-Theories 303

inductive reducibility modulo AC for left-linear rewrite systems t. we prove that Red(l)
the set of ground terms reducible modulo AC by ! — r is regular when [is linear.

ProprosiTION §. Let{ be a linear term, then Red(l) is a regular tree language.
Proof The proof is similar to the proof of propesition 5. D
From this result, we get the decision of the inductive-reducibility modulo AC.

THEOREM 2. Inductive reducibility modulo AC of a term t for a left-linear system R is
decidable.

Proof Let l,..., 1, be the set of left-hand sides of R, and let .4 be a deterministic
automaton recognizing the union of the Red{l;)’s. The term ¢ is inductively reducible iff
for each ground &, 18 belongs to this set. We proceed as in the proof of the complement
modulo AC: to each variable x; of ¢ assign some accessible state g¢;, and compute the
state ¢ such that t{z; « ¢1,...,2, — gn} = ¢. If there is some assignment such that
the state g is not a final state of .4, then ¢ is not inductively reducible, otherwise { is
inductively reducible. Since there is only a finite number of possible assignments, the
inductive reducibility property is decidable.

3.2. TO OTHER THEORIES

The previous results can be easily extended to other theories. The first cne is the AC1
theory, i.e AC with unity: for each AC-symbol f, there exists a constant e such that
f(z,e) = . To handle this identity element, we add the terms f(L., L) and f(L, L.) to
the equations defining the ground AC-instances of a term ¢ = f{...) where L, = {e} +
f(Le, Le). From the automaton viewpoint, this amounts to adding rules f(g,q¢) ~ g,
flge.q) — g where ¢ is a final state, and e = ¢, f{¢e,ge) = ¢e-

The second one is the associativity theory. In this case, the flattened version of a term
is unique since the commutativity axiom does not hold. The proof that the A-instances
of a linear term is a regular language works as in the AC case for the first two cases,
and in the proof of the third case, sets are replaced by lists: {1...n} becomes [1...n],
subsets J and J become sublists and union is replaced by concatenation.

THEOREM 3. The complement problemt #ac1 tiA. . At £4c1 tn (resp. #4) where the
t; 's are linear terms is decidable. The inductive reducibility modulo AC! (resp. modulo
A) of a term t for a left-linear term rewrite system is decidable.

3.3. To SOME NON-LINEAR CASES

Tree automata with syntactical equality tests between brothers are introduced in Bo-
gaert and Tison (1992) where it is shown that this class is closed under boolean operations
and that the emptiness of the accepted language is decidable. We extend this class by
allowing equality tests modulo AC in order to get the decidability of the AC-complement
problem for strictly restricted non-linear terms, as defined by:

T the decidability of inductive reducibility modulo AC for left-linear rewrite systems has been stated
first in Jouannaud and Kounalis (1989}

304 D. Lugiez and J. L. Moysset

DEFRINITION 3. A term is strictly restricted iff for each non-linear variable x, there exists
a position p such that all the occurrences of & occur at positions p.f with i an integer,
and the symbol of t at position p is not AC.

For example, if F = {f} and G = {0, ¢} then f(g(x,2),0) is strictly restricted but
f(z,z) and f(z, g(0, z)) are not. The approach of Bogaert and Tison gensralizes smoothly
to the AC case, except that the decision of emptiness requires that equivalent terms reach
the same states, which is true in our applications. The reader is referred to the original
work of Bogaert and Tison {1992) for details since the algorithms are identical except
that = is replaced by =4¢. Firstly, we define our new class of tree automata.

DEFINITION 4. Given a signature 1, an automaton with equality tests between brothers
A is a triple (Q,@r, B) where Q) is a finite set of states, Qr C @ is a set of final states
and R 1s a set of rules p : h(q1,...,qn) = a1 with h € B, ¢ € Form,, where Form,
s mductively defined by:

o #i=ac #j € Form, (which means that the i** son is equal to the j** son modulo
AC), T € Form,, {meaning that no condition is required)
o if o € Form, and ¢ € Form, then ~¢ € Form,, YV € Form, YAp € Form,.

Moreover if hc F and ¢ : h(g1,¢2) = ¢3 € B we demand that p is T (ie there
is no condition for rules with AC symbols}). The transition relation -+ is the smallest
relation on Ty (X) x @ s.t.:

il—}ql tn—)qn (‘Oih(ql,...,qn)—)qn.{.lER h(tl,...,tn)izlp
h(tl, .. .,tn) — In+1

where h € 5 and h(ty,...,1,) | ¢ means that h{ty, ... t,) satisfies . The language
accepted by A is the set of ground terms t such that t — q for some ¢ € QFinat-

One should notice that equality tests are allowed under non-AC symbols only. The
notions of deterministic and completely specified automata are the same as for usual tree
automata. An incompletely specified tree automaton with equality tests can be easily
extended into a completely specified one. Now we sketch the determinization process
which is similar to the determinization process for tree automata with syntactical equality
tests.

1 Separate the conditions such that the conditions becomes mutually exclusive (for
example use the subset A, oy #i =ac #IN; jequ, ny-1 Fi Fac #iof Form,)

2 Use a classical determinization algorithm to compute the equivalent deterministic
automaton (a state of the deterministic automaton is a set of states of the non-
deterministic one)

Remark. : let ¢t be a term and let gq,..., ¢, be the states such that ¢ — ¢; in the non-
deterministic automaton then ¢ — {q1,...,95} in the deterministic one.

Tree Automata Help One to Solve Equational Formulae In AC-Theories 305

A direct consequence of the determinization process is that the class of accepted
languages is closed under complement (exchange final and non-final states) and union
(straightforward) hence under intersection. What remains for us to give is a way to de-
cide the emptiness of the language accepted by an automaton with equality tests. This
works as in Bogaert and Tison (1992) , provided that equivalent terms reach the same
states, 1.et =a¢ ' and t — g implies that t' — ¢. Fortunately, this property is preserved
under determinization (see previous remark) union, intersection and complement. From
now we suppose that this property is satisfied by the automata that we consider. The
following algorithm is used for deciding emptiness (N4c(L) denotes the number of dis-
tinct equivalence classes of a finite set of ground terms L and max-arity is the maxirmnal
arity of the symbols of £):

For each state g do set £2 =90.
i=1.
Repeat
For each state ¢ do ;Cf} — .C;_l
For each rule r of the form ¢ : A(g;,...,¢:) = ¢ do
it N Ac(‘E;“l)' < max-arnty _
then £} = JC:I‘I U{R(t1,...,ta) satisfying ¢ where t; € E:}:l}
1=i+1
until 3¢ € QF s.t. ﬁfl # @ or Vq,f,f; = ﬁfl’l
if 3¢ € Qr s.t. ﬁfi, # 0 then return not empty
else return empty

PRrOPOSITION 7. The empliness decision algorithm terminates and is correct.

Proof The proof is as in Bogaert and Tison (1992) and similar to the proof given for
more complicated automata described in section 5.1. D

Now we prove that the ground AC-instances of a strictly restricted term are recognized
by a tree automaton with equality tests:

PROPOSITION 8. Lett be a strictly restricted term, then AC(Gr(t)) is accepted by a tree
cutomaton with equality tests s.t. ift = g and t' =4 t thenit' — q.

Proof The proof is as in the linear case with one difference: if t = g(...) with ¢ € G,

for each non-linear variable z occurring as the 4%, 2% ... it* sons of ¢, add the condition
F#i1 =ac Fis =ac ... =ac #in to the related rule of the automaton. D

The theorem on the decidability of the complement problem and inductive reducibility
is an immediate consequence of the previous results.

THEOREM 4. The complement problem t #ac ti AL At #ac tn (resp. #4) where the
t;’s are strictly restricted, is decidable. Inductive reducibility modulo AC (resp. modulo A)
of a term t for a term rewrite system with strictly restricted left-hand sides is decidable,

Proof The proof is the same as for the linear case. []

306 D. Lugiez and J. L. Moysset

The next step is to allow occurrences of non-linear variables under a node labeled by
some AC-symbol. First, we introduce generalized terms which are needed to consider
terms with AC-symbols as multisets. Then we introduce a new class of tree automata
acceptings sets of generalized terms instead of sets of terms, conditional tree automata,
and we study its properties. Finally, we show how this class can be used to solve AC-
complement problems and to decide the inductive reducibility property in this restricted
non-linear case.

4. Generalized and normalized terms

Generalized terms are introduced to make explicit the multiset structure induced by
AC functions.

DEFINITION 5. Generalized terms over £ U X are defined by the following grammar:
nmu= 1}2]3...
S,Tou=z|g(h,...,Ta) | flm.T1,...,np.Tp]
where f € F, g € G, p 1s an integer greater than or equal to 1 and n 1s the arity of g. The
generalized term fln,. Ty, ...,n,.T,] has sort f and the other have sort nac (meaning not
AC). A generalized term is ground if it contains no variable.

A generalized term can be seen as a flattened term using the mapping I defined by:
1(f1.7)) = I(T)

I{flnT)) = f(KT), I(f[(n —1).T])) if n > 2

Hfln.Th, ..., np.Tp]) = I(f[nl.Tl]) Ly I{f[ro T, ..., np.Tp])

{g(Ty,..., Tx)) =9({(Th),..., I(Tn}))

We note that the notion of sorts on generalized terms and the notion of sorts on terms
do not coincide, and that the mapping 7 is onto but not one-to-one.

ProrPOsITION 9. For each flattened term t and each f € F there exists a generalized
term T of sort f s.t. I(T) =1t.

Proof By structural induction on t. (]

The Uy operation is defined on generalized terms of sort f by:
fln T4, .. ., np.Tp] Uy flmi.51, ..., mq.Sq] = f[nl.Tl, coanp iy, my Sy, mq.Sq]
and the =p congruence is the smallest congruence s.t. f[... , n: T}, ..., n;.T5,..] =p
Fl-.in;.T5,...,niT;, ..]. The congruence class of T' for =p is denoted by [T]p. To
deal with non-linearity in the AC-complement problem, we must concentrate on some
particular generalized terms where equal parts are grouped together, i.e. normalized
terms.

DEFINITION 6. Normalized terms are defined by:
* 2 is normalized,

o g(T1,...,T3) is normalized iff T, ..., T, are normalized,

Tree Automata Help One to Solve Equational Formulae In AC-Theories 307

o fn1Th,...,np.T})] is normalized iff n1 + ...+ np > 2, for i =1,...,p the sort of
T; ts not f and T; is normalized, T; #£p T; fori £ j

Example The generalized term f[2.0, g(f[2.0])] is normalized, but f[1.g(f[2.0])] and
f[2.0, ¢(f[2.0]), 2.0} are not normalized.

The next propositions state that congruence classes of normalized terms for =p and
congruence classes of flattened terms for =4¢ are related.

ProPOSITION 10. Let S, T be normalized terms, then S =p T iff I(S) =p I(T).
Proof By structural induction on 5, 7. (]

PROPOSITION 11. Let s,t be two flattened terms s.t. s =p t and let S, T be two normal-
ized terms s.t. I(S) =s and I(T) =t then S=p T.

Proof By structural induction on S, 7.]
Finally the LIy operation is compatible with =p.

ProPoOSITION 12. Let 51,52,T1, Ty be normalized terms of sort f, then S; =p Sy and
Ti=p T z_'mplies 51 Uy =p Sy Ly Ts.

The set Norm(AC(Gr(t))) = {T | T normalized term s.t. I{(T) =a¢ 16} is called the
set of normalized ground AC-instances of 1.

ProPoOSITION 13. Let S, T be normalized terms s.t. I{(S) and I(T) are in Norm(AC(Gr(t))),
then S=p T.

Proof I{S) =ac I(T) then Flat(I(S)) =p Flat(I(T)) then I{S) =p I(T) since I(T)
and I(S) are flattened terms, then S =p T

5. Conditional tree automata
To deal with generalized terms, we introduce conditional tree automata.
5.1. DEFINITION

DEFINITION 7. A conditional tree automaton is a four-tuple ((Qs)ser. Qnac; @Finat, R)
s.t.

o for each f, Q¢ is a finite set of states of sort f,
e (Jnac 18 a finite set of states of sort nac,
® QFina CUper@Qs UQnqae 15 the set of final states,

e R is a finite set of transition rules

308 D. Lugiez and J. L. Moysset

Each transition rule has one of the following forms:

o ©(N): f[N.q1] = q where ¢ has sort f, and ¢ is a formula of Presburger arithmetic
with the unigue free variable N,

s q1 Uy g2 — g3 where q1, 42, g3 have sort f,
® g(q1,...,8,) = ¢ where ¢ has sort nac.

Moreover we require that Uy satisfies the following properties:
* qilpgz > qiff g2Upq1 > g,

e (g1 Uysga) Upga = q #ff g1 Ug (g2U5 g3) = ¢.

Given a conditional tree automaton A, the transition relation on generalized terms
related to A is defined by:

Fen) Toqa (pN): fINalog R

f[n.T)] = q
Soq Toq (@Urg—og)€ER
SLJ_,«T—M]
Ti+q1 .. Th—og¢n (glg, --,¢n) 2@ ER

g(Tls"'?Tﬂ)_}q

The language L(.4) accepted by a conditional tree automaton is the set of ground
generalized terms T st. T' — ¢ for some ¢ € Qring. Two antomata are eguivalent
iff they accept the same language. From the definition, conditional tree automata are
compatible with the =p congruence:

ProrosiTiON 14. If T — g then T and q have the same sort. If T =p S then § — q.
5.2. DETERMINIZATION OF CONDITIONAL TREE AUTOMATA
5.2.1. COMPLETELY SPECIFIED AUTOMATA

A conditional tree automaton is completely specified if for each gereralized term T
there exists some state ¢ s.t. T — g.

PROPOSITION 15. For each conditional tree automaton, there erists an equivalent com-
pletely specified conditional tree automaton.

Proof If A is not completely specified, one adds new error states (q});,;p, gr 2c and new
rules: (..., q5,.-) = g5, ©(N) : f[N.g5] = ¢ for h € F UG where ¢(N) is a formula
equivalent to true, ¢ LUy ¢ =+ g% and g Liy g7 — g7 for every ¢ of sort f. By construction
the automaton is a conditional tree automaton and it is completely specified. D

Tree Automata Help One to Solve Equational Formulae In AC-Theories 309

5.2.2. SEPARATION OF CONDITIONS

ProrosiTioN 16. Let A be a completely specified tree automaton, let w1(N), ..., @n(N)
be the conditions occurring in the rules of A, then there exists an equivalent completely
specified tree automaton B s.t. the conditions ¥1(N), ..., ¥m(N) of the rules of B satisfy
the two requirements:

o ;(N) Ayp;(N) is unsatisfiable of i £ j,
o for each i € {1,...,n}, there exist j1,...,ji 5.t wi(N) & ¥, (N) V...V, (N)

Proof The ¢; are boolean combinations of the ¢;’s using -, A,V and a rule p;(N) :
f[N.q1] = ¢ is replaced by the rules 9;,(N) : f[N.q1] = ¢.

The automaton B is said to have separated conditions.

5.2.3. THE DETERMINIZATION ALGORITHM

An automaton is deterministie, iff for each generalized term T there exists a unique
state ¢ s.t. T — ¢.

ProPosITION 17. For each conditional automaton A there exists a equivalent defermin-
istic conditional automaton Ap.

Proof From the two previous propositions, we can suppose that A = ((¢;)rer, @nac,
@ Final, B) is completely specified and has separated conditions. The deterministic au-
tomaton Ap = ((Qf)seF, Cnac, @Finat, Rp) is constructed as follows:

e astate Q of Ap is aseb {q1,...,gm} of states of A of the same sort,
e asiate () of Ap is a final state if it contains a final state of A,

e g(Q1,...,Qn) = Q is in Rp if Q is the set of states ¢ s.t. there exists ¢; €
Qi,-- 1 qn €EQy and arule g{gy,...,¢,) -+ ¢ in R,

¢ p(N): fIN.@1] = Qisin Rp if @ is the set of states ¢ s.t. there exists q1 € ¢}y
and a rule (N) : f[N.q1] = ¢ in R,

e Qi Uy Q2 — Qisin Rp if Q is the set of states g s.t. there exists q1 € Q1,¢2 € Q2
and a rule q; Uy g2 — ¢ in R.

By construction Ap is a conditional tree automaton since @1Uy Qo = Q iff Q2Us Q1 —
Q, and (@1 Uy @)Uy Qs) = @ iff Q1 (Q2Uy @3) — Q. Moreover Ap is deterministic
since A has separated conditions. By structural induction, one proves that if T is a
generalized term and if qq,. .., ¢, are the states s.t. T'— g; in A, then T = {q1,...,qn}
in Ap. The equivalence of A and Ap is a direct consequence of this remark.

Since Presburger arithmetic is decidable, one can decide if a condition ¢{N) of a rule
is satisfiable or not. From now on, the rules with unsatisfiable conditions are discarded.

310 D. Lugiez and J. L. Moysset

5.3. BooLEAN PROPERTIES

ProprosiTioN 18. The class of languages accepted by conditional tree automata is closed
under union, complement and intersection.

Proof . The complement of a language accepted by a {deterministic) conditional au-
tomaton is accepted by the automaton obtained by exchanging the final states and the
non-final states. The union is accepted by an automaton which is the union of 4; ac-
cepting £; and of 4» accepting La. The closure under intersection is a consequence of
the closure under complement and union (a direct proof also exists). (]

5.4. DECISION OF EMPTINESS

In this section, A = ((Q;)seF, @nac, @Finai, R) is a conditional tree automaton and
Ny is a fixed integer greater than the number of states of A, Our first result states the
decision of emptiness for generalized terms.

ProOPOSITION 19. It is decidable if there is a generalized term accepted by A

Proof For each condition ¢(N) one can compute some n s.t. & ¢(n). Moreover if
there is some T s.t.T — g, and some p(N) : f[N.¢1] = ¢ € R, then f[n.T] — ¢,
and if Ty — ¢1,T% — ¢2,91 Uy g2 = ¢ then T3 Uy T — g. Therefore & straightforward
modification of the classical algorithm to decide emptiness of tree autcmata also works
for conditional tree automata. []

Unfortunately, generalized terms are not suitable for modelling non-linearity, and we
must restrict ourselves to normalized terms for solving the AC-complement problem.
Therefore the decision of emptiness becomes more involved and some preliminary results
are needed.

Prorosition 20. Let T = fn,.T4,...,n,.T,] a normalized term s.t. T — ¢ and p is
greater than or equal fo Ny, then there exists a normalized term S = f[my.51,. .., mg .Sk)
s.t.k<pand §—g.

Proof Let q1,...,q, be the states s.t. fl[n, T5] = ¢p, ..., flniqi,.. ., 0. Tp) = Giy -,
fln1 11, .. .,np. Ty} = g1 = ¢. The sequence ¢4, ..., ¢y has more elements than the num-
ber of states of A, therefore there exist some i > j s.t ¢; = ¢;.

Let S = f[n,. Ty, ..., ni—1.Ti—1,n;.Tj, . . ., np.Tp] which has the required form f[m;.5,. ..,
my. Sk} with k& < p. Since f[niTi,...,n,.T;] = ¢ and f[n;.T;,...,np. T3] — ¢; with
¢i =¢q;, then S = ¢1 =g¢.

PROPOSITION 21. One can compute B s.t. for each condition ¢(N) either each integer
n validating o is less than B or there are at least Ny integers less than B validating .

Proof One tests if ¢(N) has a finite number of solutions by checking if 3P : p(N) =>
N < P is true. If ¢o(N) has a finite number of solutions, it is easy to find a bound B’ cn
these solutions by testing In :n > kA w(n) for k= 1,2,..., and if ¢(N) has an infinite
number of solutions, one computes the first Ny ones by checking = @(k) for k= 1,2,....

Tree Automata Help One to Solve Equational Formulae In AC-Theories 31t

The bound B is the maximum of B’ and of the maximal values needed to get Ny solutions
for conditions having an infinite set of solutions. D

In what follows, given a set § of normalized terms, Np(8) denotes the number of
distinct congruence classes for =p in §.

Combining the previous results, one can design the following algorithm to decide the
emptiness of the set of normalized terms accepted by a conditional tree automaton:

For each state ¢ do set L) = 0.

i=1.
Repeat For each state ¢ do
F; « Lt
if Np(ﬁ;,'l) < Np
then repeat add to E; all normalized terms

T=g(N,....,Tu) or fln.Ty,...,np.Tp) 5.t
T; Eﬁfﬂ‘jl,nj <Band T —y¢
until no new term can be added or Np(ﬁfz) > Np
i=i+1
until 3¢ € QF s.t. L # Bor Vg, Ly = L7}
if 3¢ € QFina s.1. Ly # # then return not empty
else return empty

This algorithm allows us to state the following theorem:
THEOREM 5. It is decidable if there is a normalized term accepted by A

Proof The algorithm terminates since the congruence class [T]p of any normalized
term is finite. The proof of correctness requires more work. The X relation is defined by:

. g(Tl,...,Tn)ﬁ)qifT,-ﬂq,- with N; < N and g{g1,...,qn) = ¢ € R,
o fln Ty, np T) D g i i 54 g; with N; < N and fln T4, .. 0, T0] = g

Then we define .Mf?v ={T|T Eit ¢ for R < N}. By definition one has £ C .M;;V.
The proof of the theorem is based upon the following lemma;:

LeMMA 1. For each q, N, either E;;V = M?’ or Np(MqN) and Np(Ef;’) are greater than
or equal to Ny

The proof is by induction on V.

e N = 1: obvious.

312 D. Lugiez and J. L. Moysset

¢ Let the property be true for any R < N. Since the result is obvious when Mév =0
we suppose that MY # 0.

— let g be of sort nac. Then,

* either there is some T = g(T},...,T;) st. T X g and Np(Mf;E) > No
whereﬂf}q,‘ and R < N,
 or for each T = g(T1,...,T,) s.t. X g with T} kit i, N;:(Mg) < Njg.

In the last case, the induction hypothesis yields that MqN ={T =g(T1,...,Tn) |
Ti € JC,I;.} and we are done. In the first case one gets that Np(MY) > Ny and
Np (ﬂg) > Np.

— let ¢ be of sort f. Then,

* either there is some T = fln,.T1,...,np.0}] 8.8, T X g where T;, it i,
and NP(M';-‘;O) > Ny for some ig,
x or for each T = flny.Th,... ,np.Tp) st. T L q, NP(M!;E) < Ny where
T, & g
The last case works as above since L;V ={T'=flm1T1,...,n 0] | Ti € EqR =
ME n; < B} and Mf;r ={T=flm.Ty,.. . nT) | T € ./\/f;;2 = E?} and we

q i)
are done.

In the first case, we can suppose that p < Ny (use proposition 20). We show
that we can construct at least Ny normalized terms in Eé" .

Let Tj,,...,Tj, be the Ti’s st. T;, — ¢qi, (hence £k < p < Nyp). Let § =
f[n1.51,...,n,.5] be as follows:

S; = T; if i is not one of the jy, ..., jk, otherwise S, is some term of ££.0, Sj, is
some term of £ st S;, #¢ Sj,, ..., Sj, is some term of Eiﬂ s.t. Sj, #p Sj,
and ...and 5, #p 5;,.

Therefore one can construct at least No.(Ng—1)... (No—(k=1))/1.2...k > Ny

t non-equivalent normalized terms S s.t 5§ € M ;;V and we are done,

6. Applications to complement problems and inductive rzducibility

6.1. RESTRICTED TERMS

Normalized terms and conditional tree automata have been introduced to deal to
restricted terms, as defined by:

DEFINITION 8. A termt is vestricted iff

e either Flat(t) = «,

T this is the number of possible choices of k£ objects among Np with £ < Np

Tree Automata Help One to Solve Equational Formulae In AC-Theories 313

o or Flat{t) = g(t1,...,1n) where each t; is restricted , t; and t; do not have ¢ vari-
able in common fori # j,

e or Flat(t) = f(|t1,...,tn|) where each t; is restricted for i = 1,...,n, t; and ¢;
have a variable x in common for i # j iff ti =ac t;.

Example The term g(f(f(z,), £(2,4)), 9(2)) is restricted but £{g(F(z, 1)), 9(f(z,)))
is not restricted.

As in the linear case, we are interested in AC(Gr(t)). In the next proposition ¢ is a
term s.t.:

e 1 is restricted and

o Flat(t) = f(|z1,...,21,...,2¢,...,Zg,t1,. .-, %1, ..., p, ..., 1p |) where the ¢;’s are
\—\,—/ ».,_,\’__,_/’-—\,—r‘ hv_.../

my m LD np

q
not variables and t; #4¢ t; for i £ j.

By definition, I(f[m;.z1,...,mp.zp,n1.Th,... mp. D]} = ¢ iff I(T;) = ¢ for ¢ =
1,...,p. The set of normalized ground AC-instances of t is characterized by:

ProprosiTION 22.
S € Norm(AC(Gr(t))) if S = f(M.51, ..., M:.5,] with

o M, =Zier,ni + Ejejkkj.mj
o I(Sy) € AC(Gr(ty)) for each i € I
o the sets Iy satisfy Ul = {1,...,pY and It NI =B if k £ k',

o the sets Ji satisfy UpJe = {1,...,¢}

Proof Let S be as above, then

Flat(I(S)) = I(S) = f(ISt, .- »81, .- »Spr- -, Sy)

M1 Mj!
I(S) =p f(|§ju---,Sﬁl,a--":giwwssiys"t coe3 iy s Sy, s Sy)
(E;k‘{r).ml (E)kl).mq r: 1’::

where 5;, € AC(Gr(t))
I{(S) =p Flat(t6)

for somne @ since the z;’s do not occur in the t;’s and t; and t; have no variables in
common for 1 # j.

34 D. Lugiez and J. L. Moysset

Conversely, let 5 € Norm{AC(Gr(t)))}, then
I(S) =ac 8 for some 4,

1(S) =p Flat(t6)

I(S) =p Flat(x16) Uy ...Us Flat(z,8) Us ... Uy Flat(z48) Uy ... Uy Flat(zg)0 Uy

m Mg

Flat(tlg) Up...LE Ffat(tlg) Up... Uy Flat(t,,()) UyUy Flat(tpﬁ)

ISy = 1(Si) Uy - .Uy 1(Sa) Uy - Uy H(Sp) Uy .Uy I(Sr)

M, M,

where S; and M; are as above, then S has the required form. |:|
6.2. SOLUTION OF RESTRICTED COMPLEMENT PROBLEMS

Now we prove the decidability of AC-complement problems for restricted terms. The
key proposition is the next one and it also has a more elegant non-combinatorial proof
which unfortunately lacks the constructive aspects we are interested in.

PROPOSITION 23. Let t be a restricted term then Norm(AC(Gr(t))) ts accepted by a
condifional free automaton.

Proof The proof is by structural induction on Fiat(t).
s Flat(t) = r the result is obvious.

e Flat(t) = g{t1,...,ts). Let A; be an automaton accepting Norm({AC(Gr(t;))),
then an automaton accepting Norm{AC(Gr(t)}) is obtained by taking all the
states of the A; plus a new final state ¢p, all the rules of the .4; plus the rules
g9{q1,--.,9n) — ¢ where g; is a final state of 4; fori=1,...,n.

o Flat(t) =p f(lz1,.. ., 21, . 8qy.. ., Tq b1, yb1, .. tp, .t |). Let A; be an
eV N Nt A s
m, Mg L3 np

automaton accepting Norm(AC(Gr(t;))) for i = 1,...,p. From these automata,
one can construct automata Ay accepting NierNorm(AC(Gr(t;))) for any I C
{L,...,p} with J # 8. An automaton accepting the set of all ground normalized
terms is denoted by .Ar. An automaton accepting Norm({AC(Gr(t))) can be con-
structed by taking all the states of the rules of the previous automata and by adding
new states g7 s of sort f for each I C {1,...,p},J C {1,..., ¢} and new rules:

— 3k; > 0: N = Zigrn; + Zjegk;m; : f[N.q] = g1,5 for each final state gof Ay,
— 3k; >0: N =Z;esk;.m; : fIN.q] — gp s for each final state ¢ of Ar,

— §1,,7, Uy 915,07, = ¢ wi,,Juds-

Tree Automata Help One to Solve Equational Formulae In AC-Theories s

The unique final state of the automaton is ¢{y,... p},{1,....q} - BY construction, A is a condi-
tional tree antomaton since set union is commutative and associative, and the language
accepted by A is Norm(AC(Gr(t))) (use the previous proposition). (]

Example Let t
Norm(AC(Gr(t))).

= f{0,z), we sketch the construction of the automaton accepting

An automaton accepting Norm{AC(Gr(z))) has the rules:

0—=4q

glgorgs) =g
N>1:f[N.g] =g

9 Urqr > q

where ¢ and ¢y are final states.
An automaton accepting Norm(AC{Gr(0))) has the rules:
0—go
where ¢o is the final state.

To get the automaton to accept Norm{AC(Gr(t))), we add new states g7 5. For clarity,
we use subsets I (resp. J) of {0} (resp. of {z}) instead of subsets of {1} (resp. {1}). The
new rules are:

N=1: f(qa) — ¢{o0},8

>0:N=1+k1:f(N.go)— 4{0},{z}
Jk>0:N=k.1: f(N(q or q;)) — ¢9,{z}

8,{=} U5 9{0}.8 —* 9{0},{z} and g{o} ¢ Uy dg {z} —* 9(0} {=}
9{0},{=} Us 90.{=} = 9{0}.{=} and 9.{=} Us 9{0},{z} = 9{0}.{=}
99,{z) Us q0,{z} = q0,{z} and gp {2} U go.{c} = 90.{z}

where g{o},{z} is the final state.

THEOREM 6. The complement problem t #4c th A... At #F4c tn wheret and the t)s are
restricted terms is decidable.

Proof The result holds since

¢ there is a solution iff there is a normalized term in Norm(AC(Gr(t})) which does
not belong to Norm(AC(Gr(t;))) fori=1,...,n,

e Norm(AC(Gr(s))) is accepted by a conditional automaton for each s,
¢ the class of languages accepted by conditional automata is closed under boolean op-

erations and the ernptiness of a language accepted by a conditional tree antomaton
is decidable.

3l6 D. Lugiez and J. L. Moysset

]

6.3. DECISION OF INDUCTIVE REDUCIBILITY

The proof that the normalized ground AC-instances of a restricted term are accepted
by a conditional tree automaton can be generalized to get a proof that Norm(Red(t))
is accepted by a conditional tree automaton if ¢ is a restricted term (Red(t) denotes the
ground terms reducible by ¢). The proof is by induction on Flat(z). The cases Flat(f) = »
or Flat{t) = g(t1,...,tn) are easy and the case Flai(t) =p f(|z1,...,2q,t1,...,tp]) is
dealt with as follows:

s construct an automaton accepting Norm(AC(Gr(2))) U Norm(AC(Gr(z Uy t))),

e to this automaton, add a new final state g,,. and the rules g(...,¢nqe,...) —

Gnacy 9(- 1P,) = Gnae, N 2 1 f[N.gnae] = ¢r,qr Uy ¢ = gFr, g Us gF — gF
where ¢r is any final state of sort f, and ¢ is any state of sort f.

Therefore one gets the theorem:

THEOREM 7. The inductive reducibility modulo AC of a restricted term for a term rewrite
system with restricted left-hand side 1s decidable.

6.4. EXTENSIONS
6.4.1. GENERALIZED CONDITIONAL TREE AUTOMATA

In section 3.3, we have introduced automata with equality tests hetween brothers
and in section 5, we have discussed conditional tree automata. Thesz classes can be
merged into a single one, generalized conditional tree automata which are defined like
conditional tree automata except that the rules g(qi,...,¢n) — ¢ are replaced by rules
w:9(gq1,...,9n) = ¢ where ¢ is a formula of Form, where Form,, is defined by:

o #iFtp #HjE Formy,, T € Form,,
e if p € Form, and) € Form, then —p € Form,, ¢V € Form,, Ay € Form,,.

These generalized conditional automata accept sets of generalized terms, and have
the same properties as conditional tree automata. They are used to extend the non-
linear cases that we can deal with, i.e. we are able to handle loosely restricted terms. A
term ¢ is loosely restricted if Flat(t} = z or Flat(t) = g(t1,...,tn) where the tis are
restricted and have no variable in common if they are not variables, or else Flat(t) =
F(lt1, - .., tp]) where the t; are restricted and either ¢; =4¢ £; or t; and #; have no variable
in common. The proofs designed for conditional automata can be easily modified to work
for generalized conditional automata, and we get our next result:

THEOREM 8. The complement problem t #£4¢c ti A.. At Fac tn wherel and the t)s are
loosely restricted terms is decidable. The inductive reducibility modulo AC of a loosely
restricted term for a term rewrite system with loosely restricted lefi-hand side is decidable.

Tree Automata Help One to Solve Equational Formulae In AC-Theories 317

6.4.2. WORKING ON MULTISETS

To solve the AC-complement problem, we focussed on normalized terms. But our
solutions works also for similar problems on multisets, if we change the definition of nor-
malized terms in order to allow terms like fln1.Th, ..., np.Tp} with 3_;—7 = 1. The same
results hold and we can decide multiset incluston, intersection, union and complement.

6.4.3. ADDING IDEMPOTENCY

Another useful axiom is the idempotency axiom f(z,z) = # called 7. Our solution
relying on conditional tree automata can be modified in order to handle this axiom
together with associativity and commutativity, i.e f € F satisfies ACI. The normalized
terms required for this solution will have the form f[1.71,...,1.7,] where T} and T} are
not equivalent. Therefore one gets the result:

THEOREM 9. The complement problem t Zacr ti A ... At #ac1 tn where t and the tis
are linear terms ts decidable. The inductive reducibility modulo ACI of a linear term for
a left-linear term rewrite system is decidable.

Conclusion

We have shown that language theory and tree automata are useful for solving formuale
in equational theories involving associativity and commutativity. The new class of tree
automata that we have introduced can be used in other applications (sets and multisets
for instance) and is interesting by itself. For example, similar tree automata are used in
Niehren and Podelski (1993) to deal with feature terms a.k.a. multisets. Moreover, our
solution can be easily extended to deal with sorted terms where the relations on sorts
are described by a tree automaton. The decision procedures that we have given have a
high complexity, but the intrinsic complexity of the problem is high (AC-matching is NP-
complete and an AC unification problem can have an exponential number of solutions)
and we prefered to give simple proofs rather than the most efficient algorithms. Many
umprovements can be devised in order to get better algorithms. For instance, dealing
with flattened terms only and choosing an efficient representation of sets will decrease
the complexity by one exponential.

Aknowledgements: the authors thanks one referee for his fruitful remarks and sug-
gestions.

References

Bogaert, B.,Tison, 5. (1992) Equality and disequality constraints on direct subterms in tree automata. In
Proceedings of the th Symposium on Theoretical Computer Science, volume 577 of Lecture Notes
in Computer Science, pages 161-172, 1992,

Comon, H., Lescanne, P. (1989). Equational problems and disunification. Journal of Symbolic Compu-
tation, 7(3 & 4):371-426, 1989. Special issue on unification. Part one.

Colmerauer, A. (1984) Equations and inequations on finite and infinite trees. In Proceedings of FGC8’84,
pages 85-99, November 1984.

Dershowitz, N., Jouannaud, J-P, {(1988) Rewrite systems. In J, van Leeuwen, editor, Handbook of The-
oretical Computer Science. Elsevier Science Publishers B. V. (North-Holland}, 1990.

Gecseg, F., Steinby, M. (1984) Tree aufomata. Akadémiai Kiads, Budapest, Hungary, 1984,

318 D. Lugiez and J. L. Moysset

Jouannaud, J-P., Kounalis, E. (1989) Automatic proofs by induction in theories without constructors.
Information and Computation, 82:1-33, 1989.

Kapur, D.,Narendran, P., Rosenkrantz, D.J., Zhang, H. (1991)

Sufficient completeness, ground-reducibility and their complexity. Acta Informatica, 28:311-350,
1991.

Lassez, J-L., Marriot, K. (1986) Explicit representation of terms defined by counter examples. Journal
of Automated Reasoning, 3(3):301-318, 1986.

Lassez, J-L., Maher, M., Marriott, K. (1991) Elimination of negation in term algebra. In A. Tarlecki,
editor, Proceedings 16th International Sympesium on Mathematical Foundations of Computer Sci-
ence, Kazimierz Dolny (Poland), volume 520 of Lecture Notes in Computer Science, pages 1-16.
Springer-Verlag, 1991.

Lugiez, D., Moysset, J-L., (1993) Complement problems and tree automata in AC-like theories. In P. En-
jalbert, A. Finkel, and K. W. Wagner, editors, Proceedings STACS 93, volume 665 of Lecfure Notes
in Computer Science, pages 515-524. Springer-Verlag, February 1993.

Maher, M. (1988) Complete axiomatization of the algebra of finite, rational trees and infinite trees, In
Proceedings 9rd IEEE Symposium on Logic in Computer Science, Edinburgh (UK). COMPUTER
SOCIETY PRESS, 1988,

Malc'ev, A. (1971} Axiomatizable classes of locally free algebra of various type. In Benjamin Franklin
Wells, editor, The Metamathematics of Algebraic Systerns: Collected Papers 1996-15967, chapter 23,
pages 262--281. North Holland, 1971.

Niehren, J., Podelski, A., (1993) Feature automata and recognizable sets of feature trees. In M.C.
Gaude! and J.P. Jouannaund, editors, Proceedings TAPSOFT’83, volume 668 of Lecture Notes in
Computer Science, pages 356—375. Springer-Verlag, 1993.

Treinen, R., (1992) A new method for undecidability proofs of first order theories. Journal of Symbolic
Computation, 14(5):437-458, 1992,

